

## DRAFT ENVIRONMENT IMPACT ASSESSMENT REPORT &

# **ENVIRONMENTAL MANAGEMENT PLAN**

### FOR

## Proposed 210 KLPD Grain based Distillery along with 6.25 MW Co-Generation Power Plant

At Village: Beltukri, Tehsil & District: Mahasamund, Chhattisgarh

Baseline Study Period: Summer Season (March to May, 2023)

APPLICANT

## M/s. Piccadily Agro Industries Ltd.

Regd. Address: - Village Bhadson, Umri Indri Road, Tehsil Indri District Karnal, Haryana 134101 Email: environment.indri@piccadily.com

JMEPL/PAIL/2267/EIA/AUGUST,2023/Draft Revision no. 1 (Copy no. \_\_\_\_\_)



### **TOWHOM ITMAY CONCERN**

I, Dharmendra Kumar Batra, Director & Authorized Signatory of M/s. Piccadily Agro Industries Ltd. give this undertaking to the effect that the ToRs prescribed by MoEF&CC New Delhi vide letter no. IA-J-11011/277/2023-IA-II(I) dated 31st July, 2023 for Proposed 210 KLPD Grain based distillery along with 6.25 MW Co-Generation Power Plant at Village Beltukri, Tehsil & District Mahasamund, Chhattisgarh by M/s. Piccadily Agro Industries Ltd. have been complied and data submitted are factually correct.

We further certify that we have reviewed the EIA report and take full responsibility and ownership of the contents presented in the EIA report by J.M. EnviroNet Pvt. Ltd.

We also assure that there is no litigation pending against the proposed project and/or any direction/ order passed by any such litigation whatsoever, the sole responsibilities will be borne by the company.

Yours faithfully

For M/s. Piccadily Agro Industries Limited

ndra Kumar Batra Direct

Date: 11.08.23

(Distillery)

### **Piccadily Agro Industries Ltd**

Address: Village Bhadson, Umri-Indri Road, Tehsil: Indri, Distt: Karnal (Haryana)

Website: www.piccadily.com CIN:L01115HR1994PLC032244

### INDEX

| S. NO.         | PARTICULARS                                               | PAGE<br>NO. |
|----------------|-----------------------------------------------------------|-------------|
| А.             | TOR LETTER & TOR COMPLIANCE                               |             |
| 1.             | TOR LETTER                                                |             |
| 2.             | TOR COMPLIANCE                                            | 9-25        |
| В.             | DRAFTEIA / EMP REPORT                                     | 26-261      |
| CHAPTER – I    | INTRODUCTION                                              | 26-30       |
| CHAPTER – II   | PROJECT DESCRIPTION                                       | 31-59       |
| CHAPTER – III  | DESCRIPTION OF THE ENVIRONMENT                            | 60-118      |
| CHAPTER – IV   | ANTICIPATED ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES | 119-161     |
| CHAPTER – V    | ANALYSIS OF ALTERNATIVES (TECHNOLOGY & SITE)              | 162-163     |
| CHAPTER – VI   | ENVIRONMENTAL MONITORING PROGRAMME                        | 164-167     |
| CHAPTER – VII  | ADDITIONAL STUDIES                                        | 168-221     |
| CHAPTER – VIII | PROJECT BENEFITS                                          | 222-224     |
| CHAPTER – IX   | ENVIRONMENTAL COST BENEFIT ANALYSIS                       | 225         |
| CHAPTER – X    | ENVIRONMENTAL MANAGEMENT PLAN                             | 226-240     |
| CHAPTER – XI   | SUMMARY & CONCLUSION                                      | 241-250     |
| CHAPTER – XII  | DISCLOSURE OF CONSULTANTS ENGAGED                         | 251         |
| С.             | ANNEXURES                                                 | 252-342     |
| Annexure 1     | Land documents                                            | 252-258     |
| Annexure 2     | Permission for Abstraction of water from Mahanadi River   | 259         |
| Annexure 3     | Hourly Meteorological data                                | 260-318     |
| Annexure 4     | Detailed Ambient Air Quality Monitoring Tables            | 319-326     |
| Annexure 5     | Inventory of flora & fauna                                | 327-336     |
| Annexure 6     | Demography table of study area                            | 337-338     |
| Annexure 7     | List of industries                                        | 339         |
| Annexure 8     | NABET Certificate                                         | 340         |
| Annexure 9     | NABET Extension Letter                                    | 341         |
| Annexure 10    | NABL Certificate                                          | 342         |

### CONTENT LIST

| S.NO.       | PARTICULARS                                                                                           | PAGE NO. |
|-------------|-------------------------------------------------------------------------------------------------------|----------|
| CHAPTER I   | INTRODUCTION                                                                                          | 26-30    |
| 1.1         | Purpose of the report                                                                                 | 26       |
| 1.2         | Identification of the project and project proponent                                                   | 26       |
| 1.2.1       | Identification of the project                                                                         | 26       |
| 1.2.2       | Introduction of the project proponent                                                                 | 27       |
| 1.3         | Brief description of nature & size, location of the project and its importance to the country, region | 28       |
| 1.3.1       | Brief description of nature, size and location of project                                             | 28       |
| 1.4         | Scope of the study                                                                                    | 29       |
| 1.4.1       | Regulatory scoping                                                                                    | 30       |
| CHAPTER II  | PROJECT DESCRIPTION                                                                                   | 31-59    |
| 2.1         | Type of the project                                                                                   | 31       |
| 2.2         | Need for the project                                                                                  | 31       |
| 2.3         | Location                                                                                              | 33       |
| 2.3.1       | General location map                                                                                  | 33       |
| 2.3.2       | Specific location map                                                                                 | 35       |
| 2.3.3       | Plant layout                                                                                          | 36       |
| 2.3.4       | Photographs of the plant site                                                                         | 38       |
| 2.4         | Size or magnitude of the operation                                                                    | 38       |
| 2.4.1       | Requirements for the project                                                                          | 38       |
| 2.5         | Proposed Schedule For Approval and Implementation                                                     | 43       |
| 2.6         | Technology and Process Description                                                                    | 45       |
| 2.6.1       | Major Equipment and Machineries                                                                       | 56       |
| 2.7         | Description of Mitigation Measures                                                                    | 56       |
| 2.7.1       | Air Management                                                                                        | 56       |
| 2.7.2       | Water Management                                                                                      | 57       |
| 2.7.3       | Noise Management                                                                                      | 57       |
| 2.7.4       | Solid and Hazardous Waste Management                                                                  | 58       |
| 2.7.5       | Greenbelt Development & Plantation                                                                    | 58       |
| 2.7.6       | Odour Management                                                                                      | 58       |
| 2.8         | Assessment of New & Untested Technology For The Risk of Technological Failure                         | 59       |
| CHAPTER III | DESCRIPTION OF THE ENVIRONMENT                                                                        | 60-118   |
| 3.1         | Introduction                                                                                          | 60       |
| 3.2         | Study area, period, components and methodology                                                        | 60       |
| 3.2.1       | Study area                                                                                            | 60       |

| S.NO.    | PARTICULARS                                                                     | PAGE NO. |
|----------|---------------------------------------------------------------------------------|----------|
| 3.2.2    | Period of baseline data collection and components of environment                | 62       |
| 3.2.3    | Methodology                                                                     | 63       |
| 3.3      | Establishment of baseline with base maps of all valued environmental components | 64       |
| 3.3.1    | Details of LU/LC of buffer zone                                                 | 64       |
| 3.3.2    | Seismicity and flood hazard zonation of the area                                | 67       |
| 3.3.2.1  | Seismicity of the Area                                                          | 67       |
| 3.3.2.2  | Flood hazard zonation of the area                                               | 68       |
| 3.3.3    | Geological and hydro-geological features                                        | 71       |
| 3.3.4    | Climate and rainfall                                                            | 71       |
| 3.4      | Meteorology                                                                     | 72       |
| 3.5      | Ambient air environment                                                         | 75       |
| 3.5.1    | Ambient air quality monitoring results                                          | 78       |
| 3.5.2    | Conclusion                                                                      | 81       |
| 3.6      | Noise environment                                                               | 81       |
| 3.6.1    | Sampling Locations                                                              | 81       |
| 3.6.2    | Ambient Noise Level Monitoring Results                                          | 83       |
| 3.6.3    | Conclusion                                                                      | 83       |
| 3.7      | Water environment                                                               | 84       |
| 3.7.1    | Surface water                                                                   | 85       |
| 3.7.1.1  | Standards of surface water classification                                       | 88       |
| 3.7.2    | Ground water quality                                                            | 89       |
| 3.7.2.1  | Interpretation of ground water analysis                                         | 94       |
| 3.8      | Soil environment                                                                | 94       |
| 3.8.1    | Interpretation of soil analysis                                                 | 99       |
| 3.9      | Biological environment                                                          | 100      |
| 3.9.1    | Introduction                                                                    | 100      |
| 3.9.2    | Cropping pattern of the area                                                    | 101      |
| 3.9.3    | Interpretation of flora and fauna study                                         | 101      |
| 3.10     | Socio-Economic status of the study area and population projection               | 102      |
| 3.10.1   | Study Area                                                                      | 107      |
| 3.10.2   | Demographic Structure                                                           | 107      |
| 3.10.2.1 | Population Composition of Study Area                                            | 107      |
| 3.10.2.2 | Growth of Male-Female Population                                                | 108      |
| 3.10.2.3 | Gender and Sex Ratio                                                            | 109      |
| 3.10.2.4 | Child Sex Ratio                                                                 | 109      |

| S.NO.      | PARTICULARS                                                                    | PAGE NO. |
|------------|--------------------------------------------------------------------------------|----------|
| 3.10.2.5   | Vulnerable Groups                                                              | 110      |
| 3.10.2.6   | Literacy Rate                                                                  | 110      |
| 3.10.2.7   | Occupational Structure                                                         | 110      |
| 3.10.2.8   | Family Size                                                                    | 111      |
| 3.10.2.9   | Age composition                                                                | 111      |
| 3.10.3     | Infrastructure Base                                                            | 112      |
| 3.10.4     | Provision to Basic Amenities                                                   | 113      |
| 3.10.4.1   | Education                                                                      | 114      |
| 3.10.4.2   | Health                                                                         | 115      |
| 3.10.4.3   | Transport                                                                      | 115      |
| 3.10.5     | Other Issues                                                                   | 116      |
| 3.10.6     | Interpretation                                                                 | 116      |
| 3.10.7     | Recommendation and Suggestion                                                  | 116      |
| 3.10.9     | Summary and Conclusion of Socio Economic study                                 | 117      |
| 3.11       | Conclusion                                                                     | 118      |
| CHAPTER IV | ANTICIPATED ENVIRONMENTAL IMPACTS AND<br>MITIGATION MEASURES                   | 119-161  |
| 4.1        | Introduction                                                                   | 119      |
| 4.2        | Potential impacts of Proposed Project                                          | 119      |
| 4.3        | Evaluation of impact                                                           | 119      |
| 4.3.1      | Interaction matrix                                                             | 121      |
| 4.4        | Anticipated impacts during construction phase & proposed mitigation measures   | 126      |
| 4.4.1      | Impact on topography and land use & mitigation measures                        | 126      |
| 4.4.2      | Impact on air quality & mitigation measures                                    | 126      |
| 4.4.3      | Impact on noise environment & mitigation measures                              | 127      |
| 4.4.4      | Impact on water quality & mitigation measures                                  | 128      |
| 4.4.5      | Impact on soil & mitigation measures                                           | 128      |
| 4.4.6      | Impact on socio-economic environment                                           | 129      |
| 4.5        | Anticipated Impacts During Operation Phase and Proposed<br>Mitigation Measures | 129      |
| 4.5.1      | Impact on land topography and suggested mitigation measures                    | 129      |
| 4.5.2      | Impact on air quality & suggested mitigation measures                          | 130      |
| 4.5.2.1    | Air quality impact prediction through mathematical modelling                   | 132      |
| 4.5.2.2    | Impact due to transportation of raw material &finished product                 | 139      |
| 4.5.3      | Impact on water environment and mitigation measures                            | 144      |
| 4.5.4      | Impact on noise level and mitigation measures                                  | 145      |

| S.NO.       | PARTICULARS                                                                | PAGE NO. |
|-------------|----------------------------------------------------------------------------|----------|
| 4.5.5       | Impact due to solid and hazardous waste generation and mitigation measures | 146      |
| 4.5.6       | Impact on soil environment                                                 | 148      |
| 4.5.7       | Impact on biological environment & mitigation measures                     | 149      |
| 4.5.7.1     | Greenbelt development program                                              | 150      |
| 4.5.8       | Impact on socio-economic environment                                       | 152      |
| 4.5.9       | Occupational health and safety                                             | 154      |
| 4.6         | Irreversible and Irretrievable Commitment of Environmental<br>Components   | 156      |
| 4.7         | Anticipated Environmental Impacts, Aspects and Mitigation<br>Measures      | 157      |
| 4.8         | Summary And Conclusion                                                     | 161      |
| CHAPTER V   | ANALYSIS OF ALTERNATIVES<br>(TECHNOLOGY AND SITE)                          | 162-163  |
| 5.1         | Analysis of Alternative Site                                               | 162      |
| 5.1.1       | Alternative Site                                                           | 162      |
| 5.1.2       | Alternative Technology                                                     | 162      |
| CHAPTER VI  | ENVIRONMENTAL MONITORING PROGRAMME                                         | 164-167  |
| 6.1         | Introduction                                                               | 164      |
| 6.2         | Measurement methodologies                                                  | 164      |
| 6.2.1       | Instruments to be used                                                     | 164      |
| 6.3         | Monitoring Frequency and Locations                                         | 165      |
| 6.4         | Data analysis                                                              | 166      |
| 6.5         | Reporting schedules                                                        | 166      |
| 6.6         | Emergency procedures                                                       | 166      |
| 6.7         | Detailed budget                                                            | 167      |
| CHAPTER VII | ADDITIONAL STUDIES                                                         | 168-221  |
| 7.1         | Additional Studies                                                         | 168      |
| 7.2         | Public Hearing                                                             | 168      |
| 7.3         | Risk Assessment                                                            | 168      |
| 7.3.1       | Hazard Identification & Risk Assessment                                    | 168      |
| 7.3.1.1     | Identification Of Hazards And Proposed Safety Systems                      | 169      |
| 7.3.2       | Hazard Identification AndRisk Assessment Matrix                            | 169      |
| 7.3.3       | Proposed Mitigation Measures                                               | 185      |
| 7.3.3.1     | Need Of Establishing A Fire Fighting Group                                 | 186      |
| 7.3.3.2     | Environment Health AndSafety Cell                                          | 187      |
| 7.3.3.3     | Emergency Planning & Procedure                                             | 187      |

| S.NO.        | PARTICULARS                                                   | PAGE NO. |
|--------------|---------------------------------------------------------------|----------|
| 7.3.3.4      | Emergency Planning For Disaster Due To Fire And Major Hazards | 188      |
| 7.3.4        | Onsite Emergency Plan/Disaster Management Plan                | 202      |
| 7.3.4.1      | Disaster Control Management System                            | 202      |
| 7.3.4.2      | NFPA Rating Of Hazardous Chemicals                            | 206      |
| 7.3.4.3      | Communication                                                 | 207      |
| 7.3.4.4      | Emergency Action Plan                                         | 209      |
| 7.3.5        | Off-Site Emergency Planning                                   | 213      |
| 7.4          | Occupational Health & Safety Hazards and Their Management     | 216      |
| 7.4.1        | Plan And Fund Allocation ForOccupationalAnd Safety Hazards    | 216      |
| 7.4.2        | Details Of Occupational Hazards And Their Mitigation          | 217      |
| 7.4.3        | Occupational Health Surveillance                              | 219      |
| 7.5          | Conclusion                                                    | 221      |
| CHAPTER VIII | PROJECT BENEFITS                                              | 222-224  |
| 8.1          | Introduction                                                  | 222      |
| 8.2          | Project Benefits                                              | 222      |
| 8.3          | Proposed action plan socio-economic development activities    | 224      |
| 8.4          | Conclusion                                                    | 224      |
| CHAPTER IX   | ENVIRONMENTAL COST BENEFIT ANALYSIS                           | 225      |
| 9.1          | Environmental cost benefit analysis                           | 225      |
| CHAPTER X    | ENVIRONMENT MANAGEMENT PLAN                                   | 226-240  |
| 10.1         | Introduction                                                  | 226      |
| 10.2         | Administrative management and policies                        | 227      |
| 10.2.1       | Environmental management cell (EMC)                           | 228      |
| 10.2.2       | Corporate Environment Policy                                  | 239      |
| 10.3         | Environmental management plan                                 | 232      |
| 10.3.1       | Air quality management                                        | 232      |
| 10.3.2       | Noise Management                                              | 232      |
| 10.3.3       | Water Quality Management                                      | 233      |
| 10.3.3.1     | Action plan to control ground water pollution                 | 233      |
| 10.3.3.2     | Water conservation                                            | 234      |
| 10.3.3.3     | Details of Rainwater Harvesting                               | 234      |
| 10.3.4       | Solid and hazardous waste management                          | 236      |
| 10.3.5       | Odour Management                                              | 236      |
| 10.3.6       | Occupational and health safety management                     | 237      |
| 10.3.7       | Disaster Management plan                                      | 237      |
| 10.4         | Concept Of Waste Minimization, 3r's (Reuse, Recycle & Recover | 238      |

| S.NO.       | PARTICULARS                                                    | PAGE NO. |
|-------------|----------------------------------------------------------------|----------|
|             | Techniques), Energy and Natural Resource Conservation Measures |          |
| 10.4.1      | Waste Minimization – 3R's                                      | 238      |
| 10.4.2      | Energy Conservation                                            | 239      |
| 10.4.3      | Natural resource conservation                                  | 239      |
| 10.5        | Budgetary Provision For Environment Management Plan (EMP)      | 239      |
| 10.6        | Conclusion                                                     | 240      |
| CHAPTER XI  | SUMMARY AND CONCLUSION                                         | 241-249  |
| 11.1        | Introduction                                                   | 241      |
| 11.2        | Justification for the project                                  | 241      |
| 11.3        | Details about the project                                      | 242      |
| 11.3.1      | Brief description of the project                               | 242      |
| 11.3.2      | Requirements for the project                                   | 243      |
| 11.3.2.1    | Raw Material Requirement                                       | 243      |
| 11.3.2.2    | Other Basic Requirement                                        | 244      |
| 11.4        | Manufacturing Process                                          | 244      |
| 11.5        | Description of environment                                     | 245      |
| 11.5.1      | Presentation of Results (Air, Noise, Water and Soil)           | 245      |
| 11.6        | Environmental Monitoring Programme                             | 245      |
| 11.7        | Project Benefits                                               | 246      |
| 11.8        | Environmental Management Plan                                  | 246      |
| 11.9        | Conclusion                                                     | 249      |
| CHAPTER XII | DISCLOSURE OF CONSULTANTS ENGAGED                              | 261      |

**≫I**≪

### LIST OF TABLES

| TABLE NO. | PARTICULARS                                                                              | PAGE NO. |
|-----------|------------------------------------------------------------------------------------------|----------|
| 1.1       | Project proposal                                                                         | 27       |
| 1.2       | Current status of the project with respect to environment clearance                      | 27       |
| 2.1       | Area break-up                                                                            | 36       |
| 2.2       | Details of the proposed project                                                          | 38       |
| 2.3       | Other details of the Project                                                             | 38       |
| 2.4       | Raw Material Requirement for 150 KLPD Distillery                                         | 39       |
| 2.5       | Fuel requirement                                                                         | 39       |
| 2.6       | Water details during grain based operation                                               | 40       |
| 2.7       | Water details during molasses based operation                                            | 40       |
| 2.8       | Water details during cane juice based operation                                          | 40       |
| 2.9       | Steam Requirement                                                                        | 42       |
| 2.10      | Proposed Boiler Details                                                                  | 42       |
| 2.11      | Power Requirement details                                                                | 42       |
| 2.12      | Manpower Requirement                                                                     | 43       |
| 3.1       | Environmental settings of the study area                                                 | 60       |
| 3.2       | Frequency and location of primary data collection of various<br>environmental components | 62       |
| 3.3       | Standardized methods adopted for baseline data establishment                             | 63       |
| 3.4       | Details of LU/LC of Study area                                                           | 65       |
| 3.5       | Seismic Zones in India                                                                   | 67       |
| 3.6       | Micro-meteorology at site                                                                | 72       |
| 3.7       | Mixing Height for the project site                                                       | 73       |
| 3.8       | Methodology adopted for collection and analysis of sample                                | 75       |
| 3.9       | Locations of ambient air quality monitoring stations                                     | 76       |
| 3.10      | Ambient Air Quality Monitoring Results                                                   | 78       |
| 3.11      | Locations of Noise Monitoring Stations                                                   | 81       |
| 3.12      | Ambient Noise Level Monitoring Results                                                   | 83       |
| 3.13      | Locations of Surface water Sampling Stations                                             | 85       |
| 3.14      | Surface Water Analysis                                                                   | 87       |
| 3.15 (A)  | Locations of Ground Water Sampling Stations                                              | 89       |
| 3.16 (B)  | Phreatic surface monitoring in 10 km study area                                          | 90       |
| 3.16      | Ground Water Analysis                                                                    | 92       |
| 3.17      | Locations of Soil Sampling Stations                                                      | 95       |
| 3.18      | Soil analysis S. No                                                                      | 97       |
| 3.19      | Standard Soil Classification                                                             | 99       |
| 4.1       | Impact Characteristics                                                                   | 120      |
| 4.2       | Significance of Impact                                                                   | 121      |
| 4.3       | Irreversible and Irretrievable commitments of environmental components                   | 121      |
| 4.4       | Likely Impacted Resources / Receptors                                                    | 122      |

| TABLE NO. | PARTICULARS                                                                     | PAGE NO. |
|-----------|---------------------------------------------------------------------------------|----------|
| 4.5       | Impact Matrix without mitigation measures                                       | 123      |
| 4.6       | Proposed stack emission details                                                 | 133      |
| 4.7       | Peak incremental concentration for different scenarios                          | 134      |
| 4.8       | Traffic Count Survey                                                            | 140      |
| 4.9       | No. of vehicles with respect to PCU                                             | 141      |
| 4.10      | Increase in traffic load due to proposed project                                | 142      |
| 4.11      | Action Plan for greenbelt development                                           | 152      |
| 6.1       | Measurement methodologies                                                       | 164      |
| 6.2       | Frequency & locations for post project monitoring                               | 165      |
| 6.3       | Environmental monitoring budget                                                 | 167      |
| 7.1       | Possible hazardous locations on site                                            | 169      |
| 7.2       | Summary of recommended personal protective equipment according to hazard onsite | 208      |
| 7.3       | Local Statutory Government bodies                                               | 213      |
| 11.1      | Raw Material and chemicals requirement                                          | 243      |
| 11.2      | Fuel Requirement                                                                | 244      |
| 11.3      | Basic Requirements for the Project                                              | 244      |
| 11.4      | Post Project Monitoring                                                         | 246      |



### LIST OF FIGURES

| FIGURE NO. | PARTICULARS                                                         | PAGE NO. |
|------------|---------------------------------------------------------------------|----------|
| 2.1        | Location map                                                        | 34       |
| 2.2        | Google image showing the specific location of the project site      | 35       |
| 2.3        | Plant Layout                                                        | 37       |
| 2.4        | Water/Mass Balance of proposed 200 KLPD Grain based distillery      | 41       |
| 2.5        | Process flow diagram of Grain based Distillery                      | 50       |
| 2.6        | Process flow diagram of Malt Spirit production                      | 52       |
| 2.7        | Process Flow Chart for proposed Co-generation Power Plant           | 53       |
| 2.8        | Flow diagram for Condensate Polishing Unit (CPU)                    | 55       |
| 3.1        | Environmental settings of 10 km radius study area                   | 61       |
| 3.2        | Land Use / Land Cover Map of the Buffer Zone                        | 66       |
| 3.3        | Seismic zones of Uttar Pradesh                                      | 67       |
| 3.4        | Flood Hazard Zonation Map                                           | 68       |
| 3.5        | Drainage map of the study area                                      | 70       |
| 3.6        | Wind Rose Diagram                                                   | 74       |
| 3.7        | Key Plan Showing Ambient Air Quality Monitoring Locations           | 77       |
| 3.8(A)     | Graph Showing PM2.5 Concentrations at different Monitoring Stations | 79       |
| 3.8 (B)    | Graph Showing PM10Concentrations at different Monitoring Stations   | 79       |
| 3.8 (c)    | Graph ShowingNO2Concentrations at different Monitoring Stations     | 80       |
| 3.8 (D)    | Graph ShowingSO2ConcentrationsatdifferentMonitoring Stations        | 80       |
| 3.9        | Key Plan Showing Ambient Noise Monitoring Locations                 | 82       |
| 3.10       | Key Plan Showing Surface Water Monitoring Locations                 | 86       |
| 3.11       | Key plan showing Groundwater & Phreatic Surface Sampling locations  | 91       |
| 3.12       | Key plan showing Soil Sampling locations                            | 96       |
| 41         | Isopleth Showing Maximum Predicted GLC of PM2.5                     | 135      |
| 4.2        | Isopleth Showing Maximum Predicted GLC of PM10                      | 136      |
| 4.3        | Isopleth Showing Maximum Predicted GLC of SO2                       | 137      |
| 4.4        | Isopleth Showing Maximum Predicted GLC of NO2                       | 138      |
| 4.5        | Traffic Volume count survey                                         | 140      |
| 7.1        | Various organizations involved during emergency                     | 214      |



### LIST OF ABBREVIATIONS

| ABBREVIATIONS   | DESCRIPTION                         |
|-----------------|-------------------------------------|
| AAQ             | Ambient Air Quality                 |
| AAQM            | Ambient Air Quality Monitoring      |
| АРНА            | American Public Health Association  |
| BDL             | Below Detectable Level              |
| BGL             | Below Ground Level                  |
| BIS             | Bureau of Indian Standards          |
| BOD             | Biochemical Oxygen Demand           |
| CCR             | Central Control Centre              |
| CGWB            | Central Ground Water Board          |
| СМТ             | Crisis Management Team              |
| CO <sub>2</sub> | Carbon Dioxide                      |
| COD             | Chemical Oxygen demand              |
| СРСВ            | Central Pollution Control Board     |
| СРР             | Captive Power Plant                 |
| CSR             | Corporate Social Responsibility     |
| DFO             | District Forest Office              |
| DMP             | Disaster Management Plan            |
| DO              | Dissolved Oxygen                    |
| Е               | East                                |
| EAC             | Expert Appraisal Committee          |
| EC              | Environmental clearance             |
| ECC             | Emergency Control Centre            |
| EIA             | Environmental Impact Assessment     |
| EMC             | Environmental Management Cell       |
| EMP             | Environmental Management Programme  |
| EMS             | Environmental Management System     |
| ENE             | East of North East                  |
| EPA             | Environmental Protection Agency     |
| ERDAS           | Earth Resource Data Analysis System |
| ERT             | Emergency Response Team             |
| ESC             | Enterprise Social Commitment        |
| ESE             | East of South East                  |
| ESP             | Electrostatic Precipitator          |
| ETP             | Effluent Treatment Plant            |
| FCC             | False Colour Composite              |
| FH              | Functional Heads                    |
| FPS             | Fine Particulate Sampler            |

| ABBREVIATIONS   | DESCRIPTION                                                           |
|-----------------|-----------------------------------------------------------------------|
| Ft              | Feet                                                                  |
| GCP             | Ground Control Points                                                 |
| GLC's           | Ground Level Concentrations                                           |
| GOI             | Government of India                                                   |
| GPS             | Global Positioning System                                             |
| GW              | Ground Water                                                          |
| НС              | Hydrocarbon                                                           |
| HSD             | High Speed Diesel                                                     |
| IMD             | Indian Meteorological Data                                            |
| IRP             | Incident Response Plan                                                |
| IRT             | Incident Response Team                                                |
| IS              | Indian Standard                                                       |
| JM              | Jharkhand Mahadev                                                     |
| JMEPL           | J.M. EnviroNet Private Limited                                        |
| KLPD            | Kilo Litre Per Day                                                    |
| LPH             | Litre per hour                                                        |
| LULC            | Land Use Land Cover                                                   |
| Max.            | Maximum                                                               |
| MCR             | Maximum Continuous Rating                                             |
| Min.            | Minimum                                                               |
| MoEFCC          | Ministry of Environment Forest& Climate Change                        |
| MoU             | Memorandum of Understanding                                           |
| MSIHC           | Manufacture Storage & Import of Hazardous Chemicals                   |
| MT              | Metric Ton                                                            |
| MTPA            | Metric Tonne Per Annum                                                |
| MW              | Mega Watt                                                             |
| N               | North                                                                 |
| NAAQS           | National Ambient Air Quality Standards                                |
| NABET           | National Accreditation Board for Education & Training                 |
| NABL            | National Accreditation Board for Testing and Calibration Laboratories |
| NE              | North-East                                                            |
| NH              | National Highway                                                      |
| NO <sub>2</sub> | Nitrogen Dioxide                                                      |
| NTU             | Nephelometric Turbidity Unit                                          |
| NW              | North-West                                                            |
| OHS             | Occupational Health Safety                                            |
| PAS             | Public Address System                                                 |
| PCE             | Pollution Control Equipment                                           |
| PF              | Protected Forests                                                     |

| ABBREVIATIONS | DESCRIPTION                                           |
|---------------|-------------------------------------------------------|
| PM            | Particular Matter                                     |
| PPE           | Personal Protective Equipment                         |
| ppm           | Parts Per Million                                     |
| PWL           | Pumping Water Level                                   |
| RDS           | Respirable Dust Sampler                               |
| RF            | Reserved Forests                                      |
| RO            | Reserve Osmosis                                       |
| S             | South                                                 |
| SC            | Site Controller                                       |
| SC            | Schedule Castes                                       |
| SE            | South-East                                            |
| SEAC          | State Level Expert Appraisal Committee                |
| SEIAA         | State Level Environmental Impact Assessment Authority |
| SMC           | Site Main Controller                                  |
| $SO_2$        | Sulphur Dioxide                                       |
| SOI           | Survey of India                                       |
| SPCB          | State Pollution Control Board                         |
| SPM           | Suspended particulate Matter                          |
| ST            | Schedule Tribes                                       |
| STP           | Sewage Treatment Plant                                |
| SW            | Surface water                                         |
| SW            | South-West                                            |
| SWL           | Static Water Level                                    |
| TCD           | Tons of Cane per Day                                  |
| TDS           | Total Dissolved Solid                                 |
| ToR           | Terms of Reference                                    |
| TPD           | Tons Per Day                                          |
| TPH           | Tonnes Per Hour                                       |
| VOC           | Volatile Organic Carbon                               |
| W             | West                                                  |



### File No.: IA-J-11011/277/2023-IA-II(I) Government of India Ministry of Environment, Forest and Climate Change IA Division \*\*\*



Dated 31/07/2023



| To,                      |                                                                                       |                                                          |
|--------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------|
|                          | Dharmendra Kumar Batra                                                                |                                                          |
|                          | PICCADILY AGRO INDUSTRIES LIMITED                                                     |                                                          |
|                          | Village Bhadson, Umri Indri Road, Tehsil Indri, D                                     | istrict Karnal, Haryana , KARNAL, HARYANA, ,             |
|                          | 134109                                                                                | ~ S                                                      |
|                          | environment.indri@piccadily.com                                                       |                                                          |
| G 11 4                   |                                                                                       |                                                          |
| Subject:                 | Grant of Standard Terms of Reference (ToR) to tr<br>and as amended thereof-regarding. | e proposed Project under the EIA Notification 2006-      |
|                          | and as amended thereof-regarding.                                                     |                                                          |
| Sir/Mada <mark>m,</mark> |                                                                                       |                                                          |
|                          | This is in reference to your application s                                            | ubmitted to MoEF&CC vide proposal number                 |
|                          |                                                                                       | rant of Terms of Reference (ToR) to the project under    |
|                          | the provision of the EIA Notification 2006-and as a                                   | amended thereof.                                         |
|                          |                                                                                       |                                                          |
|                          | 2. The particulars of the proposal are as below :                                     | ÷ 111                                                    |
|                          | S ofects of She                                                                       |                                                          |
|                          | (i) ToR Identification No. COC GRE                                                    | EN                                                       |
|                          | (ii) File No.                                                                         | IA-J-11011/277/2023-IA-II(I)                             |
|                          | (iii) Clearance Type                                                                  | Fresh ToR                                                |
|                          | (iv) Category                                                                         | A                                                        |
|                          | (v) Project/Activity Included Schedule No.                                            | 5(g) Distilleries                                        |
|                          | (vi) Sector                                                                           | Industrial Projects - 2                                  |
|                          |                                                                                       | Proposed 210 KLPD Grain based Distillery along           |
|                          |                                                                                       | with 6.25 MW Co-generation power plant at                |
|                          | (vii) Name of Project                                                                 | Village Beltukri, Tehsil & District Mahasamund,          |
|                          |                                                                                       | Chhattisgarh by M/s Piccadily Agro Industries<br>Limited |
|                          | (wiii) Name of Company/Organization                                                   | PICCADILY AGRO INDUSTRIES LIMITED                        |
|                          | (viii) Name of Company/Organization<br>(ix) Location of Project (District, State)     | MAHASAMUND, CHHATTISGARH                                 |
|                          | (x) Issuing Authority                                                                 | MoEF&CC                                                  |
|                          | (x) ToR Date                                                                          | 31/07/2023                                               |
|                          | (xii) Applicability of General Conditions                                             | NO                                                       |
|                          | (,                                                                                    |                                                          |

- 3. The **MoEF&CC** has examined the proposal in accordance with the Environment Impact Assessment (EIA) Notification, 2006 & further amendments thereto and after detailed examination hereby decided to grant Standard Terms of Reference to the instant proposal of **M/s. PICCADILY AGRO INDUSTRIES LIMITED** under the provisions of the aforementioned Notification.
- 4. The brief about products and by products as submitted by the Project proponent in Form-1 (Part A, B) and Standard Terms of Reference are annexed to this letter as Annexure (1).
- 5. The Ministry reserves the right to stipulate additional TORs, if found necessary.
- 6. The Standard Terms of Reference (ToR) to the aforementioned project is under provisions of EIA Notification, 2006 and as amended thereof. It does not tantamount to approvals/consent/permissions etc required to be obtained under any other Act/Rule/regulation. The Project Proponent is under obligation to obtain approvals /clearances under any other Acts/ Regulations or Statutes, as applicable, to the project.
- 7. The granted letter, all the documents submitted as a part of application viz. Form-1 Part A and Part B are available on PARIVESH portal which can be accessed by scanning the QR Code above.

| Name of the product /By-product                                                                                                    | Product /<br>By-product | Quantity | Unit              | <mark>Mode</mark> of Transport<br>/ Transmission | Remarks (eg.<br>CAS number)                     |
|------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|-------------------|--------------------------------------------------|-------------------------------------------------|
| Ethanol/Rectified Spirit /Extra Neutral<br>Alcohol/Industrial Alcohol/Denatured<br>Spirit/Specially Denatured Spirit & Malt Spirit | Product                 | 210      | Kilo Litre        | Road                                             | Main product mix                                |
| DDGS                                                                                                                               | By-Product              | 88       | TPD               | Road                                             | DDGS will be<br>utilized as Cattle<br>feed      |
| Carbon dioxide                                                                                                                     | By-Product              | 154      | TPD               | Road                                             | CO2 will be<br>collected and sold<br>to vendors |
| Power                                                                                                                              | Product                 | 6 /5     | Mega Watt<br>(MW) | Cables                                           | 60 TPH Boiler<br>with ESP                       |
| 30/2 V                                                                                                                             | PC C                    | RE       | E.M               |                                                  |                                                 |

IVE

### Details of Products & By-products

Standard Terms of Reference for conducting Environment Impact Assessment Study for Distilleries and information to be included in EIA/EMP report

#### 1. Executive Summary

### -Payments

| Sr. No | Terms of Reference |
|--------|--------------------|
| 1.1    | Executive Summary  |

#### 2. Introduction

| Sr. No | Terms of Reference                                          |
|--------|-------------------------------------------------------------|
| 2.1    | Details of the EIA Consultant including NABET accreditation |
| 2.2    | Information about the project proponent                     |

### 3. Project Description

| Sr. No | Terms of Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3.1    | Cost of project and time of completion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3.2    | Products with capacities for the proposed project. If expansion project, details of existing products with capacities and whether adequate land is available for expansion, reference of earlier EC if any.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3.3    | List of raw materials required and their source along with mode of transportation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3.4    | Other chemicals and materials required with quantities and storage capacities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3.5    | Details of Emission, effluents, hazardous waste generation and their management. Requirement of water, power, with source of supply, status of approval, water balance diagram, man-power requirement (regular and contract)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3.6    | Process description along with major equipments and machineries, process flow sheet (quantitative) from raw material to products to be provided.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3.7    | Hazard identification and details of proposed safety systems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3.8    | <ul> <li>Expansion/modernization proposals:</li> <li>a. Copy of all the Environmental Clearance(s) including Amendments thereto obtained for the project from MOEF/SEIAA shall be attached as an Annexure. A certified copy of the latest Monitoring Report of the Regional Office of the Ministry of Environment and Forests as per circular dated 08th June, 2022 on the status of compliance of conditions stipulated in all the existing environmental clearances including Amendments shall be provided. In addition, status of compliance of Consent to Operate for the ongoing /existing operation of the project from SPCB shall be attached with the EIA-EMP report.</li> <li>b. In case the existing project has not obtained environmental clearance, reasons for not taking EC under the provisions of the EIA Notification 1994 and/or EIA Notification 2006 shall be provided. Copies of Consent to Establish/No Objection Certificate and Consent to Operate (in case of units operating prior to EIA Notification 2006, CTE and CTO of FY 2005-2006) obtained from the SPCB shall be submitted.</li> </ul> |

### 4. Site Details

| Sr. No | Terms of Reference                                                                                                                                                                                                                                                                                                                                                                                 |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.1    | Location of the project site covering village, Taluka/Tehsil, District and State, Justification forselecting the site, whether other sites were considered.                                                                                                                                                                                                                                        |
| 4.2    | A toposheet of the study area of radius of 10 km and site location on 1:50,000/1:25,000 scale on an A3/A2 sheet. (including all eco-sensitive areas and environmentally sensitive places)                                                                                                                                                                                                          |
| 4.3    | Co-ordinates (lat-long) of all four corners of the site. Google map-Earth downloaded of the project site.<br>Layout maps indicating existing unit as well as proposed unit indicating storage area, plant area, greenbelt<br>area, utilities etc. If located within an Industrial area/Estate/Complex, layout of Industrial Area indicating<br>location of unit within the Industrial area/Estate. |

| Sr. No       | Terms of Reference                                                                                                                                                                                                                                                                                                                                                                         |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.4          | Photographs of the proposed and existing (if applicable) plant site. If existing, show photographs of plantation/greenbelt, in particular.                                                                                                                                                                                                                                                 |
| 4.5          | Land use break-up of total land of the project site (identified and acquired), government/ private - agricultural, forest, wasteland, water bodies, settlements, etc shall be included. (not required for industrial area).                                                                                                                                                                |
| 4.6          | A list of major industries with name and type within study area (10km radius) shall be incorporated.                                                                                                                                                                                                                                                                                       |
| 4.7          | Details of Drainage of the project up to 5km radius of study area. If the site is within 1 km radius of any major river, peak and lean season river discharge as well as flood occurrence frequency based on peak rainfall data of the past 30 years. Details of Flood Level of the project site and maximum Flood Level of the river shall also be provided. (mega green field projects). |
| 4.8          | Status of acquisition of land. If acquisition is not complete, stage of the acquisition process and expected time of complete possession of the land.                                                                                                                                                                                                                                      |
| 4.9          | R&R details in respect of land in line with state Government policy.                                                                                                                                                                                                                                                                                                                       |
| 5. Forest an | id wildlife related issues (if applicable):                                                                                                                                                                                                                                                                                                                                                |

| Sr. No | Terms of Reference                                                                                                                                                                                                                                                                                                                                                  |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.1    | Permission and approval for the use of forest land (forestry clearance), if any, and recommendations of the State Forest Department. (if applicable)                                                                                                                                                                                                                |
| 5.2    | Land use map based on High resolution satellite imagery (GPS) of the proposed site delineating the forestland (in case of projects involving forest land more than 40 ha).                                                                                                                                                                                          |
| 5.3    | Status of Application submitted for obtaining the stage I forestry clearance along with latest status shall be submitted.                                                                                                                                                                                                                                           |
| 5.4    | The projects to be located within 10 km of the National Parks, Sanctuaries, Biosphere Reserves, Migratory<br>Corridors of Wild Animals, the project proponent shall submit the map duly authenticated by Chief<br>Wildlife Warden showing these features vis-à-vis the project location and the recommendations or<br>comments of the Chief Wildlife Warden-thereon |
| 5.5    | Wildlife Conservation Plan duly authenticated by the Chief Wildlife Warden of the State Government for conservation of Schedule I fauna, if any exists in the study area                                                                                                                                                                                            |
| 5.6    | Copy of application submitted for clearance under the Wildlife (Protection) Act, 1972, to the Standing Committee of the National Board for Wildlife.                                                                                                                                                                                                                |

#### 6. Environmental Status

| Sr. No | Terms of Reference                                                                                                                                                                              |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6.1    | Determination of atmospheric inversion level at the project site and site-specific micrometeorological data using temperature, relative humidity, hourly wind speed and direction and rainfall. |

| Sr. No | Terms of Reference                                                                                                                                                                                                                                                                                                        |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6.2    | AAQ data (except monsoon) at 8 locations for PM10, PM2.5, SO2, NOX, CO and other parameters relevant to the project shall be collected. The monitoring stations shall be based CPCB guidelines and take into account the pre-dominant wind direction, population zone and sensitive receptors including reserved forests. |
| 6.3    | Raw data of all AAQ measurement for 12 weeks of all stations as per frequency given in the NAQQM Notification of Nov. 2009 along with - min., max., average and 98% values for each of the AAQ parameters from data of all AAQ stations should be provided as an annexure to the EIA Report.                              |
| 6.4    | Surface water quality of nearby River (100m upstream and downstream of discharge point) and other surface drains at eight locations as per CPCB/MoEF&CC guidelines.                                                                                                                                                       |
| 6.5    | Whether the site falls near to polluted stretch of river identified by the CPCB/MoEF&CC, if yes give details.                                                                                                                                                                                                             |
| 6.6    | Ground water monitoring at minimum at 8 locations shall be included.                                                                                                                                                                                                                                                      |
| 6.7    | Noise levels monitoring at 8 locations within the study area.                                                                                                                                                                                                                                                             |
| 6.8    | Soil Characteristic as per CPCB guidelines.                                                                                                                                                                                                                                                                               |
| 6.9    | Traffic study of the area, type of vehicles, frequency of vehicles for transportation of materials, additional traffic due to proposed project, parking arrangement etc.                                                                                                                                                  |
| 6.10   | Detailed description of flora and fauna (terrestrial and aquatic) existing in the study area shall be given with special reference to rare, endemic and endangered species. If Schedule- I fauna are found within the study area, a Wildlife Conservation Plan shall be prepared and furnished.                           |
| 6.11   | Socio-economic status of the study area.                                                                                                                                                                                                                                                                                  |

### 7. Impact and Environment Management Plan

| Sr. No | Terms of Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7.1    | Assessment of ground level concentration of pollutants from the stack emission based on site specific meteorological features. In case the project is located on a hilly terrain, the AQIP Modeling shall be done using inputs of the specific terrain characteristics for determining the potential impacts of the project on the AAQ. Cumulative impact of all sources of emissions (including transportation) on the AAQ of the area shall be assessed. Details of the model used and the input data used for modeling shall also be provided. The air quality contours shall be plotted on a location map showing the location of project site, habitation nearby, sensitive receptors, if any. |
| 7.2    | Water Quality modeling - in case of discharge in water body                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 7.3    | Impact of the transport of the raw materials and end products on the surrounding environment shall be<br>assessed and provided. In this regard, options for transport of raw materials and finished products and<br>wastes (large quantities) by rail or rail-cum road transport or conveyor cum- rail transport shall be<br>examined.                                                                                                                                                                                                                                                                                                                                                              |

| Sr. No | Terms of Reference                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 7.4    | A note on treatment of wastewater from different plant operations, extent recycled and reused for different purposes shall be included. Complete scheme of effluent treatment. Characteristics of untreated and treated effluent to meet the prescribed standards of discharge under E(P) Rules.                                                            |  |  |  |  |
| 7.5    | Details of stack emission and action plan for control of emissions to meet standards.                                                                                                                                                                                                                                                                       |  |  |  |  |
| 7.6    | Measures for fugitive emission control                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| 7.7    | Details of hazardous waste generation and their storage, utilization and management. Copies of MOU regarding utilization of solid and hazardous waste in cement plant shall also be included. EMP shall include the concept of waste-minimization, recycle/reuse/recover techniques, Energy conservation, and natural resource conservation.                |  |  |  |  |
| 7.8    | Proper utilization of fly ash shall be ensured as per Fly Ash Notification, 2009. A detailed plan of action shall be provided.                                                                                                                                                                                                                              |  |  |  |  |
| 7.9    | Action plan for the green belt development plan in 33 % area i.e. land with not less than1,500 trees per ha.<br>Giving details of species, width of plantation, planning schedule etc. shall be included. The green belt shall<br>be around the project boundary and a scheme for greening of the roads used for the project shall also be<br>incorporated. |  |  |  |  |
| 7.10   | Action plan for rainwater harvesting measures at plant site shall be submitted to harvest rainwater from the roof tops and storm water drains to recharge the ground water and also to use for the various activities at the project site to conserve fresh water and reduce the water requirement from other sources.                                      |  |  |  |  |

### 8. Occupational health

| Sr. No | Terms of Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 8.1    | Plan and fund allocation to ensure the occupational health & safety of all contract and casual workers.                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| 8.2    | etails of exposure specific health status evaluation of worker. If the workers' health is being evaluated by<br>e designed format, chest x rays, Audiometry, Spirometry, Vision testing (Far & Near vision, colour<br>sion and any other ocular defect) ECG, during pre placement and periodical examinations give the<br>tails of the same. Details regarding last month analyzed data of above mentioned parameters as per age,<br>x, duration of exposure and department wise. |  |  |  |  |  |
| 8.3    | Details of existing Occupational & Safety Hazards. What are the exposure levels of hazards and whether they are within Permissible Exposure level (PEL). If these are not within PEL, what measures the company has adopted to keep them within PEL so that health of the workers can be preserved.                                                                                                                                                                               |  |  |  |  |  |
| 8.4    | Annual report of heath status of workers with special reference to Occupational Health and Safety.                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |

### 9. Corporate Environment Policy

|   | Sr. No | Terms of Reference                                                                                                                         |
|---|--------|--------------------------------------------------------------------------------------------------------------------------------------------|
| ļ | 0.1    | Does the company have a well laid down Environment Policy approved by its Board of Directors? If so, it may be detailed in the EIA report. |

| Sr. No | Terms of Reference                                                                                                                                                                                                                                            |  |  |  |  |  |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 9.2    | Does the Environment Policy prescribe for standard operating process / procedures to bring into focus any nfringement / deviation / violation of the environmental or forest norms / conditions? If so, it may be letailed in the EIA.                        |  |  |  |  |  |
| 9.3    | What is the hierarchical system or Administrative order of the company to deal with the environmental issues and for ensuring compliance with the environmental clearance conditions? Details of this system may be given.                                    |  |  |  |  |  |
| 9.4    | Does the company have system of reporting of non compliances / violations of environmental norms to the<br>Board of Directors of the company and / or shareholders or stakeholders at large? This reporting<br>mechanism shall be detailed in the EIA report. |  |  |  |  |  |

## 10. Details regarding infrastructure facilities such as sanitation, fuel, restroom etc. to be provided to the labour force during construction as well as to the casual workers including truck drivers during operation phase.

| Sr. No |           | Terms of Reference |
|--------|-----------|--------------------|
| 10.1   | undefined | RIVES              |

### 11. Enterpr<mark>ise Social Comm</mark>ittment (ESC)

| Sr. No | Terms of Reference                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 11.1   | Adequate funds (at least 2.5 % of the project cost) shall be ear marked towards the Enterprise Social Commitment based on Public Hearing issues and item-wise details along with time bound action plan shall be included. Socio-economic development activities need to be elaborated upon.                                                                                                            |  |  |  |  |  |
| 11.2   | Any litigation pending against the project and/or any direction/order passed by any Court of Law against the project, if so, details thereof shall also be included. Has the unit received any notice under the Section 5 of Environment (Protection) Act, 1986 or relevant Sections of Air and Water Acts? If so, details there of and compliance/ATR to the notice(s) and present status of the case. |  |  |  |  |  |
| 11.3   | A tabular chart with index for point wise compliance of above TOR.                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |

### 12. Specific Conditions

| Sr. No | 9-Pa Terms of Reference                                                                                   |  |  |  |  |
|--------|-----------------------------------------------------------------------------------------------------------|--|--|--|--|
| 12.1   | st of existing distillery units in the study area along with their capacity and sourcing of raw material. |  |  |  |  |
| 12.2   | Number of working days of the distillery unit.                                                            |  |  |  |  |
| 12.3   | etails of raw materials such as molasses/grains, their source with availability.                          |  |  |  |  |
| 12.4   | Details of the use of steam from the boiler.                                                              |  |  |  |  |
| 12.5   | Surface and Ground water quality around proposed spent wash storage lagoon, and compost yard.             |  |  |  |  |
| 12.6   | Plan to reduce spent wash generation within 6-8 KL/KL of alcohol produced.                                |  |  |  |  |

| Sr. No | Terms of Reference                                                                                                                                                                                     |  |  |  |  |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 12.7   | Proposed Effluent treatment system for molasses/grain based distillery (spent wash, spent lees, condensate and utilities) as well as domestic sewage and scheme for achieving zero water conservation. |  |  |  |  |
| 12.8   | Proposed action to restrict fresh water consumption within 10 KL/KL of alcohol production.                                                                                                             |  |  |  |  |
| 12.9   | Details about capacity of spent wash holding tank, material used, design consideration. No. of peizometers to be proposed around spent wash holding tank.                                              |  |  |  |  |
| 12.10  | Details of solid waste management including management of boiler ash, yeast, etc. Details of incinerated spent wash ash generation and its disposal.                                                   |  |  |  |  |
| 12.11  | Details of bio-composting yard (if applicable).                                                                                                                                                        |  |  |  |  |
| 12.12  | Action plan to control odour pollution.                                                                                                                                                                |  |  |  |  |
| 12.13  | Arrangements for installation of continuous online monitoring system (24x7 monitoringdevice)                                                                                                           |  |  |  |  |
| 12.14  | If Sugar and distillery will have integrated effluent treatment facilities. Details regarding the same.                                                                                                |  |  |  |  |

### Additional Terms of Reference

- 1. Public Hearing Report containing details such as (i) Details of advertisements (ii) Copy of forwarding letter of SPCB to MoEF&CC (III) Legible copy of public hearing proceedings duly signed by the presiding officer. (iv) Attendance sheet (v) Copy of representations / grievances/submissions alongwith action plan on issues raised if any.
- 2. Status of land Acquistion for the proposed project alongwith land ownership document and land use conversion permission.
- 3. Valid copy of QCI accreditation Certificate

<u>Copy To</u>

<sup>e</sup>-Payments



### **ToR Compliance**

Point-wise compliance for the ToR points issued by MoEFCC, New Delhi vide letter no. IA-J-11011/277/2023-IA-II(I)dated 31<sup>st</sup>July, 2023 for Proposed 210 KLPD Grain based distillery along with 6.25 MW Co-Generation Power Plant at Village Beltukri, Tehsil & District Mahasamund, Chhattisgarh by M/s. Piccadily Agro Industries Ltd.

| ToR<br>Point<br>No. | ToR Point                                                                                                                                                            | ToR Point Compliance                                                                                                                                                                                                                                                       |                                          |  |  |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--|--|
| 1.                  | Executive Summary                                                                                                                                                    | Executive Summary of the project has been incorporated in this EIA/EMP Report.                                                                                                                                                                                             | Chapter XI, Page<br>no.241 to 249        |  |  |
| 2.                  | Introduction                                                                                                                                                         |                                                                                                                                                                                                                                                                            |                                          |  |  |
| i.                  | Details of the EIA Consultant including NABET accreditation.                                                                                                         | The environmental consultant is J.M. EnviroNet<br>Pvt. Ltd. The company is NABET (QCI)<br>accredited for Category "A" projects in distillery<br>sector.<br>Details of the EIA Consultant including NABET<br>accreditation has been incorporated in this<br>EIA/EMP Report. | Chapter XII, Page<br>no. 250             |  |  |
| ii.                 | Information about the project proponent.                                                                                                                             | Project proponent, M/s. PiccadilyAgro<br>Industries Ltda Public Limited Company was<br>incorporated in the year 1994. Details regarding<br>the information about the project proponent has<br>been incorporated in this EIA/EMP Report.                                    | Chapter I, Section<br>1.2.2, Page no. 27 |  |  |
| 3.                  | Project Description                                                                                                                                                  |                                                                                                                                                                                                                                                                            |                                          |  |  |
| i.                  | Cost of project and time of completion.                                                                                                                              | <ul> <li>Total cost of the proposed project is Rs.182<br/>Crores.</li> <li>After obtaining all the regulatory approvals<br/>project will be completed within2years.</li> </ul>                                                                                             | Chapter II, Table 2.1, Page no.38        |  |  |
| ii.                 | Products with capacities for the proposed project.                                                                                                                   | <ul> <li>Ethanol/ Rectified Spirit /Extra Neutral<br/>Alcohol/ Industrial Alcohol/ Denatured<br/>Spirit/ Specially Denatured Spirit &amp; Malt<br/>Spirit Malt Spirit- 210 KLPD</li> <li>Power- 6.25 MW</li> </ul>                                                         | -                                        |  |  |
|                     | If expansion project, details of<br>existing products with capacities<br>and whether adequate land is<br>available for expansion, reference<br>of earlier EC if any. | Not applicable as this is a proposed project                                                                                                                                                                                                                               | -                                        |  |  |
| iii.                | List of raw materials required and                                                                                                                                   | List of raw materials & chemicals, other                                                                                                                                                                                                                                   | Chapter II, Table                        |  |  |

| ToR<br>Point<br>No. | ToR Point                                                                              |                                             | Reference in<br>Draft EIA/ EMP<br>Report                                                         |                                |                                                                                                                                                                                                                        |  |
|---------------------|----------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                     | their source along with mode of transportation.                                        | quantities and                              | chemicals and materials required along with<br>quantities and storage capacities is incorporated |                                |                                                                                                                                                                                                                        |  |
| iv.                 | Other chemicals and materials<br>required with quantities and<br>storage capacities.   | in EIA/EMP R                                |                                                                                                  |                                |                                                                                                                                                                                                                        |  |
| v.                  | Details of Emission, effluents,<br>hazardous waste generation and<br>their management. | Particulars                                 | Туре                                                                                             | Source                         | Mitigation<br>measures                                                                                                                                                                                                 |  |
|                     | their management.                                                                      | Emissions                                   | PM, SO <sub>2</sub> ,<br>NOx                                                                     | 60 TPH<br>Fermentation         | <ul> <li>ESP installation<br/>with boiler</li> <li>Stack of 60 m<br/>for 60 TPH as<br/>per norms</li> <li>Necessary<br/>temperature<br/>profile is<br/>maintained in<br/>boiler.</li> <li>Will be collected</li> </ul> |  |
|                     |                                                                                        |                                             |                                                                                                  |                                | and sold to authorized vendors.                                                                                                                                                                                        |  |
|                     |                                                                                        | Effluent<br>(Zero<br>effluent<br>discharge) | Spent wash                                                                                       | Distillation                   | Raw spent wash<br>generated during<br>Grain based<br>operation will be<br>concentrated in<br>MEE and dried in<br>decanter and<br>DWGS drier to<br>obtain DDGS which<br>is sold as cattle<br>feed.                      |  |
|                     |                                                                                        |                                             | MEE<br>condensate,                                                                               | MEE, cooling<br>tower, boiler, | Treated in CPU&100%                                                                                                                                                                                                    |  |

| ToR          | ToR Point                                                         | Compliance Reference in                                                                                                |          |          |                                                |                                      |                                             |  |
|--------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------|----------|------------------------------------------------|--------------------------------------|---------------------------------------------|--|
| Point<br>No. |                                                                   |                                                                                                                        |          |          |                                                | Draft EIA/ EMP<br>Report             |                                             |  |
| 110.         |                                                                   |                                                                                                                        | Vapour D |          | DM Plan                                        | t 1                                  | recycled/reused in                          |  |
|              |                                                                   |                                                                                                                        | Con      | densate, | Reject                                         |                                      | plant                                       |  |
|              |                                                                   |                                                                                                                        | &        | blow     |                                                |                                      |                                             |  |
|              |                                                                   |                                                                                                                        | d        | owns     |                                                |                                      |                                             |  |
|              |                                                                   |                                                                                                                        | RC       | reject   | RO plant                                       | t 7.                                 | Γreated in MEE.                             |  |
|              |                                                                   | Hazardous                                                                                                              | Use      | d Oil &  | D G Set,                                       | S                                    | Sold to CPCB                                |  |
|              |                                                                   | waste                                                                                                                  | g        | rease    | Machiner                                       | y/ a                                 | authorized recyclers                        |  |
|              |                                                                   |                                                                                                                        |          |          | gear boxe                                      | s                                    |                                             |  |
|              |                                                                   |                                                                                                                        | Spe      | nt resin | DM plan                                        | t                                    |                                             |  |
|              |                                                                   | Details of thei<br>this EIA/EMP                                                                                        |          |          |                                                | •                                    | ment are included in                        |  |
|              | Requirement of water, power,                                      | Paramete                                                                                                               | rs       | Requ     | irement                                        |                                      | Source                                      |  |
|              | with source of supply, status of approval, water balance diagram, |                                                                                                                        |          |          |                                                |                                      | Surface water                               |  |
|              | man-power requirement (regular and contract)                      |                                                                                                                        |          |          |                                                | hanadi river through<br>Samodha Dam) |                                             |  |
|              |                                                                   |                                                                                                                        |          | -        | Proposed 6.25 MW Co-<br>generation Power Plant |                                      |                                             |  |
|              |                                                                   |                                                                                                                        |          |          |                                                | Unskilled / Semi-                    |                                             |  |
|              |                                                                   | Man powe                                                                                                               | er       |          | 150                                            |                                      | Skilled - Local Areas;                      |  |
|              |                                                                   | (Persons)                                                                                                              | )        |          |                                                |                                      | led-Local &Outside                          |  |
|              |                                                                   | STATUS OF                                                                                                              | AP       | PROVAL   | : The con                                      | npany                                | has obtained the                            |  |
|              |                                                                   | -                                                                                                                      |          | -        |                                                |                                      | State Investment                            |  |
|              |                                                                   |                                                                                                                        |          |          |                                                |                                      | 30 m3/annum (1462<br>a Dam) vide letter no. |  |
|              |                                                                   | 1073/SIPB/202                                                                                                          |          |          |                                                |                                      | same is enclosed as                         |  |
|              |                                                                   | Annexure 2.                                                                                                            |          |          |                                                |                                      |                                             |  |
|              |                                                                   | Water/mass balance flowchart has also been incorporated in this EIA/EMP Report in Chapter II, Figure 2.4, Page no. 40. |          |          |                                                |                                      |                                             |  |
| vi.          | Process description along with                                    |                                                                                                                        |          |          |                                                |                                      |                                             |  |
|              | major equipment and machineries, process flow sheet               |                                                                                                                        |          |          |                                                |                                      |                                             |  |
|              | (quantitative) from raw material                                  | Major equipment and machineries are also Chapter II, Section                                                           |          |          | Chapter II, Section                            |                                      |                                             |  |
|              | to products to be provided.                                       | incorporated in EIA/EMP report. 2.6.1 Page no.56                                                                       |          |          |                                                |                                      |                                             |  |

| ToR<br>Point | ToR Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Compliance                                                                                                                     | Reference in<br>Draft EIA/ EMP                |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| No.          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                | Report                                        |
| vii.         | Hazard identification and details of proposed safety systems.                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Hazard identification and details of safety systems specific to distillery operations has been incorporated in EIA/EMP Report. | Chapter VII,<br>Section 7.3.1 Page<br>no. 168 |
| viii.        | Expansion & Modernization pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | posals:                                                                                                                        |                                               |
| a)           | Copy of all the Environmental<br>Clearance(s) including<br>Amendments thereto obtained for<br>the project from MOEF/SEIAA<br>shall be attached as an Annexure.                                                                                                                                                                                                                                                                                                                                                             | Not applicable as this is a proposed project.                                                                                  | -                                             |
|              | A certified copy of the latest<br>Monitoring Report of the<br>Regional Office of the Ministry<br>of Environment and Forests as<br>per circular dated 30 <sup>th</sup> May, 2012<br>on the status of compliance of<br>conditions stipulated in all the<br>existing environmental clearances<br>including Amendments shall be<br>provided.<br>In addition, status of compliance<br>of Consent to Operate for the<br>ongoing/ existing operation of the<br>project from SPCB shall be<br>attached with the EIA-EMP<br>report. |                                                                                                                                |                                               |
| b)           | In case the existing project has<br>not obtained environmental<br>clearance, reasons for not taking<br>EC under the provisions of the<br>EIA Notification 1994 and /or<br>EIA Notification 2006 shall be<br>provided. Copies of Consent to<br>Establish/No Objection<br>Certificate and Consent to<br>Operate (in case of units<br>operating prior to EIA<br>Notification 2006, CTE and CTO<br>of FY 2005 – 2006) obtained<br>from the SPCB shall be                                                                       |                                                                                                                                |                                               |

| ToR          | ToR Point                                                                                                                                                                                                                                                                                               | Compliance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Reference in                             |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| Point<br>No. |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Draft EIA/ EMP<br>Report                 |
|              | report to the conditions of<br>consents from the SPCB shall be<br>submitted.                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          |
| 4.           | Site Details                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          |
| i.           | Location of the project site<br>covering village, Taluka/Tehsil,<br>District and State, Justification<br>for selecting the site, whether<br>other sites were considered.                                                                                                                                | <ul> <li>Location map showing the project site along with Village, Tehsil, District and State has been incorporated in this EIA/EMP Report.</li> <li>No alternative site has been considered for the proposed project as the land has already been acquired by the company, easier raw material &amp; market availability, nearness to highways for easier transportation, no National Parks, Wildlife Sanctuaries, Biosphere Reserves, Tiger/ Elephant Reserves, Wildlife Corridors etc. lies within 10 km radius and the area falls in safe groundwater zone.</li> </ul> | Chapter II, Figure<br>2.1 Page no. 34    |
| ii.          | A toposheet of the study area of<br>radius of 10 km and site location<br>on 1:50,000/ 1:25,000 scale on an<br>A3/A2 sheet (including all eco-<br>sensitive areas and<br>environmentally sensitive places).                                                                                              | Map showing project site and 10 km radius<br>study area on Toposheet of 1:50,000 scale on an<br>A3 sheet has been incorporated in this EIA/EMP<br>Report.                                                                                                                                                                                                                                                                                                                                                                                                                  | Chapter III, Figure<br>3.1 Page no. 61   |
| iii.         | Co-ordinates (lat-long) of all four<br>corners of the site.<br>Google map-Earth downloaded of<br>the project site.                                                                                                                                                                                      | Google Earth downloaded map showing corner<br>co-ordinates of the project site are given in this<br>EIA/EMP Report.                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Chapter II, Figure<br>2.2 Page no. 35    |
|              | Layout maps indicating existing<br>unit as well as proposed unit<br>indicating storage area, plant<br>area, greenbelt area, utilities etc.<br>If located within an industrial<br>area/Estate/Complex, layout of<br>Industrial Area indicating<br>location of unit within the<br>Industrial area/Estate. | Plant layout has been prepared for total project<br>area i.e., 9.0 ha (22.24 acres). Plant Layout<br>showing proposed unit, storage area, greenbelt<br>area, other utilities etc. is incorporated in this<br>EIA/EMP Report.<br>Project site is not located in industrial<br>area/Estate/Complex.                                                                                                                                                                                                                                                                          | Chapter II, Figure<br>2.3 Page no. 37    |
| iv.          | Photographs of the proposed and<br>existing (if applicable) plant site.<br>If existing, show photographs of<br>plantation/ greenbelt, in                                                                                                                                                                | Photographs of the project site have been incorporated in this EIA/EMP Report.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Chapter II, Section<br>2.3.4 Page no. 38 |

| ToR<br>Point<br>No. | ToR Point                                                                                                                                                                                                                                                                                                                                                                                                                   | Compliance                                                                                                                                                                                                                                                                    | Reference in<br>Draft EIA/ EMP<br>Report                                           |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
|                     | particular.                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                               |                                                                                    |
| v.                  | Land use break-up of total land of<br>the project site (identified and<br>acquired), government / private -<br>agriculture, forest, wasteland,<br>water bodies, settlements, etc.<br>shall be included (not required for<br>industrial area).                                                                                                                                                                               | The total project area is 9.0 ha (22.24 acres) &complete land is under possession of the company. The company will apply for land conversion to industrial use. Land use break-up of total land of the project site (core zone) has been incorporated in this EIA/EMP Report. | Chapter II, Section<br>2.3.3 Page no. 36                                           |
| vi.                 | A list of major industries with<br>name and type within study area<br>(10 km radius) shall be<br>incorporated.                                                                                                                                                                                                                                                                                                              | A list of major industries with name and type within study area (10 km radius) has been incorporated in this EIA/EMP Report.                                                                                                                                                  | Annexure 7<br><i>Page no</i>                                                       |
| vii.                | Details of Drainage of the project<br>up to 5 km radius of study area. If<br>the site is within 1 km radius of<br>any major river, peak and lean<br>season river discharge as well as<br>flood occurrence frequency based<br>on peak rainfall data of the past<br>30 years. Details of Flood Level<br>of the project site and maximum<br>Flood Level of the river shall also<br>be provided (mega green field<br>projects). | Drainage pattern details of the project site and<br>10 km radius study area have been shown on a<br>map and incorporated in this EIA/EMP Report.<br>Project site is not within 1 km radius of any<br>major river.                                                             | Chapter III,<br>Section 3.3.2.2 &<br>Figure 3.5 Page no.<br>69&70<br>respectively. |
| viii.               | Status of acquisition of land. If<br>acquisition is not complete, stage<br>of the acquisition process and<br>expected time of complete<br>possession of the land.                                                                                                                                                                                                                                                           | The total project area is 9.0 ha (22.24 acres) &complete land is under the possession of company. Zamabandi documents for the same are enclosed as <b>Annexure 1</b> .                                                                                                        | Annexure 1<br>(Page no)                                                            |
| ix.                 | R & R details in respect of land<br>in line with state Government<br>policy.                                                                                                                                                                                                                                                                                                                                                | R & R is not applicable; the complete land is already under the company's possession.                                                                                                                                                                                         | -                                                                                  |
| 5.                  | Forests & Wildlife related issues                                                                                                                                                                                                                                                                                                                                                                                           | (if applicable)                                                                                                                                                                                                                                                               |                                                                                    |
| i.                  | Permission and approval; for the<br>use of forest land (forestry<br>clearance), if any, and<br>recommendations of the State<br>Forest Department (if applicable)                                                                                                                                                                                                                                                            | No forest land is involved in the proposed project; thus, no such permission / approval are required.                                                                                                                                                                         | -                                                                                  |
| ii.                 | Land use map based on High                                                                                                                                                                                                                                                                                                                                                                                                  | No forest land is involved in the                                                                                                                                                                                                                                             | -                                                                                  |

ToR Compliance

| ToR<br>Point<br>No. | ToR Point                                                                                                                                                                                                                                                                                                                                                                                     | Compliance                                                                                                                                                                                                                                                                                                                               | Reference in<br>Draft EIA/ EMP<br>Report                                                                      |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
|                     | resolution satellite imagery<br>(GPS) of the proposed site<br>delineating the forestland (in<br>case of projects involving forest<br>land more than 40 ha)                                                                                                                                                                                                                                    | proposedproject.                                                                                                                                                                                                                                                                                                                         |                                                                                                               |
| iii.                | Status of Application submitted<br>for obtaining the stage I forestry<br>clearance along with latest status<br>shall be submitted.                                                                                                                                                                                                                                                            | Not applicable.                                                                                                                                                                                                                                                                                                                          | -                                                                                                             |
| iv.                 | The projects to be located within<br>10 km of the National Parks,<br>Sanctuaries, Biosphere Reserves,<br>Migratory Corridors of Wild<br>Animal; the project proponent<br>shall submit the map duly<br>authenticated by Chief Wildlife<br>Warden showing these features<br>vis-a-vis the project location and<br>the recommendations or<br>comments of the Chief Wildlife<br>Warden - thereon. | No National Parks, Sanctuaries, Biosphere<br>Reserves, Migratory Corridors of Wild Animal<br>exists within 10 km radius of the project site.<br>Map showing Environmental Settings of the<br>study area is incorporated in EIA/EMP Report.                                                                                               | Chapter III, Table<br>3.1 Page no. 60                                                                         |
| v.                  | Wildlife Conservation Plan duly<br>authenticated by the Chief<br>Wildlife Warden of the state<br>government for conservation of<br>schedule I fauna, if any exists in<br>the study area.                                                                                                                                                                                                      | No Schedule I species was found within 10 km radius study area of the project site.                                                                                                                                                                                                                                                      | -                                                                                                             |
| vi.                 | Copy of application submitted for<br>clearance under the Wildlife<br>(Protection) Act, 1972, to the<br>Standing Committee of the<br>National Board for Wildlife.                                                                                                                                                                                                                              | Not applicable.                                                                                                                                                                                                                                                                                                                          | -                                                                                                             |
| 6.                  | Environmental Status                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                          |                                                                                                               |
| i.                  | Determination of atmospheric<br>inversion level at the project site<br>and site-specific micro-<br>meteorological data using<br>temperature, relative humidity,<br>hourly wind speed and direction<br>and rainfall.                                                                                                                                                                           | Atmospheric inversion level (Mixing height<br>data) has been obtained from secondary data<br>(IMD) and incorporated in EIA/EMP Report.<br>Site-specific micro-meteorological data<br>(temperature, relative humidity, wind speed and<br>direction) were collected during Summer Season<br>(March to May, 2023). Details of the same have | Chapter III,<br>Section 3.4 Page<br>no. 73<br>Chapter III, Table<br>3.7 Page no.72<br><i>Annexure 3 (Page</i> |

|                     |                                                                                                                                                                                                                                                                                                                                                                                   | <i>a</i>                                                                                                                                                                                                                                                                                                                                                                                                 |                                             |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| ToR<br>Point<br>No. | ToR Point                                                                                                                                                                                                                                                                                                                                                                         | Compliance                                                                                                                                                                                                                                                                                                                                                                                               | Reference in<br>Draft EIA/ EMP<br>Report    |
|                     |                                                                                                                                                                                                                                                                                                                                                                                   | been incorporated in the EIA/EMP Report.                                                                                                                                                                                                                                                                                                                                                                 | no)                                         |
|                     |                                                                                                                                                                                                                                                                                                                                                                                   | Hourly meteorological data has been enclosed as <b>Annexure3</b> alongwith the EIA/EMP Report.<br>Rainfall data has also been incorporated in the EIA/EMP Report.                                                                                                                                                                                                                                        | Chapter III, section<br>3.3.4Page no.71     |
| ii.                 | AAQ data (except monsoon) at 8<br>locations for PM10, PM2.5, SO <sub>2</sub> ,<br>NO <sub>x</sub> , CO and other parameters<br>relevant to the project shall be<br>collected. The monitoring<br>stations shall be based CPCB<br>guidelines and take into account<br>the pre-dominant wind direction,<br>population zone and sensitive<br>receptors including reserved<br>forests. | AAQ monitoring for PM10, PM2.5, SO2 and<br>NO2 was carried out at 8 locations during<br>SummerSeason (March to May, 2023) within 10<br>km radius study area.<br>The monitoring stations were selected taking<br>into account the dominant wind direction,<br>population zone and sensitive receptors etc.<br>during the season.<br>Details of the same have been incorporated in<br>this EIA/EMP Report. | Chapter III,<br>Section 3.5 Page<br>no. 75  |
| iii.                | Raw data of all AAQ<br>measurement for 12 weeks of all<br>stations as per frequency given in<br>the NAAQM Notification of Nov.<br>2009 along with- min., max.,<br>average and 98% values for each<br>of the AAQ parameters from data<br>of all AAQ stations should be<br>provided as an annexure to the<br>EIA Report.                                                            | Raw data of all AAQ measurement of all AAQ<br>stations along with min., max., average and 98<br>percentile values for each of the AAQ<br>parameters has been enclosed as <b>Annexure</b><br>4along with the EIA/EMP Report.                                                                                                                                                                              | Annexure 4 (Page<br>no)                     |
| iv.                 | Surface water quality of nearby<br>River (100m upstream and<br>downstream) and other surface<br>drains at eight locations as per<br>CPCB/MoEF&CC guidelines.                                                                                                                                                                                                                      | Water quality of surface water bodies present<br>within 10km radius of the projectsite has been<br>analyzed and the details of the same are<br>incorporated in this EIA/EMP Report. The<br>distillery will be based on Zero Effluent<br>Discharge so no discharge point. Hence,<br>upstream/downstream directions are not defined.                                                                       | -                                           |
| v.                  | Whether the site falls near to<br>polluted stretch of river identified<br>by the CPCB / MoEFCC<br>guidelines.                                                                                                                                                                                                                                                                     | The project site does not fall near to polluted stretch of river identified by the CPCB/ MoEFCC guidelines.                                                                                                                                                                                                                                                                                              | -                                           |
| vi.                 | Ground water monitoring<br>minimum at 8 locations shall be<br>included.                                                                                                                                                                                                                                                                                                           | Ground water monitoring was carried out at 8 locations in the study area during Summer Season (March to May, 2023).                                                                                                                                                                                                                                                                                      | Chapter III,<br>Section 3.7.2Page<br>no. 89 |

| ToR<br>Point<br>No. | ToR Point                                                                                                                                                                                                                                                                                                              | Compliance                                                                                                                                                                                                                                                                                                     | Reference in<br>Draft EIA/ EMP<br>Report                              |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
|                     |                                                                                                                                                                                                                                                                                                                        | Details of the same have been incorporated in the EIA/EMP Report.                                                                                                                                                                                                                                              |                                                                       |
| vii.                | Noise levels monitoring at 8 locations within the study area.                                                                                                                                                                                                                                                          | Noise level monitoring was carried out at 8<br>locations during Summer Season (March to<br>May, 2023)within 10 km radius of the project<br>site.<br>Details of the noise level monitoring have been<br>incorporated in this EIA/EMP Report.                                                                    | Chapter III,<br>Section 3.6Page<br>no. 81                             |
| viii.               | Soil Characteristics as per CPCB guidelines.                                                                                                                                                                                                                                                                           | Soil quality sampling was carried out at 8 locations within the study area based on land use during Summer Season (March to May, 2023). Details of the same have been incorporated in the EIA/EMP Report.                                                                                                      | Chapter III,<br>Section 3.8Page<br>no. 94                             |
| ix.                 | Traffic study of the area, type of<br>vehicles, frequency of vehicles<br>for transportation of materials,<br>additional traffic due to proposed<br>project, parking arrangement etc.                                                                                                                                   | Traffic study of the area with respect to existing<br>traffic, type of vehicles, frequency of vehicles<br>for transportation of materials, additional traffic<br>due to proposed project, parking arrangement<br>etc. was conducted and details for the same have<br>been incorporated in this EIA/EMP Report. | Chapter IV,<br>Section 4.5.2.2<br>Page no.139                         |
| х.                  | Detailed description of flora and<br>fauna (terrestrial and aquatic)<br>existing in the study area shall be<br>given with special reference to<br>rare, endemic and endangered<br>species. If Schedule-I fauna are<br>found within the study area, a<br>Wildlife Conservation Plan shall<br>be prepared and furnished. | Details of the flora and fauna found within the<br>study area of 10 km radius have been given in<br>this EIA / EMP Report as <i>Annexure5</i> .<br>No Schedule- I fauna was found within 10 km<br>radius study area of the project site.                                                                       | Annexure 5 (Page<br>no)                                               |
| xi.                 | Socio-economic status of the study area.                                                                                                                                                                                                                                                                               | Details regarding socio-economic status of the<br>study area along with population projection have<br>been incorporated in this EIA/EMP<br>Report.Detailed demography of study area &<br>surveyed villages is incorporated as <i>Annexure</i><br><b>6</b> .                                                    | Chapter III,<br>Section 3.10Page<br>no.102<br>Annexure 6 (Page<br>no) |
| 7.                  | Impact & Environmental Manag                                                                                                                                                                                                                                                                                           | ement Plan:                                                                                                                                                                                                                                                                                                    |                                                                       |
| i.                  | Assessment of ground level<br>concentration of pollutants from<br>the stack emission based on site-<br>specific meteorological features.                                                                                                                                                                               | Ground level concentration of pollutants has<br>been assessed for the proposed project by using<br>AERMOD 10.2.1. Point sourcehas been<br>considered for prediction; details (including                                                                                                                        | Chapter IV,<br>Section 4.5.2.1<br>Page no. 132                        |

| ToR          | ToR Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Compliance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Reference in                                              |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Point<br>No. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Draft EIA/ EMP<br>Report                                  |
|              | In case the project is located on<br>hilly terrain, AQIP Modelling<br>shall be done using inputs of the<br>specific terrain characteristics for<br>determining the potential impacts<br>of the project on the AAQ.<br>Cumulative impact of all sources<br>of emissions (including<br>transportation) on the AAQ of the<br>area shall be assessed. Details of<br>the model used and the input data<br>used for modeling shall also be<br>provided. The air quality contours<br>shall be plotted on a location map<br>showing the location of project<br>site, habitation nearby, sensitive<br>receptors, if any. | model input) are incorporated in this EIA/EMP<br>Report.<br>The project site is almost flat and not located on<br>a hilly terrain.<br>Isopleths showing air quality contours plotted on<br>location map have also been incorporated in this<br>EIA/EMP Report.                                                                                                                                                                                                                                                                                                                                                          | Chapter IV,<br>Figure 4.1 to 4.4<br>Page no.135 to<br>138 |
| ii.          | Water Quality modeling- in case,<br>of discharge in water body.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No effluent will be discharged from the plant; as<br>the plant will be based on "Zero Effluent<br>Discharge". Therefore, water quality modeling<br>study is not required.                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                         |
| iii.         | Impact of the transport of the raw<br>materials and end products on the<br>surrounding environment shall be<br>assessed and provided. In this<br>regard, options for transport of<br>raw materials and finished<br>products and wastes (large<br>quantities) by rail or rail-cum<br>road transport or conveyor-cum-<br>rail transport shall be examined.                                                                                                                                                                                                                                                        | There will be no major impact of the transport of<br>the raw materials and end products on the<br>surrounding environment due to proposed<br>project as proper mitigation measures will be<br>adopted. Details are incorporated in EIA/EMP<br>Report.<br>Major raw material Grains such as damaged<br>grain feed stock, broken rice, maize, bajra &<br>sorghum and fuel like Biomass/Rice husk or<br>Low sulphur coal for Grain based distillery<br>operationswill be sourced from local suppliers.<br>Transportation of remaining raw material, final<br>product/by-products will be done by existing<br>road network. | -                                                         |
| iv.          | A note on treatment of<br>wastewater from different plant<br>operations, extent recycled and<br>reused for different purposes<br>shall be included. Complete<br>scheme of effluent treatment.                                                                                                                                                                                                                                                                                                                                                                                                                   | Details regarding treatment of wastewater from<br>different plant operations, extent recycled and<br>reused for different purposes, complete scheme<br>of effluent treatment, characteristics of untreated<br>and treated effluent to meet the prescribed<br>standards of discharge under E (P) Rules have                                                                                                                                                                                                                                                                                                              | Chapter II, Section<br>2.6 (E) Page no. 53                |

| ToR          | ToR Point                                                                                                                                                                                                                                                                                                                                                                         | Compliance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Reference in                                                                         |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Point<br>No. |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Draft EIA/ EMP<br>Report                                                             |
|              | Characteristics of untreated and<br>treated effluent to meet the<br>prescribed standards of discharge<br>under E (P) Rules.                                                                                                                                                                                                                                                       | been incorporated in EIA/EMP Report.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                      |
| v.           | Details of stack emission and<br>action plan for control of<br>emissions to meet standards.                                                                                                                                                                                                                                                                                       | The proposed stack emission details have been<br>incorporated in this EIA/EMP Report.<br>ESP will be installed for boiler to the control of<br>emissions from point source within the<br>prescribed limit. Details of the action plan for<br>control of emissions to meet standards have<br>been incorporated in this EIA/EMP Report.                                                                                                                                                                                                                                                                                       | Chapter IV, Table<br>4.6 Page no. 133<br>Chapter X,<br>Section10.3.1<br>Page no. 232 |
| vi.          | Measures for fugitive emission control.                                                                                                                                                                                                                                                                                                                                           | Measures for control of fugitive emission have<br>been incorporated in this EIA/EMP Report.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Chapter IV,<br>Section 4.5.2 Page<br>no.130                                          |
| vii.         | Details of hazardous waste<br>generation, and their storage,<br>utilization and management.<br>Copies of MOU regarding<br>utilization of solid and hazardous<br>waste in cement plant shall also<br>be included. EMP shall include<br>the concept of waste-<br>minimization, recycle/ reuse/<br>recover techniques, Energy<br>conservation, and natural<br>resource conservation. | Used oil & grease generated from plant<br>machinery/gear boxes as hazardous waste will<br>be sold out to the CPCB authorized recyclers.<br>Spent resin from DM plant (500 kg/annum) will<br>be supplied to authorized recyclers. Boiler ash<br>generated during coal-based operations will be<br>given to cement/brick manufactures & during<br>biomass-based operations will be given to brick<br>manufacturers in covered vehicles.<br>Concept of waste - minimization, recycle/ reuse<br>/ recover techniques, energy conservation and<br>natural resource conservation has been<br>incorporated in this EIA/EMP Report. | -<br>Chapter X, Section<br>10.4 Page no.238                                          |
| viii.        | Proper utilization of fly ash shall<br>be ensured as per Fly Ash<br>Notification, 2009. A detailed<br>plan of action shall be provided.                                                                                                                                                                                                                                           | Ash generated from the boiler will be collected<br>through proper ash collection system and<br>covered conveyance system. Boiler ash<br>generated during coal-based operations will be<br>given to cement/brick manufactures & during<br>biomass based operations will be given to brick<br>manufacturers in covered vehicles.                                                                                                                                                                                                                                                                                              | _                                                                                    |
| ix.          | Action plan for the greenbelt<br>development plan in 33 % area<br>i.e. land with not less than 1,500<br>trees per ha. Giving details of<br>species, width of plantation,<br>planning schedule etc. shall be                                                                                                                                                                       | <ul><li>2.97ha i.e. 33% of total project area will be covered under greenbelt &amp; plantation.</li><li>Greenbelt will be developed as per Central Pollution Control Board (CPCB) guidelines.</li><li>Native species will be planted in consultation with the local DFO. Details regarding proposed</li></ul>                                                                                                                                                                                                                                                                                                               | Chapter IV,<br>Section 4.5.7.1,<br>Page no.150                                       |

| ToR          | ToR Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Compliance                                                                                                                                                                                 | Reference in                                   |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Point<br>No. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L. L                                                                                                                                                   | Draft EIA/ EMP<br>Report                       |
|              | included. The greenbelt shall be<br>around the project boundary and<br>a scheme for greening of the<br>roads used for the project shall<br>also be incorporated.                                                                                                                                                                                                                                                                                                                                                            | greenbelt & plantation along with name and<br>number of species have been incorporated in this<br>EIA/EMP Report.                                                                          |                                                |
| х.           | Action plan for rainwater<br>harvesting measures at plant site<br>shall be submitted to harvest<br>rainwater from the roof tops and<br>storm water drains to recharge the<br>ground water and also to use for<br>the various activities at the<br>project site to conserve fresh<br>water and reduce the water<br>requirement from other sources.                                                                                                                                                                           | Rain Water harvesting measures will be<br>undertaken within the plant premises. Details of<br>the action plan for rainwater harvesting<br>measures have been given in EIA/EMP Report.      | Chapter X, Section<br>10.3.3.3 Page no.<br>234 |
| 8.           | Occupational health:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                            |                                                |
| i.           | Plan and fund allocation to<br>ensure the occupational health &<br>safety of all contract and casual<br>workers.                                                                                                                                                                                                                                                                                                                                                                                                            | Rs. 50 lakhs per annum has been allocated to<br>ensure the occupational health and safety of all<br>contract and casual workers. Details have been<br>incorporated in this EIA/EMP Report. | Chapter VII,<br>Section 7.4.1Page<br>no.216    |
| ii.          | Details of exposure specific<br>health status evaluation of<br>worker. If the workers' health is<br>being evaluated by pre designed<br>format, chest x rays,<br>Audiometry, Spirometry, Vision<br>testing (Far & Near vision,<br>colour vision and any other<br>ocular defect) ECG, during pre-<br>placement and periodical<br>examinations give the details of<br>the same. Details regarding last<br>month analyzed data of<br>abovementioned parameters as<br>per age, sex, duration of<br>exposure and department wise. | Not applicable as this is a proposed project                                                                                                                                               | -                                              |
| iii.         | Details of existing Occupational<br>& Safety Hazards. What are the<br>exposure levels of above                                                                                                                                                                                                                                                                                                                                                                                                                              | Not applicable as this is a proposed project                                                                                                                                               | -                                              |

| ToR   | ToR Point                                                       | Compliance                                      | Reference in       |
|-------|-----------------------------------------------------------------|-------------------------------------------------|--------------------|
| Point |                                                                 | -                                               | Draft EIA/ EMP     |
| No.   |                                                                 |                                                 | Report             |
|       | mentioned hazards and whether                                   |                                                 |                    |
|       | they are within Permissible                                     |                                                 |                    |
|       | Exposure level (PEL). If these are                              |                                                 |                    |
|       | not within PEL, what measures                                   |                                                 |                    |
|       | the company has adopted to keep                                 |                                                 |                    |
|       | them within PEL so that health of the workers can be preserved. |                                                 |                    |
|       | -                                                               |                                                 |                    |
| iv.   | Annual report of health status of                               | Not applicable as this is a proposed project    | -                  |
|       | workers with special reference to                               |                                                 |                    |
|       | Occupational Health and Safety.                                 |                                                 |                    |
| 9.    | <b>Corporate Environment Policy:</b>                            |                                                 |                    |
| i.    | Does the company have a well                                    | Yes, the company has laid down Environment      | Chapter X, section |
|       | laid down Environment Policy                                    | Policy approved by its Board of Directors.      | no. 10.2.2,Page    |
|       | approved by its Board of                                        | Corporate Environment Policy of the company     | No. 229            |
|       | Directors? If so, it may be detailed in the EIA report.         | has been incorporated in this EIA/EMP Report.   |                    |
| ii.   |                                                                 |                                                 |                    |
| 11.   | Does the Environment Policy                                     | Yes, the Environment Policy prescribes for      | -                  |
|       | prescribe for standard operating                                | standard operating process to implement the     |                    |
|       | process / procedures to bring into                              | environmental standards.                        |                    |
|       | focus any infringement /                                        |                                                 |                    |
|       | deviation / violation of the                                    |                                                 |                    |
|       | environmental or forest norms /                                 |                                                 |                    |
|       | conditions? If so, it may be                                    |                                                 |                    |
|       | detailed in the EIA.                                            |                                                 |                    |
| iii.  | What is the hierarchical system or                              | Hierarchical system of the company to deal with | -                  |
|       | Administrative order of the                                     | the environmental deviations and for ensuring   |                    |
|       | company to deal with the                                        | compliance with the environmental clearance     |                    |
|       | environmental issues and for                                    | *                                               |                    |
|       |                                                                 | conditions is given.                            |                    |
|       | ensuring compliance with the                                    |                                                 |                    |
|       | environmental clearance                                         |                                                 |                    |
|       | conditions? Details of this system                              |                                                 |                    |
|       | may be given.                                                   |                                                 |                    |
| iv.   | Does the company have system                                    | The environmental management system of the      | -                  |
| 1     | of reporting of non-compliances /                               | company engages right from the senior           |                    |
|       |                                                                 |                                                 |                    |
|       | violations of environmental                                     | management to the implementation team on the    |                    |
|       | norms to the Board of Directors                                 | ground. System of reporting the performance of  |                    |

| ToR<br>Point | ToR Point                            | Compliance                                        | Reference in<br>Draft EIA/ EMP |
|--------------|--------------------------------------|---------------------------------------------------|--------------------------------|
| No.          |                                      |                                                   | Report                         |
|              | of the company and / or              | environmental management system has been          |                                |
|              | shareholders or stakeholders at      | incorporated under roles & responsibilities of    |                                |
|              | large? This reporting mechanism      | Corporate Environment Policy.                     |                                |
|              | shall be detailed in the EIA         |                                                   |                                |
|              | report.                              |                                                   |                                |
| 10.          | Details regarding infrastructure     | There will be construction activities in the      | -                              |
|              | facilities such as sanitation, fuel, | project site for the installation of the plant.   |                                |
|              | restroom etc. to be provided to      | Adequate infrastructure facilities will be        |                                |
|              | the labor force during               | provided to the labor force including truck       |                                |
|              | construction as well as to the       | drivers such as restroom, canteen, sanitation,    |                                |
|              | casual workers including truck       | drinking water, etc. during construction &        |                                |
|              | drivers during operation phase.      | operation phase.                                  |                                |
| 11.          | Enterprise Social Commitment (       | (ESC)                                             |                                |
| i.           | Adequate funds (at least 2.5 % of    |                                                   | Chapter VIII,                  |
|              | the project cost) shall be           | October, 2020, company will propose a detailed    | Section 8.3 Page               |
|              | earmarked towards the Enterprise     | action plan along with budgetary allocation after | no. 224                        |
|              | Social Commitment based on           | conduction of Public Hearing considering the      |                                |
|              | Public Hearing issues and item-      | issues raised during public hearing. The funds    |                                |
|              | wise details along with time         | allocated will be spent for various socio-        |                                |
|              | bound action plan shall be           | economic development activities proposed to be    |                                |
|              | included. Socio-economic             | undertaken in the study area with a priority to   |                                |
|              | development activities need to be    | villages falling in the impact zone, which may    |                                |
|              | elaborated upon.                     | be further extended to other villages depending   |                                |
|              |                                      | upon budget and requirement.                      |                                |
| 12.          | Any litigation pending against the   | No litigation is pending against the project      | -                              |
|              | project and/or any direction/order   | and/or any direction/order passed by any Court    |                                |
|              | passed by any Court of Law           | of Law against the project.                       |                                |
|              | against the project, if so, details  |                                                   |                                |
|              | thereof shall also be included.      |                                                   |                                |
|              | Has the unit received any notice     |                                                   |                                |
|              | under the Section 5 of               |                                                   |                                |
|              | Environment (Protection) Act,        |                                                   |                                |
|              | 1986 or relevant Sections of Air     |                                                   |                                |
|              | and Water Acts? If so, details       |                                                   |                                |

| ToR          | ToR Point                                                                                                            | Compliance                                                                                                                                                                                                                                                                     | Reference in                                  |
|--------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Point<br>No. |                                                                                                                      |                                                                                                                                                                                                                                                                                | Draft EIA/ EMP<br>Report                      |
|              | thereof and compliance/ATR to                                                                                        |                                                                                                                                                                                                                                                                                |                                               |
|              | the notice(s) and present status of                                                                                  |                                                                                                                                                                                                                                                                                |                                               |
|              | the case.                                                                                                            |                                                                                                                                                                                                                                                                                |                                               |
| 13.          | A tabular chart with index for                                                                                       | Point-wise compliance of the ToRs has been                                                                                                                                                                                                                                     | Page no.9 to 25                               |
|              | point wise compliance of above TORs.                                                                                 | given in the tabular form.                                                                                                                                                                                                                                                     |                                               |
| Specific     | Conditions                                                                                                           |                                                                                                                                                                                                                                                                                |                                               |
| 1.           | List of existing distillery units in<br>the study area along with their<br>capacity and sourcing of raw<br>material. | List of existing distilleries is attached as <b>Annexure 7</b>                                                                                                                                                                                                                 | Annexure 7 (Page no)                          |
| 2.           | Number of working days of the distillery unit.                                                                       | Total working days are 350 days/annum depending on the availability of raw material.                                                                                                                                                                                           | -                                             |
| 3.           | Details of raw materials such as<br>molasses /grains, their source<br>with availability.                             | Major raw material for Grain based operation<br>will be Grain (Broken Rice, Sorghum, Maize)<br>from nearby areas. Fuel for boiler will be<br>Biomass/rice husk or low sulphur coal &will be<br>procured from local suppliers and transported by<br>road.                       | -                                             |
| 4.           | Details of the use of steam from the boiler.                                                                         | Steam from the boiler will be used in liquefaction, distillation, MEE &dryer and for the production of power.Steam breakup has been incorporated in this EIA/EMP Report.                                                                                                       | Chapter II,Section<br>2.4.1.4, Page no.<br>42 |
| 5.           | Surface and ground water quality<br>around proposed spent wash<br>storage lagoon and compost yard.                   | Surface & groundwater quality has been assessed and results of the same have been incorporated in the EIA/EMP Report.                                                                                                                                                          | Chapter III,<br>Section 3.7 Page<br>no. 84    |
| 6.           | Plan to reduce spent wash<br>generation within 6-8 KL/KL of<br>alcohol produced.                                     | Spent wash generation will be within 6-8 KL/KL of alcohol produced. Grain Slop (Spent Wash) generated will be taken through Centrifuge Decanters for separation of Suspended Solids separated as Wet Cake & will then be treated in Multi Effect Evaporator followed by dryer. | -                                             |

| ToR<br>Point<br>No. | ToR Point                                                                                                                                                                                                                | Compliance                                                                                                                                                                                                                                                                                                                                                                                                                                 | Reference in<br>Draft EIA/ EMP<br>Report         |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| 7.                  | Proposed effluent treatment<br>system for molasses/grain based<br>distillery (spent wash, spent lees,<br>condensate and utilities) as well<br>as domestic sewage and scheme<br>for achieving zero water<br>conservation. | Distillery will be based on zero effluent<br>discharge. Scheme for Zero Effluent Discharge<br>with details of treatment of spent wash, spent<br>lees, condensate & utilities has been<br>incorporated in EIA/EMP Report.                                                                                                                                                                                                                   | Chapter II, Section<br>2.6 (E)Page no. 53        |
| 8.                  | Proposed action to restrict fresh<br>water consumption within 10<br>KL/KL of alcohol production.                                                                                                                         | Fresh water consumption will be restricted<br>within 6.5 KL/KL of alcohol production. Water<br>balance showing the same has been incorporated<br>in EIA/EMP Report.                                                                                                                                                                                                                                                                        | Chapter II, Section<br>2.4.1.3 Page no. 39       |
| 9.                  | Details about capacity of spent<br>wash holding tank, material used,<br>design consideration. No. of<br>piezometers to be proposed<br>around spent wash holding tank.                                                    | The spent wash storage holding tank (RCC lined lagoon) of 5 days capacity shall be constructed as per CPCB guidelines. Two piezometers are proposed to be installed.                                                                                                                                                                                                                                                                       | -                                                |
| 10.                 | Details of solid waste<br>management including<br>management of boiler ash, yeast,<br>etc.Details of incinerated spent<br>wash ash generation and its<br>disposal.                                                       | <ul> <li>Solid waste generally comprises of fibers<br/>and proteins in the form of DDGS (88TPD),<br/>which will be ideally used as Cattle, poultry<br/>and fish feed ingredients.</li> <li>Boiler ash (116 TPD) generated during coal-<br/>based operations will be given to<br/>cement/brick manufactures &amp; during<br/>biomass (62 TPD) based operations will be<br/>given to brick manufacturers in covered<br/>vehicles.</li> </ul> | -                                                |
| 11.                 | Details of bio composting yard (if applicable).                                                                                                                                                                          | Not applicable.                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                |
| 12.                 | Action plan to control odor pollution.                                                                                                                                                                                   | Action plan to control odor pollution has been incorporated in the EIA/EMP Report.                                                                                                                                                                                                                                                                                                                                                         | Chapter IV,<br>Section 4.5.2 (C)<br>Page no. 132 |
| 13.                 | Arrangements for installation of                                                                                                                                                                                         | Continuous online monitoring system (24x7                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                |

ToR Compliance

| ToR<br>Point<br>No. | ToR Point                                                                                                             | Compliance                                                               | Reference in<br>Draft EIA/ EMP<br>Report |
|---------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------|
|                     | continuous online monitoring<br>system (24x7 monitoring device).                                                      | monitoring device) for stack emissions will be installed by the Company. |                                          |
| 14                  | Add: If Sugar and distillery will<br>have integrated effluent treatment<br>facilities. Details regarding the<br>same. | Not applicable.                                                          |                                          |



## CHAPTER-I INTRODUCTION

#### 1.1 PURPOSE OF THE REPORT

This report has been prepared in accordance with the Terms of Reference issued by Ministry of Environment, Forest & Climate Change (MoEFCC) vide letter no. IA-J-11011/277/2023-IA-II(I) dated 31<sup>st</sup> July 2023. The sole objective of this report is to assess and quantify the Environmental impacts due to the proposed project and suggest most feasible and influential mitigation measures, thus managing the sustainability of the environment through a well-designed Environmental Management Plan (EMP). Recognizing the importance of EMP, the Ministry of Environment, Forest & Climate Change (MoEFCC), Government of India had formulated policies and procedures governing the industrial and other developmental activities to mitigate & control uncontrolled use of natural resources and to promote involvement/incorporation of environmental concern in developmental projects. Ministry of Environment, Forest & Climate Change (MoEFCC) has made prior Environmental Clearance (EC) for certain developmental projects mandatory through its notification issued on 14<sup>th</sup> September, 2006 and its subsequent amendments.

EIA Report contains essential information for:

- The project proponent to commence the operational activities of the proposal in an environmentally, economically & socially responsible manner;
- The concerned authority to make a completely analyzed & informed decision on the proposal, including the terms of references that must be attached to an approval or authorization; and
- The public to understand the proposal and its likely impacts on people and the environment.
- The proponent to implement the mitigation measures suggested and allocate appropriate budget for the same.

#### 1.2 IDENTIFICATION OF PROJECT AND PROJECT PROPONENT

#### **1.2.1** Identification of the Project

#### A. Project Proposal

M/s Piccadily Agro Industries Ltd. is proposing 210 KLPD Grain based Distillery along with 6.25 MW Co-generation Power Plant at Village Beltukri, Tehsil & District Mahasamund, Chhattisgarh. The total area for the proposed project is 9.0 ha (22.24 acres) & complete land is under possession of the company. The company will apply for land conversion to industrial use. The proposal for the project is given in the table below:

Chapter-I of Draft EIA / EMP Report

|        | Project proposal          |                          |                                                                                                                                        |  |
|--------|---------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|
| S. No. | Units                     | <b>Proposed Capacity</b> | Products                                                                                                                               |  |
| 1.     | Grain based Distillery    | 210 KLPD                 | Ethanol/Rectified Spirit /Extra<br>Neutral Alcohol/Industrial<br>Alcohol/Denatured<br>Spirit/Specially Denatured<br>Spirit/Malt Spirit |  |
| 3      | Co-generation power plant | 6.25 MW                  | Power                                                                                                                                  |  |

# Table - 1.1Project proposal

### B. Screening Category

As per EIA Notification dated 14<sup>th</sup> Sep, 2006 and as amended on 13<sup>th</sup> June, 2019, the project falls under Category "A", Project, or Activity '5(g)' Distilleries [Non-Molasses based distilleries>200 KLD].

### C. Status of the Proposed Project with respect to Environment Clearance

The chronology of the project activities undertaken so far with respect to the process of getting EC is given in the table below:

# Table: 1.2 Status of the Proposed Project with respect to Environment Clearance

| Application uploaded on MoEFCC portal                                                            | 19 <sup>th</sup> July, 2023           |
|--------------------------------------------------------------------------------------------------|---------------------------------------|
| Standard ToR Letter issued by the MoEFCC, New Delhi vide letter no. IA-J-11011/277/2023-IA-II(I) | 31 <sup>st</sup> July, 2023           |
| Baseline data collection study period                                                            | Summer Season<br>(March to May, 2023) |

### 1.2.2 Introduction of the Project Proponent

Piccadily Agro Industries Ltd. (PAIL), a Public Limited Company was incorporated on 25.03.1994 with the registered address at Village: Bhadson, Umri - Indri Road, Tehsil: Indri, Karnal Haryana (India), Pin code: 132117 and bearing the CIN No. Distt. L01115HR1994PLC032244. It is spread over an area of 168 Acres of Land. It started its operation in the year 1996 - 97 for manufacture of White crystal sugar with installed capacity of 2500 TCD along with in- house facilities for 6 MW Co-generation of power at Umri-Indri Road, Tehsil Indri, Distt. Karnal, (Haryana). The company there after started expansion & modernization of the Sugar Mill and enhanced the crushing capacity to 5000 TCD w.e.f. 02/12/2004 i.e. from crushing season 2004 - 2005. The company further expanded its business & set up a Distillery Unit with an installed capacity of 60 KLPD in year 2007, which has further been expanded to 90 KLPD. The company has set up an automatic 750 ml & 180 ml Pet Bottle plant. The unit is producing pet bottles to cater to the distillery's own consumption. The company has recently set up capacity augmentation of the existing distillery from 90 KLPD to 250 KLPD. Now the company has proposed to establish a grain-based distillery plant of 210 KLPD at Mahasamund, Chhattisgarh.

#### The brief profile of the Directors is detailed below:

**Harvinder Singh Chopra-** Sh. Harvinder Singh Chopra is a qualified Chartered Accountant and is having more than 40 years' experience in Finance, Accounts, Project implementation, administration, designing, construction, expansion, Commercial Banking, Direct & Indirect taxation etc. Expertise in overall management. He has been associated with the company since its inception. He has been managing the affairs of the company for the last 40 years. He is involved with designing, construction, expansion and successful running of all the units of the company. Akhil Dada: Sh. Akhil Dada (46) is a graduate in Commerce from Punjab University and Postgraduate in Business Administration (MBA) from VTU Belgaum. He is having more than 2 3 years of experience in managing different business including Specialized sales & Team Management.

**Jai Parkash Kaushik:** Sh. Jai Parkash Kaushik is retired IAS officer of the Government of India and he is well experienced and possesses expertise in administration, business, & entrepreneurship qualities. He specialises in Risk management. During his tenure as an IAS Officer, he was looking after the affairs of various Co-operative Sugar Mills at Meham, Kaithal and Shahbad in the state of Haryana as MD. He was also posted as a Deputy Commissioner of Ambala and Yamuna Nagar Districts. His last assignment was as a Registrar Co-operative Societies (RCS) Haryana and Chairman Group D Selection Committee of Haryana.

**Dharmendra Kumar Batra**: Sh. Dharmendra Kumar Batra, is an IT professional with an experience of more than 29 years in the field of System Analysis, Design, Development, and Implementation of quality software etc

Heena Gera: She is a Commerce graduate from Delhi University, with expertise in Finance, accounts, preparation of cost reports, Budgets and annual operating plans.

**Rajeev Kumar Sanger:** Mr. Rajiv Kumar Sanger (32) is a Practicing Company Secretary having 7+ years' experience. He has immense knowledge and experience in dealing with matters relating to company Law, Securities Law, Labour Law, Trademark and Copy right, Legal Due Diligence, Transaction documents, Joint Ventures, Mergers and Acquisitions, Listings and Capital Market Transactions, National Company Law Tribunal Proceedings, Insolvency and Bankruptcy Code, Income Tax, GST, Authority etc.

# 1.3 BRIEF DESCRIPTION OF NATURE, SIZE, LOCATION OF THE PROJECT AND ITS IMPORTANCE TO THE COUNTRY, REGION

#### 1.3.1 Brief Description of Nature, Size and Location of Project

M/s. Piccadily Agro Industries Ltd is proposing 210 KLPD Grain based Distillery along with 6.25 MW Co-generation Power Plant at Village Beltukri, Tehsil & District Mahasamund, Chhattisgarh. The proposed distillery plant will be designed for manufacturing Ethanol/Rectified Spirit /Extra Neutral Alcohol/Industrial Alcohol/Denatured Spirit/Specially Denatured Spirit along with Malt

Spirits from broken grains (Maize, Broken Rice, Barley malt & Sorghum). Along with the main products, the proposed new installation of distillery will also produce animal feed called as Distiller's Dried Grain with Soluble (DDGS) from Grain based operations depending upon the market demand. As per EIA Notification dated 14th Sep, 2006 and as amended on 13th June, 2019, the project falls under Category "A", Project, or Activity '5(g)' Distilleries [Non-Molasses based distilleries >200KLD].

| S.<br>No. | Particulars           | Details                             |                           |
|-----------|-----------------------|-------------------------------------|---------------------------|
| А.        | Nature of the Project | Proposed Grain based Distillery and | Co-generation power plant |
| B.        | Size of the Project   | Units                               | <b>Proposed Capacity</b>  |
|           |                       | Grain based Distillery              | 210 KLPD                  |
|           |                       | Co-generation power plant           | 6.25 MW                   |
| C.        | Location details      |                                     |                           |
|           | Village               | Beltukri                            |                           |
|           | Tehsil                | Mahasamund                          |                           |
|           | District              | Mahasamund                          |                           |
|           | State                 | Chhattisgarh                        |                           |
|           | Latitude              | 21°13'8.83" N to 21°13'20.19" N     |                           |
|           | Longitude             | 82°4'41.10"E to 82°4'57.78"E        |                           |
|           | Topo sheet No.        | 56H/7, 56H/8                        |                           |

#### Brief Description of Nature, Size and Location of the Project is given in table below.

#### **1.4 SCOPE OF THE STUDY**

Scope of this study covers all the points given in the Terms of References (ToR) issued by the MoEFCC, New Delhi vide letter no. IA-J-11011/277/2023-IA-II(I) dated 31<sup>st</sup> July 2023. This EIA/EMP report includes total twelve chapters as per Appendix-III of the EIA Notification, 2006.

| Scope of the study |                                                           |  |  |
|--------------------|-----------------------------------------------------------|--|--|
| Chapter            | Description                                               |  |  |
| Chapter-1          | Introduction                                              |  |  |
| Chapter-2          | Project Description                                       |  |  |
| Chapter-3          | Description of the Environment                            |  |  |
| Chapter-4          | Anticipated Environmental Impacts and Mitigation Measures |  |  |
| Chapter-5          | Analysis of Alternatives (Technology & Site)              |  |  |
| Chapter-6          | Environmental Monitoring Program                          |  |  |
| Chapter-7          | Additional Studies                                        |  |  |
| Chapter-8          | Project Benefits                                          |  |  |
| Chapter-9          | Environmental Cost Benefit Analysis                       |  |  |
| Chapter-10         | Environmental Management Plan                             |  |  |
| Chapter-11         | Summary & Conclusion                                      |  |  |
| Chapter-12         | Disclosure of Consultants Engaged                         |  |  |

Scope of the study

#### 1.5 **REGULATORY SCOPING**

The study covers the requirements of various acts, rules, Notifications and Office Memorandum applicable for Distillery industry related to air pollution, water pollution and solid waste management and guidelines of MoEFCC, CPCB/SPCB etc.

 $\sim$ 

## CHAPTER - II PROJECT DESCRIPTION

#### 2.1 **TYPE OF THE PROJECT**

As per EIA Notification dated 14<sup>th</sup> Sep, 2006 and as amended on 13<sup>th</sup> June, 2019, the project falls under Category "A", Project or Activity '5(g)' Distilleries. [Molasses based distilleries>100 KLPD & Non-Molasses based distilleries >200 KLD]. The project involves installation of equipment required for processing of feedstock, fermentation, distillation and manufacturing of desired products, development of required technical facility for effective implementation of EMP and necessary infrastructure development required for operating distillery unit and co-generation power plant.

#### 2.2 NEED FOR THE PROJECT

Rice, maize and other grains are one of the main course cereal crops of India. India's market year 2015-16 rice ending stocks are estimated to be 18.50 million tonnes (16.2 million government rice and 2.3 million tonnes private) due to higher procurement and relatively weak off take, according to the FAS. Market year 2016-17 ending stocks are also forecasted to be higher at 16.4 million tonnes on normal procurement and government off take. Out of total stock 18.50 million MTs of corn/rice, about 2-3 million MT is wasted due to grain blackening following un-seasonal rains. This grain is not suitable for human or animal consumption. Hence, it is sold at a low price and thus gives lower returns to the farmers. Thousands of the marginal farmers will be benefited if such grains can be used for alcohol production.

The grain-based distillery is very promising to new technologies developments (such as raw starch hydrolysis, new generation of efficient enzymes, dry germination etc.) are taking place in dry milling grain alcohol production, which will bring down the cost of conversion substantially in future. Under PM-JIVAN scheme, 12 commercial plants and 10 demonstration plants of Second Generation (2G) Bio-Refineries (using ligno-cellulosic biomass as feedstock) are planned to be set up in area shaving sufficient availability of biomass so that ethanol is available for blending throughout the country. Already Rs. 1969.50 Crores have been earmarked for this scheme. These plants can use feed stocks such as rice straw, wheat straw, corn cobs, corn stover, bagasse, bamboo and woody biomass, etc.

The energy demand in our country is rising due to an expanding economy, growing population, increasing urbanization, evolving lifestyles and rising spending power. About 98% of the fuel requirement in the road transportation sector is currently met by fossil fuels and the remaining 2% by bio fuels. Today, India imports 85% of its oil requirement. The Indian economy is expected to grow steadily despite temporary setbacks due to the COVID pandemic. This would result in a further increase of vehicular population which in turn will increase the demand for transportation

fuels. Domestic bio fuels provide a strategic opportunity to the country, as they reduce the nation's dependence on imported fossil fuels. In addition, when utilized with appropriate care, biofuels can be environmentally friendly, sustainable energy sources. Currently the gasoline vehicles (2 wheelers & 4 wheelers) in the country are designed for running on pure gasoline and can be tuned to suit ethanol blended fuels ranging from E0 to E5 depending on the vehicle type. On the material compatibility front, the rubber and plastic components are compatible with E10. However, with the proposed target of E20 (blending of 20% Ethanol) the vehicles are now required to become both material compatible and tuned for use of E20 fuel. Flex fuel vehicle is well accepted concept in other countries. India has also notified the use of E85 and E100 in 2016 and in future the vehicles designing will meet the E85 &E100 compatibility which will increase the demand of ethanol eventually. The Global transportation sector is facing three major challenges, namely depletion of fossil fuels, volatility in crude oil prices and stringent environmental regulations. Alternative fuels specific to geographies can address these issues. Ethanol is considered to be one of most suitable alternative blending, transportation fuel due to its better fuel quality (ethanol has a higher-octane number) and environmental benefits. The projected requirement of ethanol based on petrol (gasoline) consumption is estimated. The National Policy on Bio-fuels had set a target of 20 per cent blending of bio-fuel by 2025. ccording to the report, India's Ethanol Blending Program stipulates procurement of ethanol produced directly from sugarcane juice, and damaged food grains. Average ethanol blending targets for the period ESY 2020-21 to ESY 2025-26 are calculated and given in the below table:

| Ethanol Supply<br>Year | Projected Petrol<br>Sale (MMT) | Projected Petrol<br>Sale (Cr. litres) | Blending<br>(in %) | Requirement of ethanol for<br>blending in Petrol<br>(Cr. litres)** |
|------------------------|--------------------------------|---------------------------------------|--------------------|--------------------------------------------------------------------|
| A                      | В                              | B1=B X 141.1                          | С                  | D=B1*C %                                                           |
| 2019-20                | 24.1 (Actual)                  | 3413 (Actual)                         | 5                  | 173                                                                |
| 2020-21                | 27.7                           | 3908                                  | 8.5                | 332                                                                |
| 2021-22                | 31                             | 4374                                  | 10                 | 437                                                                |
| 2022-23                | 32                             | 4515                                  | 12                 | 542                                                                |
| 2023-24                | 33                             | 4656                                  | 15                 | 698                                                                |
| 2024-25*               | 35                             | 4939                                  | 20                 | 988                                                                |
| 2025-26*               | 36                             | 5080                                  | 20                 | 1016                                                               |

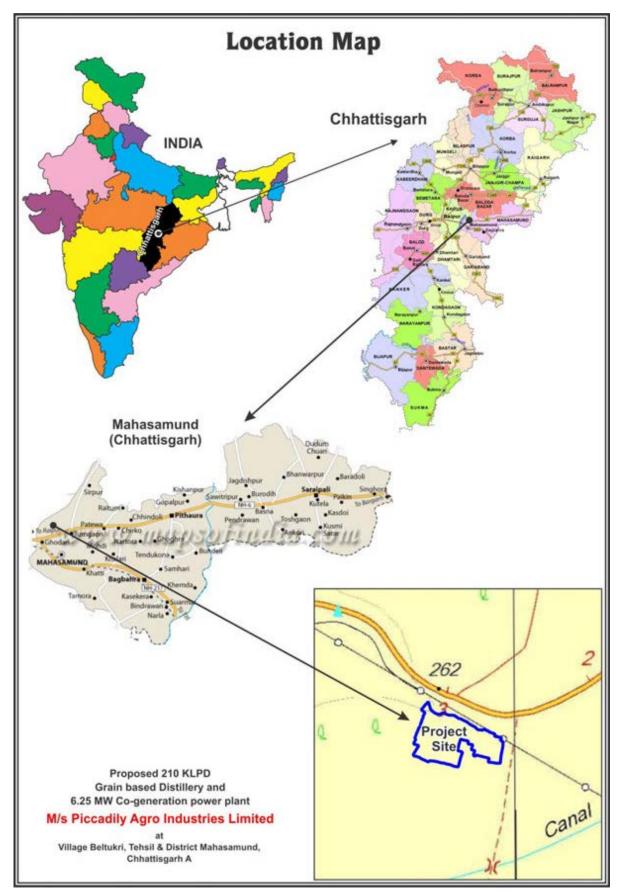
\* The petrol projections may undergo revision due various factors like penetration of EVs, etc.

\*\* The figures are optimistic, as the E20 fuel will be consumed by new vehicles from April 2023 only. The demand for ethanol will, however, increase due to penetration of E100 two wheelers, which are now being manufactured in the country.

*Source: Report of Expert Committee NITI Aayog, Ministry of Petroleum and Natural Gas* The following benefits to the State and Country can be envisaged as below:

- Contribution in Ethanol blending programme
- Capital Investment being made in the State
- Employment generation (direct and indirect)
- Long term gains to farmers for sale to an industry rather than to small scale wholesalers

Moreover, there will be employment generation along with introduction of socio-economic developmental activities for the welfare of nearby villages. Various sanitation measures will be undertaken, infrastructure facilities will be improved in nearby villages, trainings and skill development programs will be undertaken and in turn social and economic upliftment of the area will be envisaged.

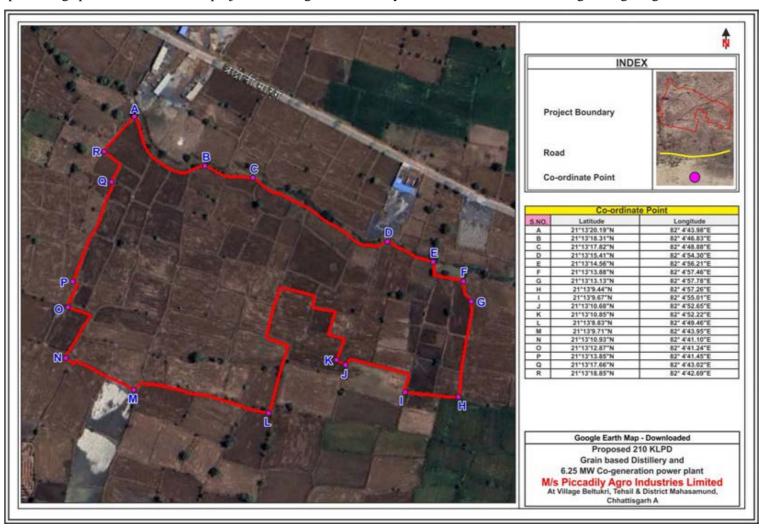

With respect to India, three types of Alcohol are majorly produced, i.e., Rectified Spirit (RS), Extra Neutral Alcohol (ENA) and Ethanol. RS is used for large number of industrial, scientific, laboratory, medical and many other applications. Hence, demand for the same is immense and it is ever increasing. ENA is used for making liquors and other alcoholic beverages. Ethanol is a fuel alcohol; it is used for blending with petrol and intoxicating ingredient of alcoholic beverages. With hundreds of kind of alcoholic beverages being made and consumed in India, the industry can be categorized into four broad groups' viz. Indian Made Foreign Liquor (IMFL), Country Liquor (CL), illicit liquor & Beer. IMFL products contain about 42.85% of alcohol. The consumption of CL is slowly on the decreasing trend as some cheap IMFL is available. In spite of this, the CL industry is growing at around 8%. However, government is taking necessary steps to restrict the illicit liquor as it causes loss of revenue and spoils the health of the people, also bad quality may lead to death of consumer. The major consumption of alcohol as of now is for alcoholic beverages. Ethyl alcohol has the potential to become the fuel of the future relegating gasoline to a secondary place. The ethanol produced from the grains is superior in quality as compared with that from molasses. It is estimated that IMFL market will require around 3000 million litres in the year 2014 and expected to grow more than 50% in next 3 years. With increasing shift of molasses to ethanol production as Government declares 5% to 10% mandatory mixing of fuel ethanol in the gasoline there is great potential for new distillery establishment.

#### 2.3 LOCATION

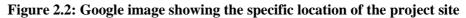
The project site is located at Village Beltukri, Tehsil & District Mahasamund, Chhattisgarh.

#### 2.3.1 General Location Map

The map showing location of the project site is given in the figure below.




Source: Toposheet


Figure 2.1: Location Map of the project site

#### 2.3.2 Specific Location Map

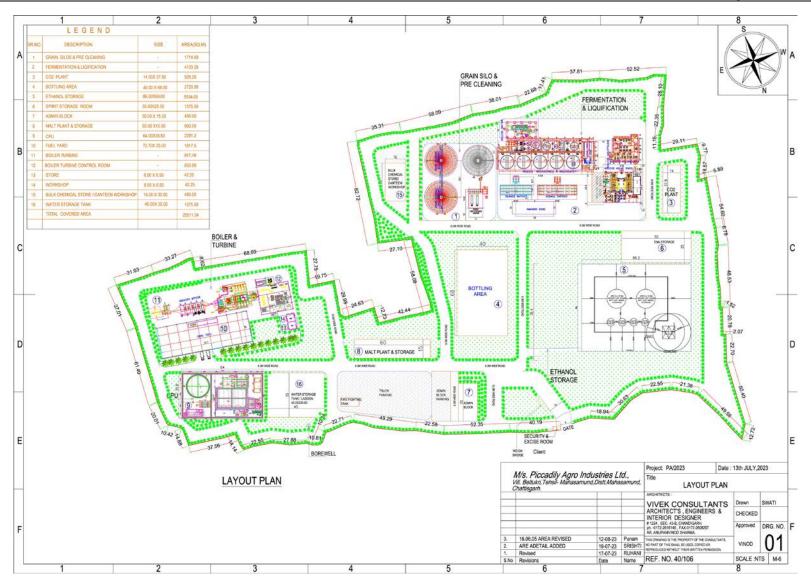
The map showing specific location of the project site along with boundary coordinates marked on a Google image is given below:



Source: Google Earth



#### 2.3.3 Plant Layout


The total project area is 9.0 ha (22.24 acres) & complete land is under the possession of company. Land documents are enclosed as **Annexure 1**. The company will apply for land conversion to industrial use.

Greenbelt will be developed in 33% of the total area of the proposed project. 2.97 ha (7.34 acres) i.e. 33% of total project area will be covered under Greenbelt & Plantation Area.

| S. No. | Particulars                               | Area (ha) |
|--------|-------------------------------------------|-----------|
| 1.     | Main Plant, machineries & Utilities       | 1.80      |
| 2.     | Storage area of raw material and products | 1.50      |
| 3.     | Parking area (15% of total area)          | 1.35      |
| 4.     | Admin office                              | 0.10      |
| 5.     | Bottling Area                             | 0.28      |
| 6.     | Roads & paved area                        | 0.5       |
| 7.     | Open area                                 | 0.5       |
| 8.     | Greenbelt & plantation (33%)              | 2.97      |
|        | Total                                     | 9.0       |

#### Table - 2.1 Area break-up

Layout map showing the proposed unit indicating storage area, plant area, greenbelt area, parking area etc. has been given in Figure below:



**Figure 2.3: Tentative Plant Layout** 

#### 2.3.4 **Photographs of the Proposed Project Site**

The photographs showing the proposed project site are given below.



#### 2.4 SIZE OR MAGNITUDE OF THE OPERATION

Size or magnitude of operation for the proposed project is given below:

|        | Details of the proposed project |          |                                                                                                                                        |  |
|--------|---------------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------|--|
| S. No. | Units                           | Capacity | Products                                                                                                                               |  |
| 1.     | Grain based Distillery          | 210 KLPD | Ethanol/ Rectified Spirit /Extra Neutral<br>Alcohol/ Industrial Alcohol/ Denatured Spirit/<br>Specially Denatured Spirit & Malt Spirit |  |
| 3.     | Co-generation Power Plant       | 6.25 MW  | Power                                                                                                                                  |  |

# Table: 2.2

#### Table 2.3 Other details of the Project

| Α. | Cost Details                                 |                                                                                                                                                |
|----|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. | Total Cost for the Project                   | Rs. 182 Crores                                                                                                                                 |
| 2. | Cost of Environment Management Plan<br>(EMP) | Capital Cost- Rs. 20.0 Crores<br>Recurring Cost- Rs. 2.0 Crores/annum                                                                          |
| В  | No. of working down                          | Total no. of working days is 350 days / annum                                                                                                  |
| D  | No. of working days                          | Total no. of working days is 550 days / annun                                                                                                  |
| C. | Product Mix                                  | Ethanol/ Rectified Spirit /Extra Neutral Alcohol/<br>Industrial Alcohol/ Denatured Spirit/ Specially<br>Denatured Spirit & Malt Spirit & Power |
| D. | By-products                                  | DDGS & CO2                                                                                                                                     |

#### 2.4.1 **Requirements for the project**

The project requirement such as area, raw material, fuel, water, steam, power, manpower with source of supply is described in the section below:

#### 2.4.1.1 **Raw material requirement**

Grains such as damaged grain feed stock, broken rice, maize, bajra & sorghum will be used as raw material which is easily available from the local market. Details regarding quantity of raw materials required their source along with mode of transportation for project are given in table below:

Chapter-II of Draft EIA / EMP Report

| S.<br>No. | Particulars                                    | Total<br>Requirement | Storage<br>facility   | Source & mode of<br>transportation |
|-----------|------------------------------------------------|----------------------|-----------------------|------------------------------------|
| 1.        | <b>Grains-</b> Maize, Broken Rice &<br>Sorghum | 464 TPD              | Steel Silo            | Near-by Markets via road           |
| 2.        | Barley Malt                                    | 20 TPD               | Steel Silo            | Near-by Markets via road           |
| 3.        |                                                |                      |                       |                                    |
|           | Sodium Hydroxide<br>(Caustic soda)             | 2100 Kg/day          | Stores/Steel<br>Tanks | Near-by Markets via road           |
|           | Nutrients                                      | 420 Kg/day           | In Stores             |                                    |
|           | Enzymes (Alpha amylase,<br>Amyloglucosidase)   | 273 Kg/day           | In Stores             |                                    |
|           | Antifoam Agent                                 | 105 Kg/day           | In Stores             |                                    |
|           | Dry Yeast                                      | 105 Kg/day           | In Stores             |                                    |

# Table- 2.4Raw Material Requirement for Distillery

#### 2.4.1.2 Fuel Requirement

The fuel required for proposed boiler to generate steam & power is biomass like rice husk or coal. Details regarding fuel requirements are given below.

| Fuel Requirement        |                            |                                |                                    |  |  |  |  |
|-------------------------|----------------------------|--------------------------------|------------------------------------|--|--|--|--|
| Name of Raw<br>Material | Total Requirement<br>(TPD) | Storage facility &<br>capacity | Source & Mode of<br>Transportation |  |  |  |  |
| Biomass/Rice husk       | 412 TPD                    | Covered sheds                  | From local suppliers by road       |  |  |  |  |
| Or                      |                            |                                |                                    |  |  |  |  |
| Low sulphur Coal        | 288 TPD                    | Covered sheds                  | From local suppliers by road       |  |  |  |  |

# Table- 2.5Fuel Requirement

### 2.4.1.3 Water Requirement

Total fresh water requirement will be 1102 KLPD (802 KLPD for Distillery along with cogeneration power plant, 100 KLPD for Malt spirit plant, 150 KLPD for Bottling plant & 50 KLPD Domestic usage & others) which will be sourced from Surface water (Mahanadi river through Samodha Dam). Total input for first run for distillery will be 3144 KLPD. 2342 KLPD will be recycled and net fresh water requirement for distillery unit only will be 802 KLPD.

*STATUS OF APPROVAL*-The company has obtained the permission from Chhattisgarh Government, State Investment Promotion Board for the abstraction of 533630 m3/annum (1462 KLPD) of water from Mahanadi River (Samodha Dam) vide letter no. 1073/SIPB/2021 dated 10.05.2023. Copy of the same is enclosed as **Annexure 2**.

Chapter-II of Draft EIA / EMP Report

| S. No. | Unit                                                          | Quantity             |
|--------|---------------------------------------------------------------|----------------------|
| 1.     | Raw water requirement for Distillery along with co-generation | 802 KLPD (4.0 KL/KL) |
|        | power plant                                                   |                      |
| 2.     | Malt spirit plant                                             | 100 KLPD             |
| 3.     | Bottling plant                                                | 150 KLPD             |
| 4.     | Domestic use & others                                         | 50 KLPD              |
|        | Total                                                         | 1102 KLPD            |

### Table no. 2.6 Water requirement break-up

#### Table- 2.7 Total water input

| Total water input                            |                          |  |  |  |  |
|----------------------------------------------|--------------------------|--|--|--|--|
| Particulars                                  | Water requirement (KLPD) |  |  |  |  |
| Process water in Liquefaction & Fermentation | 1203                     |  |  |  |  |
| Boiler                                       | 1064                     |  |  |  |  |
| Cooling tower                                | 757                      |  |  |  |  |
| Auxiliaries &Pump sealing                    | 120                      |  |  |  |  |
| Total Water Input (A)                        | 3144                     |  |  |  |  |

## Table-2.8

#### **Recycling streams**

| Particulars                                               | Water requirement (KLPD) |
|-----------------------------------------------------------|--------------------------|
| Steam condensate                                          | 745                      |
| Spent Lees                                                | 277                      |
| Thin slop                                                 | 245                      |
| Process Condensate (MEE condensate & Dryer Condensate)    | 830                      |
| CT blow down, Boiler Blow down, DM plant reject & washing | 128                      |
| Auxiliaries &Pump sealing                                 | 116                      |
| Total recycling streams (B)                               | 2342                     |
| Net fresh water requirement (A-B)                         | 3144-2342=802            |

| GRAIN ETHANOL CAP | 200000                      | LPD           | ETHANOL      |                     |           | W          | -                             | GED GRAINS T<br>R BALANCE / I |              | ANOL                          |           |
|-------------------|-----------------------------|---------------|--------------|---------------------|-----------|------------|-------------------------------|-------------------------------|--------------|-------------------------------|-----------|
|                   | 200000                      |               |              |                     |           |            |                               |                               |              |                               |           |
|                   | GRAIN FLOUR                 | 464           |              |                     |           | CO2        |                               |                               | 171          | ALCOHOL (MT)                  | PRODUCT   |
|                   | STEAM                       | 85            |              |                     | 1598      | FERM WASH  | MULTI-PRESSURE DISTILLATION - |                               | 414          | STEAM COND                    | RECYCLE   |
|                   | ENZYMES                     | 0.3           | FERMEN       | NTATION             |           | 13% v/v    |                               | SH TO ETHANOL                 | 277          | SPENT LEES PRC                | RECYCLE 2 |
|                   | PROCESS WATER               | 1203          |              |                     | STEAM     | 427        |                               |                               |              |                               |           |
|                   |                             |               |              |                     |           |            | ]                             |                               | 1163         | WHOLE SLOPS                   |           |
|                   |                             |               |              |                     |           |            |                               |                               | 183          | DWG WET CAKE                  | 7         |
|                   |                             | 1             |              |                     |           |            | 256                           | DECANTATION                   | 979          | THIN SLOPS                    | 1         |
|                   | AUXILIARIES CT & PUMP       | 757           | SW CW        |                     |           |            | -50                           |                               | 575          | THIT SECTO                    |           |
| RECYCLE 7         | SEALING                     | 120           | PUMP SEALING | STEAM               | 341       | DWGS DRYER |                               |                               | 245          | THIN SLOPS                    | RECYCLE   |
|                   |                             | VACUUM & PUM  | PS SEALING   | STEAM<br>CONDENSATE | 331       |            |                               |                               | 735          | THIN SLOPS TO<br>MEE          |           |
|                   |                             |               |              |                     | RECYCLE 4 |            | DRYR VAPOUR                   | MEE                           |              |                               |           |
|                   |                             |               |              | _                   |           |            | 169                           |                               |              |                               |           |
| BOILER FEED 1     | 964                         | STEAM PROCESS | 853          | 36                  | DDGS      | 88         |                               |                               | 73           | THICK SYRUP                   |           |
|                   | BOILER                      | STEAM BDA     | 85           | 4                   |           |            | -                             |                               |              |                               |           |
|                   | .00                         | TOTAL STEAM   | 939          | 39                  |           |            |                               |                               | 661          | PROCESS COND 1                |           |
| DM PLANT REJECT   |                             | BOILER BD     | 26           |                     |           |            |                               | СРИ / РСТР                    | 169          | PROCESS COND 2                | 1         |
|                   |                             |               |              |                     |           |            |                               |                               |              |                               | 1         |
|                   |                             |               |              | _                   | RECYCLE 5 | TREATED WW | 830                           |                               |              |                               | 1         |
| w                 | ATER BALANCE & FRESH V      | ATER REQUIE   | REMENT       |                     |           |            |                               |                               |              |                               | _         |
| TOTAL W           | ATER INPUTS - FIRST RUN     | 3144          | KL/ DAY      | 1                   | TO MEE    | REJECT     | 18                            |                               | 20           | CT Blow Down                  | ]         |
| TOTAL W           | ATER OUTPUTS - FIRST RUN    | 3144          | KL/ DAY      | ]                   |           |            |                               |                               | 100          | DIM Plant Reject &<br>Washing |           |
| TOTAL             | ATER RECYCLE (1-7)          | 2342          | KL/ DAY      | ]                   | RECYCLE 6 | TREATED WW | 128                           | ETP                           | 26           | Boiler Blow down              |           |
| NET FRE           | SH WATER / DAY - DISTILLERY | 802           | KL/ DAY      | 4.0                 |           |            |                               |                               |              |                               | _         |
|                   |                             |               |              | KL/KL               |           |            | ESTIMATED WAT                 | ER BUDGET / WAT               | FR BALANCE - | PRE-ENGINEERING S             | TAGE      |

#### GRAIN ETHANOL PROJECT - 200 KLPD ABSOLUTE ALCOHOL (AA)

Figure 2.4: Water Balance/ Mass Balance of proposed 200 KLPD Grain based distillery

#### 2.4.1.4 Steam Requirement

Steam requirement for Grain based Distillery operation will be 938 TPD (39.08 TPH) which will be sourced from proposed boiler of 60 TPH capacity. The steam requirement for different sections is given below-

| ·         |                                            |                            |  |  |  |  |  |
|-----------|--------------------------------------------|----------------------------|--|--|--|--|--|
| S.<br>No. | Purpose                                    | Steam requirement<br>(TPD) |  |  |  |  |  |
| 1.        | Cooking & Liquefaction                     | 85                         |  |  |  |  |  |
| 2.        | Multi-pressure Distillation + MSDH section | 478                        |  |  |  |  |  |
| 3.        | DWGS Drier                                 | 290                        |  |  |  |  |  |
| 4.        | Boiler De-aeration                         | 85                         |  |  |  |  |  |
|           | Total                                      | 938 TPD (39.08 TPH)        |  |  |  |  |  |

#### Table – 2.9 Steam requirement

#### 2.4.1.4.1 Boiler details

Boiler of 60 TPH capacity with ESP as Air Pollution Control Equipment will be installed. Details regarding proposed boiler are mentioned in the table given below:

| <b>Table – 2.10</b>            |
|--------------------------------|
| <b>Proposed boiler details</b> |

| S. No. | Item                                 | Boiler details                        |
|--------|--------------------------------------|---------------------------------------|
| 1.     | Boiler Capacity                      | 60 TPH                                |
| 2      | Type of Fuel                         | Biomass/Rice Husk or Low sulphur Coal |
| 3.     | Stack Height                         | 60 Meters                             |
| 4.     | Pollution Control Equipment Measures | Electrostatic Precipitator (ESP)      |

#### 2.4.1.5 **Power requirement**

The power requirement for the proposed distillery is 6.0 MW which will be sourced from proposed 6.25 MW Co-Generation Power Plant.

D.G. set of 1 x 1500 KVA will be installed for the power backup. Details regarding the D.G. Sets are mentioned in the table given below:

Table 2.11Details Regarding the D.G. Sets

| S. No. | Details                              |                                            |
|--------|--------------------------------------|--------------------------------------------|
| 1.     | Type of Fuel                         | HSD                                        |
| 2.     | Capacity                             | 1 x 1500 KVA                               |
| 3.     | Stack Height (above roof level)      | As per CPCB/SPCB norms (8 m)               |
| 4.     | Pollution Control Equipment Measures | Adequate stack height/ Acoustic enclosures |

#### 2.4.1.6 Manpower requirement

There will be direct & indirect jobs and business opportunities to the local people such as daily wage labour, transporters and raw material suppliers. The manpower required for the proposed project will be 150 persons.

*Source*: Unskilled/ semi-skilled manpower from local area and skilled from outside/local.

Details regarding manpower requirement is given in the table below.

| Manpower Requirement                     |     |  |  |  |  |
|------------------------------------------|-----|--|--|--|--|
| Temporary employment during construction | 90  |  |  |  |  |
| Permanent employment during construction | 10  |  |  |  |  |
| Total during construction                | 100 |  |  |  |  |
| Temporary employment during operation    | 50  |  |  |  |  |
| Permanent employment during operation    | 100 |  |  |  |  |
| Total during operation                   | 150 |  |  |  |  |

Table-2.12

### 2.5 PROPOSED SCHEDULE FOR APPROVAL AND IMPLEMENTATION

The project will start only after obtaining Environmental Clearance and all other required clearance and will complete within 1.5 - 2 years of commencement.

Activity Months 1 5 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 2 3 7 8 9 4 6 Appointment of 3 consultant, basic engineering and issue of tender enquiries and main machinery order placement for units Civil 5 construction Fabrication and 7 mechanical work 3 **Electrical and** instrumentation erection Refractory 3 works **Trial runs and** 3 commissioning

Chapter-II of Draft EIA / EMP Report

2.6

#### TECHNOLOGY AND PROCESS DESCRIPTION

#### A. <u>GRAIN BASED DISTILLERY PROCESS</u>

#### (i) Grain Storage Silos, Cleaning, Handling and Milling Section

This is the front end of the process where the rice will be milled in to flour suitable for cooking and further treatment. As rice is a seasonal commodity, the procurement of rice required for the annual operation of the distillery need to planned well and adequate storage facilities need to be created for storing the seasonally procured rice. The rice from the storage go downs shall be conveyed through bucket elevators to temporary storage grain silos for the continuous feeding of the process. The grain stored in the silo will be taken to the mills by gravity, through the vibratory pre-cleaner, magnetic separator and de-stoner for the removal of impurities like straw stem, fine dust, iron particles and heavier particles like stone. Generally hammer mills are employed to grind the rice to fine flour.

#### (ii) Liquefaction and Saccharification

This is a major process section where the starch which is a glucose polymer is broken down to the monosaccharide glucose, which makes the raw material suitable for fermentation with yeast. The fine ground flour from the mill will be mixed homogenously in the mixing tank where process water along with process condensate from the evaporator and thin still age from the decanter will be used for dilution. Some quantity of liquefying enzyme (Alpha-amylase) is added to the slurry. The slurry is pumped to a jet cooker, where the temperature of the slurry is instantly raisedto105Deg.C, with steam as the heating medium. To ensure that thorough cooking is done to gelatinize the starch, adequate evidence time is provided. The cooked slurry is pumped to liquefying enzyme (Alpha-amylase) is added to the slurry. With the action of the liquefying enzyme (Alpha-amylase) is added to the slurry. With the action of the liquefying enzyme, the gelatinized starch is converted to dextrin, which is a short chain polymer of glucose molecules. The starch thus converted to dextrin is taken to the saccharification tank where saccharifying enzyme, Amylo glycosidase, is added and the dextrin (glucose polymer) is converted to dextrose(an alternative name for glucose).Then the Glucose media is cooled and pumped to the fermentation section where the glucose is fermented with yeast in the fermenters.

#### (iii) Fermentation

Starch converted into fermentable sugar glucose, through the process of Liquefaction and Saccharification is fermented using yeast. Yeast is a unicellular fungi and each yeast cell by itself is an independently living entity, capable of growth and reproduction.

Yeast consumes the fermentable sugar and converts it into alcohol and carbon-dioxide. Alcohol so produced in yeast cell diffuses out of its body cell wall and get accumulated in the fermenter vessel. Alcohol yield varies with yeast strain and the quantum of starch converted to fermentable sugars.

The Glucose media obtained from the gelatinization and Saccharification of the starch will be diluted with water and or with thin slop and evaporator condensate to give the required optimum sugar concentration for the stress free performance of the yeast. This glucose media is usually not sterilized, although in certain cases it has been pasteurized with a resultants light increase in efficiency. The diluted glucose media, often called the mash is adjusted to a pH of 4 to 5 by suitably adding Sulphuric acid, as required. Although the optimum pH for maximum efficiency varies with different raw material used, an initial pH of 4.8 to 5.0 is usually considered the best. The fermentation process converts the fermentable sugars in feedstock in to alcohol using yeast. During fermentation, the glucose molecules are broken down in to alcohol and carbon-dioxide. Significantly then a release takes place during the fermentation and it is important to maintained the wash in the fermenter at a temperature of around 32°Cbycirculating the mash through coolers. Once the fermentation reactions are completed the mash will be ready for distillation, which is a process of separating the alcohol from the rest of the mash.

#### (iv) CO2 Recovery Plant

During the biochemical reaction in fermentation section, CO2 is generated as by product along with ethyl alcohol. This raw CO2 gas having 99% v/v purity (DB) is taken for purification followed liquefaction. Initially gas is taken to Foam trap to eliminate liquid particle carried over from fermentation section. Here process water is used to rinse down the foam. Clean gas from Foam trap is then fed to Low pressure organic removal system with the use of booster blower. Organic impurities associated with carbon dioxide gas are scrubbed using high efficiency packing. Main impurities like ethanol, aldehyde, ethyl acetate, are extracted in the scrubbing water through counter current operation of the scrubber. This purified gas is then fed liquid knock out drum for removal of water traces. Purified gas is compressed in two stages reciprocating non lubricated water cooled compressor. This high pressure gas is cooled down to desired temperature in water cooled after cooler. Additional impurity separation step is used to enhance CO2 gas purity by scrubbing impurities present in traces by use of potable water. Odour producing hydrocarbons and other sulphur based compounds will be removed in adsorption tower by using activated carbon as a media. De odorized high pressure carbon dioxide gas will be cooled down to remove significant portion of moisture using ammonia as coolant. It will be further dried in molecular sieve dehydration unit. This step is essentially required to avoid ice formation during liquefaction of carbon dioxide.

This purified is carbon dioxide gas will be then liquefied by using refrigeration system. Refrigeration system consists of screw compressor, pre cooler, refrigerant condenser and accessories. Liquid CO2 still contains non condensable gases like nitrogen, oxygen which are removed through venting. Liquid CO2 stripper is used to avoid high vent CO2 losses which uses packed tower with re-boiler and reflux condenser. Oxygenates of nitrogen are removed through

molecular sieve NOx tower. Purified liquid CO2 of desired quality will be then sent to liquid CO2 storage tank. Liquid storage tank will be equipped with all necessary accessories like pressure safety valves, insulation. After the scrubber, the pressurized CO2 will be liquefied and stored in the storage container which will be disposed through tankers to the soft drink manufacturing units.

#### (v) Multi Pressure Vacuum Distillation

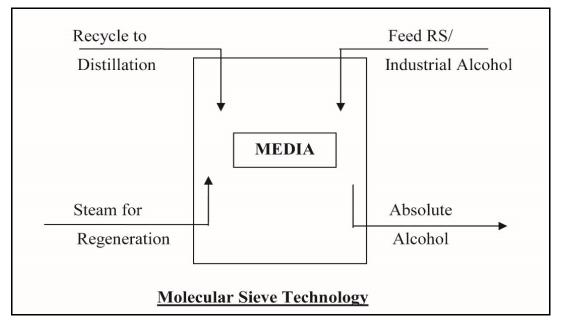
The Alcohol is produced in the fermentation process and is separated from the rest of the mash and purified in the distillation process. The distillation process uses the concept of fractional distillation which utilizes the difference in the boiling points of the various constituents to separate them from a mixture. Distillation process consumes a considerable amount of energy and is also a deciding factor in the quality of ethanol produced. With the escalating cost of energy and energy being a major constituent in the total cost of production of alcohol, efforts have always been to minimize the consumption of energy in the distillation process. Conventionally, thermal energy was supplied to each of the columns directly through steam and all the columns operated almost at the same pressure. This process consumed a lot of energy. In the multi pressure distillation technology, thermal energy in the form of steam will be supplied to only a few of the columns and the rest of the columns operate using the vapour generated in the columns that are supplied with steam. This results in the columns operating at various pressures like some of them will be at above atmospheric pressure, some of them will be under atmospheric pressure and the rest of them operate under vacuum. In terms of energy consumption, the multi pressure vacuum distillation plants consume only about 60% of the thermal energy requirements of the conventional single pressure distillation plants.

Apart from the production of ENA, the distillation plants also produce some impurities which are basically organic compounds. The lighter fractions are clubbed together and are called as technical alcohol (Impure Spirit) and the heavier fractions are clubbed together and are called as Fusel Oil. The technical alcohol and fusel oil have applications in the industry and in cosmetic industry. The ethyl alcohol produced in the distillery will be cooled and stored in daily receiver tanks and then in the bulk storage tanks.

#### (vi) Decantation

The Decanter is a centrifuge used for the separation of the suspended solids from the liquid. The thick slop discharged from the distillation section is taken to the decanter, where the suspended solids are separated as 30% W/W wet cake. The separated liquid with all the dissolved solids is called the thin slop and part of this thin slop is used for dilution of the glucose media in the fermentation. The rest of the thin slop will be taken to the evaporation section for concentration.

#### (vii) Multi Effect Evaporation


This section consist of Falling film evaporators and forced flow evaporators with the aim of concentrating the thin slop to the thick syrup with the solids contents of 30% w/w. In order to economize on the energy consumption, part of the evaporation section, consisting of falling film evaporators will be integrated with the distillation section. This integrated evaporator section will used the energy available in the mash column vapours to partly concentrate the thin slop. The rest of the concentration to30% w/w will be done in the independent evaporator section.

#### Ethanol production

Absolute alcohol will be produced by dehydration of Rectified Spirit. The process which will be implemented is based on Pressure Swing Adsorption (PSA) system using Molecular Sieves. After preheating by waste hot streams, RS is vaporized and superheated by using medium pressure steam at 6 Kg/cm2g pressure. Hot vapors at 6 kg/cm<sup>2</sup>g pressure and 130°C temperature will pass through PSA column, where the water vapors are retained while water free alcohol is released as vapors. The alcohol vapors are condensed and collected as absolute alcohol. After saturation of molecular sieve bed, the alcohol vapors are shifted to the other tower and the first tower is taken for regeneration. Regeneration will be done by releasing pressure followed by creation of vacuum and then by elutriating with dehydrated alcohol vapors from the tower in dehydration operation. The obtained vapors will be condensed and the vent vapors will be recovered through scrubber. Vacuum can be created. After cooling of Product, it will be transferred to absolute alcohol receiving tank and then to storage tank.

#### **Molecular Sieve Technology**

Molecular sieve technology works on the principle of pressure swing adsorption. Here water is removed by adsorbing on surface of 'Molecular sieve' and then cyclically removing it under different conditions (Steaming).



#### **Benefits of Molecular Sieve Technology**

- The process ensures high process yield and negligible losses as 99.5 to 99.75% of the ethanol in feed are recovered in the product.
- High Energy efficient process.
- > The plant is automated, which virtually eliminates the human error.
- > The plant can suitably be operated to 60-65 % turndown.

#### (viii) DWGS Dryer

Wet distiller's grains shall be fed into the dryer housing at controlled rate through a suitable feeding system. The Rotary Bundle will be enclosed in an insulated dryer housing and on its outer flights will be fixed. Dry, saturated steam will be supplied to the bundle through rotary joint at one end & the condensate will be discharged through rotary joint mounted of another end. During the course of rotation, these flights pick up the material and shower them on to the tube bundles. The heat transfer will be primarily by conduction. The water vapours will be exhausted through an Exhaust Blower & passed through a cyclone separator for separating fines. Dry product partially recycled back to feed conditioner for feed conditioning through local indication cum Control panel. The finished product will be with a moisture content of 10%. This finished product with 90% w/w solid sand 10% moisture is called as the Distillers Dried Grain with Soluble (DDGS). Theoretically the Distillers Dried Grain is the wet cake separated in the decanter and then dried in the drier. As this is mixed with the dried soluble matter in the thin slop the mixture is called as the DDGS. As seen elsewhere, this is rich is protein and is used as animal feed.

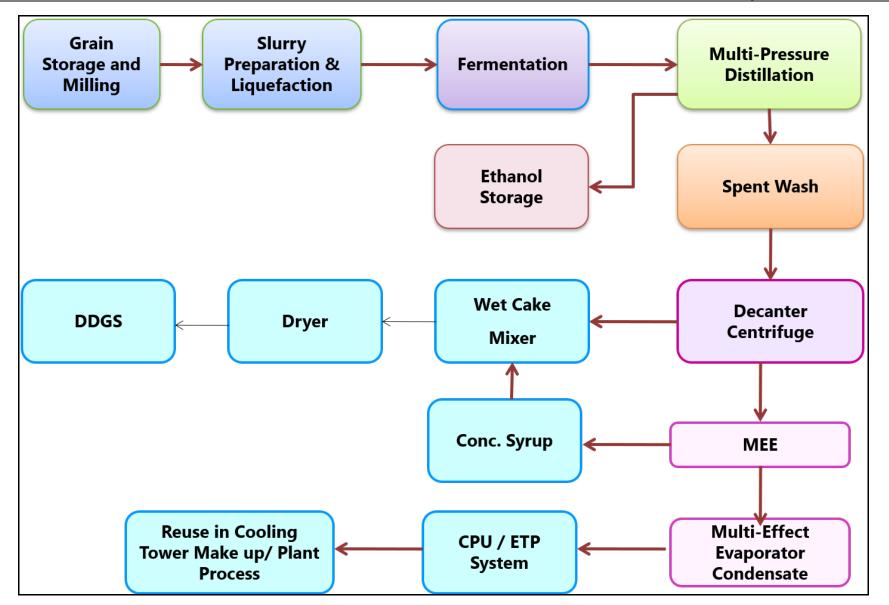
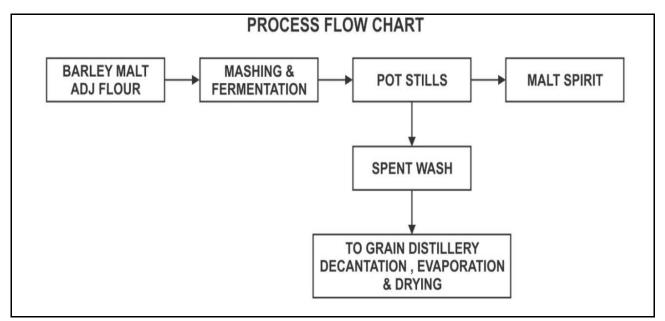



Figure 2.7: Process flow diagram of Grain based Distillery

#### C. MALT SPIRIT PLANT (10 KLPD)


**Malt handling**- Malt is usually stored in silos before being milled and mashed. It has a low moisture content of between 3% and 5%. The main processes in malt handling are Intake, storage, conveying, removing unwanted materials & stones, weighing.

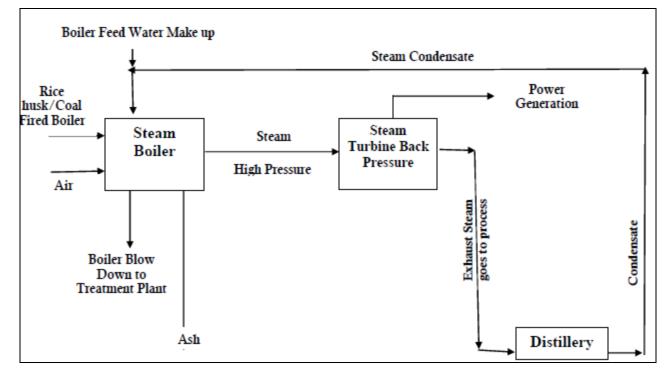
**Milling** - The objective of milling is to reduce the malt to particle sizes, which will yield the most economic extract (wort) and will operate satisfactorily under plant conditions. The more extensive the malt is milled, the greater the extract production.

**Mashing-** Mashing is the process of combining a mix of milled grain (typically malted barley with supplementary grains such as corn, sorghum, rye or wheat), known as the "grain bill" and water, known as "liquor", and heating this mixture. Mashing allows the enzymes in the malt to break down the starch in the grain into sugars, typically maltose to create malty liquid called wort. **Fermentation-** Fermentation is an essential stage in the brewing process. It involves adding yeasts to the cooled malt. These yeasts are fed by the amino acids in the brew and produce alcohol from the sugar that is present. These natural reactions also produce carbon dioxide.

**Pot Distillation** - Malt Whisky is distilled twice - although a few distilleries may undertake a third distillation - in Pot Stills which resemble huge copper kettles. The spirit is driven off from the fermented liquid as a vapor and is then condensed back to a liquid. In the first distillation the fermented liquid, or wash, is put into the Wash Still which is heated by steam -heated coils. At this stage the wash contains yeast, crude alcohol, some un-fermentable matter and the by - products of fermentation. During the process of boiling the wash, changes take place in its constituents which are vital to the flavour and character of the whisky. As the wash boils, vapours pass up the neck of the still and then pass through a water -cooled condenser or a worm, a coiled copper pipe of decreasing diameter enclosed in a water jacket through which cold water circulates. This condenses the vapours and the resulting distillate, known as low wines, is collected for re- distilling. The liquor or slops remaining in the Wash Still is known as pot ale or burnt ale and is passed through decanters. The thin slop is taken to MEE and the mixture of wet cake and syrup from MEE is dried in DWGS dryers to get animal feed supplement which is widely sold as cattle feed.

Chapter-II of Draft EIA / EMP Report




#### Figure 2.8: Process flow diagram of Malt Spirit production

### D. POWER GENERATION (6.25 MW)

Proposed 6.25 MW Co-generation Power Plant consists of a high-pressure water tube steam boiler (60 TPH) extraction cum condensing steam turbine. Fuel in the steam boiler will be burnt with the help of air in the boiler furnace. Water will be circulated in the boiler drum and tubes thus getting heated by the flame burning in the boiler furnace. Water comes out of the boiler drum located at the top of the boiler as steam. Flue gases rise in the boiler furnace and come in contact with the steam coming out of boiler drum. Steam after coming in contact with flue gases gets heated up further thus getting superheated. Super-heated steam leaves the boiler in a pipe. Flue gases after super heating the steam pass through economizer where they pre-heat the boiler feed water before it enters the boiler drum. After economizer, flue gases pass through air pre-heaters where they heat the air which is fed to the boiler furnace for burning the fuel. After air pre heaters flue gases pass through an ESP where the dust particles are collected on charged electrodes. The dust is collected from the bottom of the ESP.

High pressure superheated steam from boiler is passed through a steam turbine of 6.25 MW, which is used for plant process operations. While passing through the turbine, the high pressure and temperature steam rotates the turbine rotor and an electric alternator mounted on the same shaft. Electric power is generated by the alternator. This electric power generated is consumed in house i.e. for running the distillery and utilities like boilers auxiliaries etc.

Chapter-II of Draft EIA / EMP Report



## Figure 2.9: Process Flow Chart for proposed Co-generation Power Plant

### E) DISTILLERY EFFLUENT TREATMENT - CONDENSATE POLISHING UNIT

| Quantity of Effluent generation from process                                                                           | Capacity of proposed<br>ETP/CPU |
|------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| 976 KLPD                                                                                                               | 1200 KLPD                       |
| (Process Condensate – 830 KLPD, 20 KLPD CT Blow down, 100 KLPD DM plant<br>reject, washing & 26 KLPD Boiler Blow down) |                                 |
| Others recycling stream directly use in plant activities.                                                              |                                 |

### Treatment process description of treatment plant

The process condensate treatment plant will be based on the process of Reverse Osmosis technology. The system will comprise of following unit process & equipment.

- Equalization tank & Neutralization tank
- Anaerobic digestor
- Aerobic digestor
- Tertiary treatment like carbon and sand filter
- Filtration section
- Pressure sand filter
- Dual media filter
- UF/RO system
- RO CIP system

- 1. Equalization Tank: Equalization tank of adequate retention time is provided for flow and characteristics equalization. BRIO Submersible mixer shall be provided for mixing the equalization tank content. The equalized effluent is now pumped to the UASB Reactor for further treatment. Highly Power Efficient, Submersible BRIO Mixer is provided for mixing the tank content.
- 2. Neutralization Tank: The condensate from Equalization tank shall be pumped to Neutralization tank for increasing the pH. The neutralization tank shall be provided with an agitator to mix the lime solution in the condensate. Lime / Caustic shall be added to the condensate for the neutralization purpose.
- 3. Anaerobic digestor- Reduction of COD and BOD concentration in effluent up to 80% of initial value will be achieved through this process.
- 4. Aerobic digestor- Balance COD an 800 reduction up to 95%+ will be achieved in this process.
- 5. Carbon and Sand Filters- These filters will remove suspended solids resulting is decreased turbidity of the wastewater.
- 6. Pressure Sand Filter (PSF): The filter is provided as primary filtering unit. Biologically treated effluent shall be filtered by PSF to remove suspended matters & turbidity present in the effluent.
- 7. Filtered Water Sump: The filtered water shall be received in filtered water sump constructed in RCC. The Effluent from this sump shall further be pumped to the successive treatment units.
- 8. Ultraviolet process- A stream from above process will be passed through UV to remove bacterial contamination and wooded v be fed to fermenter as a process water.
- RO system- The second balance stream from carbon and sand filter will be treated through RO system. The RO skid will be two stage system comprising of two pressure vessels containing six elements each configured in series.

| S.<br>No. | Characteristic | Characterization at outlet of biological treatment System | Characterization outlet<br>of Softener |
|-----------|----------------|-----------------------------------------------------------|----------------------------------------|
| 1.        | pН             | 7 to 8                                                    | 7 to 8                                 |
| 2.        | COD            | <250 mg/l <100 mg/l                                       |                                        |
| 3.        | BOD            | <30 mg/l <10 mg/l                                         |                                        |
| 4.        | TSS            | <30 mg/l NIL                                              |                                        |

#### Characteristics at outlet of biological treatment system & softener

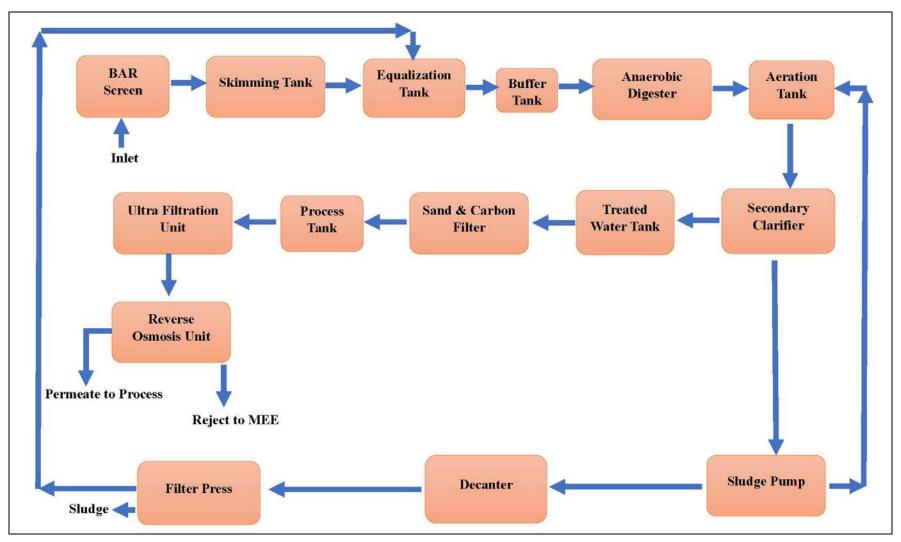



Figure 8: Flow diagram for Condensate Polishing Unit (CPU)

#### 2.6.1 Major equipment and machineries

Details regarding major plant equipment & machineries are given in the table below:

| S. No.                 | Description                     | S. No.     | Description             |  |  |
|------------------------|---------------------------------|------------|-------------------------|--|--|
| Grain based distillery |                                 |            |                         |  |  |
| 1                      | Grain Crushing Mill             | 8          | Distillation plant      |  |  |
| 2                      | Liquefaction Tank Agitator (I)  | 9          | Decanters               |  |  |
| 3                      | Slurry tank Agitator            | 10         | Multi effect evaporator |  |  |
| 4                      | Liquefaction Tank Agitator (II) | 11         | DDGS Rotary Dryer       |  |  |
| 5                      | Fermenters                      | 12         | Co2 Plant               |  |  |
| 6                      | Bear- well Agitator             | 13         | CPU/RO system           |  |  |
|                        | Co-gene                         | eration po | wer plant               |  |  |
| 1                      | Boiler                          | 9          | DCS                     |  |  |
| 2                      | TG Set                          | 10         | Electrical HT & LT      |  |  |
| 3                      | ESP                             | 11         | Air Compressor          |  |  |
| 4                      | ID Fan                          | 12         | Fuel Handling           |  |  |
| 5                      | FD Fan                          | 13         | Ash Handling            |  |  |
| 6                      | SA Fan                          | 14         | Fire Fighting System    |  |  |
| 7                      | Transformer                     | 15         | Stack                   |  |  |

#### 2.7 DESCRIPTION OF MITIGATION MEASURES

The company will implement mitigation measures for different environmental components (air, water, noise, solid & hazardous waste, greenbelt & odour) in order to meet environmental standards. This section will describe in detail the mitigation measures that the company will follow in order to remain within prescribed limits of standards.

#### 2.7.1 Air Management

- For proposed 60 TPH boiler, ESP as Air pollution control equipment will be installed with stack height of 60 m to control the particulate and gaseous emissions in accordance with CPCB guidelines.
- CO<sub>2</sub> generated (154 TPD) during the fermentation process will be collected and sold to authorized vendors.
- DG Set (1 x 1500 KVA) will be provided with adequate stack height as per CPCB Guidelines.
- Adequate measures for control of fugitive dust emissions will be taken.
- All the internal roads will be asphalted and regular sweeping & sprinkling of water in dust generating areas.
- Greenbelt development around the periphery & within the premises of the plant will help in attenuating the pollutants emitted and maintaining air quality.

- Online Continuous Emission Monitoring System will be installed with the proposed stack and data will be transmitted to CPCB/SPCB servers.
- Regular monitoring will be done to ensure ambient air quality standards.

#### 2.7.2 Water Management

- > The Grain based distillery will be based on "Zero Effluent Discharge".
- For Grain based operation: Grain Slops (1163 TPD) will be taken through Centrifuge Decanters for separation of Suspended Solids separated as Wet Cake and which goes as cattle, poultry and fish feed as it contains high protein. (Also known as DWG Distillers Wet Grains). Thin Slops from the Decanter Centrifuge will be partly recycled back to process and balance portions shall be taken to Thins Slops Evaporation Plant for concentration of remaining solids to form Syrup. This Syrup will be also mixed into the Wet Cake coming out of Centrifuge and forms part of Cattle, poultry and fish Feed. DWGS Drier: The Wet Cake (DWGS) and Syrup mixture will be dried in Steam Tube Bundle Dryer for producing DDGS with 8-10% moisture (max.). DDGS (88 TPD) will be utilized as Cattle, poultry and fish feed ingredients.
- During Malt Spirit Process: Malt Spirit Slops will be passed through centrifuge decanters for separation of suspended solids separated as Wet Cake (also known as DWG – Distillers Wet Grains).
- Process condensate, boiler Blowdown, DM plant reject & washing, CT blowdown will be treated in CPU/ETP of capacity 1200 KLPD and treated water will be reused in process activities.
- > Domestic waste water will be treated in Sewage Treatment Plant of Capacity 30 KLPD.
- > Regular monitoring of ground water quality will be carried out.

#### 2.7.3 Noise management

- Personal Protective Equipment like earplugs and earmuffs will be provided to the workers exposed to high noise level.
- Proper maintenance, oiling and greasing of machines at regular intervals will be done to reduce generation of noise.
- Greenbelt inside the plant premises and at the plant boundary will be developed & maintained.
- Regular monitoring of noise level will be carried out in and around plant premises to find out any high noise level zones and measures will be implemented accordingly.
- Regular auditing of process area to find out any loosened nuts/bolts/joints to avoid unnecessary noise.

#### 2.7.4 Solid and hazardous waste management

- Solid waste from the Grain based distillery operations generally comprises of fibers and proteins in the form of DDGS (88TPD), which will be ideally used as Cattle, poultry and fish feed ingredients.
- Boiler ash (116 TPD) generated during coal-based operations will be given to cement/brick manufactures & during biomass (62 TPD) based operations will be given to brick manufacturers in covered vehicles.
- Spent resin from DM plant (500 kg/annum) will be supplied to authorized recyclers.
- Used oil & grease (0.5 KL/annum) generated from plant machinery/gear boxes as hazardous waste will be given to the CPCB authorized recyclers or used as in-house lubricant.

#### 2.7.5 Greenbelt Development & Plantation

- Out of the total Plant area of 9.0 ha (22.24 acres), 33% of project area will be developed under greenbelt & plantation i.e., 2.97 ha (7.34 acres).
- > Native/Indigenous wild plant species will be planted in consultation with local DFO.
- > Greenbelt will be developed as per Central Pollution Control Board (CPCB) guidelines.
- Greenbelt & plantation development will begin simultaneously with the initiation of construction activities of the proposed unit.

#### 2.7.6 Odour Management

- > Boiler will be installed which is based on an eco-friendly and odourless technology.
- Adequate greenbelt all around the periphery of the plant and in odour prone areas will be developed. Species like *Azadirachta indica* (Neem), *Millingtonia hortensis* (Indian cork tree), *Pongamia pinnata* (karanj) will be given preference to minimise odour in every possible way.
- Efficient CO2 collection to avoid carryover of alcohol vapours & other fumes.
- > Regular steaming of all fermentation equipment.
- Longer storages of any product/by-products will be avoided & use of efficient biocides to control bacterial contamination.
- Regular use of eco-friendly disinfectants in the drains to avoid generation of putrefying micro-organisms.

### 2.8 ASSESSMENT OF NEW & UNTESTED TECHNOLOGY FOR THE RISK OF TECHNOLOGICAL FAILURE

For this proposed project, the company will be using Grains such as damaged grain feed stock, broken rice, maize, bajra & sorghum will be used as raw material and Biomass/rice husk or low sulphur coal as a fuel and only proven technologies will be selected. No new or untested technology will be used. The Process will be based on proven technologies for Grain based distillery and Malt spirit plant operation, generated spent wash will be passed in grain based operation i.e. Multi Pressure distillation with Integrated Evaporation followed by DDGS dryer.

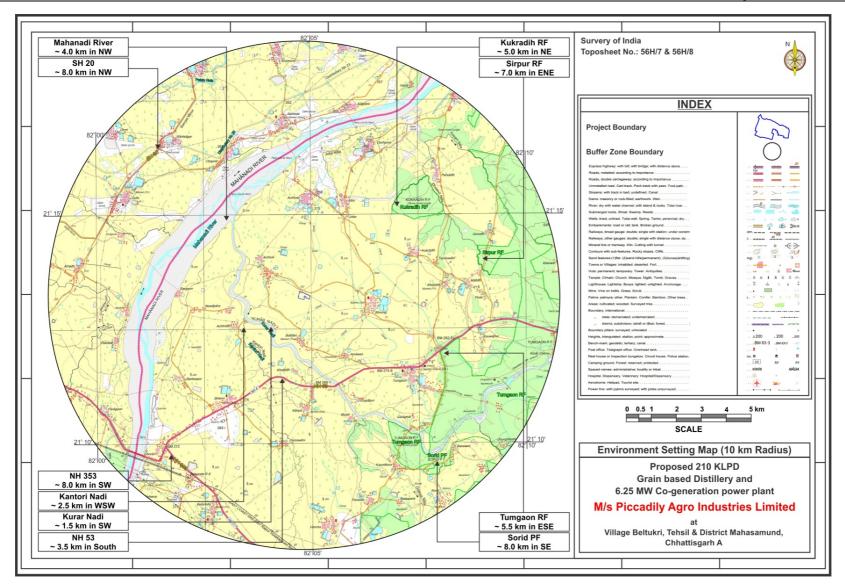
## CHAPTER-III DESCRIPTION OF THE ENVIRONMENT

#### 3.1 INTRODUCTION

To predict and evaluate the impacts of proposed project on the surrounding area, it is vital to assess the baseline status of the environmental quality in the vicinity of the project site. An exhaustive attempt has been made in the current chapter to disclose all possible base line status of environmental quality in the vicinity of the plant, which further serves as the basis for identifying, prediction and evaluation of impacts. To assess the baseline environmental quality of the area, field assessment has been conducted considering following components of the environment, viz. land, air, meteorology, noise, water, soil, biological and socio-economic. The baseline monitoring has been conducted during the summer season (March to May, 2023) in the study area covering an area of 10 km radius from the project site.

#### 3.2 STUDY AREA, PERIOD, COMPONENTS AND METHODOLOGY

#### 3.2.1 Study Area


The study area considered is an area of 10 km radius (aerial distance) from the project site, also known as buffer zone. The area of project site is considered as core zone. The major environmental settings of the study area are as given in the table below-

| S. No. | Particulars                      | Details                                                                                                                                                             |  |  |
|--------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1.     | Nearest Town & City              | Mahasamund (~10.5 km in SSE direction)                                                                                                                              |  |  |
| 2.     | Nearest National Highway / State | • NH 53 (~3.5 km in South Direction)                                                                                                                                |  |  |
|        | Highway                          | • NH 353 (~8.0 km in SW direction)                                                                                                                                  |  |  |
|        |                                  | • SH 20 (~8.0 km in NW Direction)                                                                                                                                   |  |  |
| 3.     | Nearest Railway station          | Belsonda RS (~8.4 km in SW direction)                                                                                                                               |  |  |
| 4.     | Nearest Airport                  | Swami Vivekananda Airport, Raipur (~ 35.0 km in WSW                                                                                                                 |  |  |
|        |                                  | direction)                                                                                                                                                          |  |  |
| 5.     |                                  |                                                                                                                                                                     |  |  |
| 6.     | Water Body (within 10 km radius) | Kurar Nadi (1.5 km in SW direction), Kantori Nadi (2.5 km<br>in WSW direction), Mahanadi river (4 km in NW direction)<br>Some nalas are present within 10 km radius |  |  |
| 7.     | Seismic Zone                     | The project site falls in Seismic Zone – II Low damage risk zone [based on the Vulnerability Atlas of India – 3 <sup>rd</sup> Edition, BMTPC]                       |  |  |

| Table 3.1                                |
|------------------------------------------|
| Environmental settings of the study area |

Source: Toposheet, site visit & Pre-feasibility report

The environmental settings are shown below on toposheet of study area of 10 km radius and site location on scale of 1:50000:



Source: SOI Toposheet

Figure 3.1: Environmental settings of 10 km radius study area

M/s PiccadilyAgro Industries Ltd.

#### **3.2.2** Period of baseline data collection and components of environment

The baseline data used in this report has been collected for Summer Season i.e. March to May, 2023in accordance with the guidelines for preparation of EIA studies. Sampling, preservation, transportation & storage of samples was carried out by J.M. EnviroLab Pvt. Ltd. under supervision of the concerned EC/FAE. Analysis of samples has been carried out by JM EnviroLab Pvt. Ltd. The sampling period for various environmental components is given below.

|         | Frequency and location of primary data collection of various environmental components         |
|---------|-----------------------------------------------------------------------------------------------|
| S. No.  | Description                                                                                   |
| 1.      | Meteorology                                                                                   |
|         | Meteorological parameters on hourly basis at project site based on ToR requirement.           |
|         | Parameters: Relative humidity, Temperature, Wind direction, Wind Speed.                       |
| 2.      | Air                                                                                           |
|         | Ambient air quality monitoring (24 hourly), twice a week.                                     |
|         | Parameters: PM10, PM2.5, SO2, NOx, CO.                                                        |
|         | No. of Locations: 8 locations in core and buffer zone based on ToR requirement.               |
| 3.      | Noise                                                                                         |
|         | Noise level monitoring (day and night time), once in a season.                                |
|         | No. of Locations: 8 locations in core and buffer zone based on ToR requirement.               |
| 4.      | Water                                                                                         |
|         | Surface water sampling, once in a season.                                                     |
|         | No. of Location: Samples were collected from 3 locations, remaining locations were found dry. |
|         | Ground water sampling, once in a season.                                                      |
|         | No. of Locations: 8 locations in core and buffer zone.                                        |
|         | Tested for physical and chemical parameters based on ToR requirement.                         |
| 5.      | Soil                                                                                          |
|         | Soil sampling, once in a season.                                                              |
|         | No. of Locations:8 locations in core and buffer zone based on ToR requirement.                |
| 6.      | Biological Environment                                                                        |
|         | Biodiversity survey, once in a season.                                                        |
|         | Location: Project site (Corezone) and study area (BufferZone) based on ToR requirement.       |
| 7.      | Socio-economic Environment                                                                    |
|         | Socio-economic survey, once in a season.                                                      |
|         | Location: Study area (BufferZone) based on ToR requirement.                                   |
| Source. | Terms of Reference                                                                            |

## Table - 3.2 ancy and location of primary data collection of various environmental com

#### 3.2.3 Methodology

#### Instruments Used for Environmental Baseline Data Collection

Following instruments were used at the site for environmental baseline data collection work.

- 1. Respirable Dust Sampler with attachment for gaseous pollutants, Envirotech APM 460
- 2. Fine Particulate Matter (FPM) Sampler APM 550
- 3. Sound Level Meter Model Envirotech SLM 100
- 4. Digital D.O. Meter Model 831 E (CPCB Kit)
- 5. Weather Monitoring Station Model Enviro WM 271
- 6. Global Positioning System (GPS)

Apart from collecting samples of air, water, noise and soil from respective sampling points given in proceeding sections, the data on land use, vegetation and agricultural crops were also collected by the field team through interaction with a large number of local inhabitants of the study area and different Government departments / agencies like Revenue Department, Tehsil office, District headquarter, the Department of Forest & Wildlife Preservation etc. The methodology used for various environmental components is given below:

|     | Standardized methods adopted for baseline data establishment |                                                                                    |                                                                                                                     |                                                    |  |  |  |
|-----|--------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--|--|--|
| S.  | Environmental                                                | Pri                                                                                | mary data                                                                                                           | Secondary data                                     |  |  |  |
| No. | Component                                                    | Parameters                                                                         | Methodology                                                                                                         |                                                    |  |  |  |
| 1.  | Land                                                         | Land use and land cover                                                            | Ground Truthing                                                                                                     | Satellite image from NRSC, Hyderabad               |  |  |  |
| 2.  | Meteorology                                                  | Temperature, Relative<br>Humidity,Wind Speed,<br>Wind Direction                    | Weather monitoring station                                                                                          | IMD book<br>(ClimatologicalNormals<br>1981 - 2010) |  |  |  |
| 3.  | Air                                                          | PM <sub>10</sub> , PM <sub>2.5</sub> , SO <sub>2</sub> , NO <sub>x</sub><br>and CO | Sampling:CPCBGuidelines/NAAQS/IS5182 and Instrument ManualAnalysis:CPCBGuidelines /IS5182                           | -                                                  |  |  |  |
| 4.  | Noise                                                        | Equivalent noise<br>levels in dB (A)                                               | Sampling: IS 9989Analysis:CPCBGuidelines/IS 9989                                                                    |                                                    |  |  |  |
| 5.  | Surface Water                                                | Parameters as per IS                                                               | Sampling:CPCB Guideline                                                                                             |                                                    |  |  |  |
| 6.  | Ground Water                                                 | 10500 - 2012                                                                       | &APHA 22nd edition 2012<br><i>Analysis done by</i> IS 10500-<br>2012/ IS 3025/APHA 22 <sup>nd</sup><br>edition 2012 |                                                    |  |  |  |

Table 3.3Standardized methods adopted for baseline data establishment

**Proposed 210 KLPD Grain based Distillery along with 6.25 MW Co-generation Power Plant** At Village Beltukri, Tehsil & District Mahasamund, Chhattisgarh

Chapter - III of Draft EIA / EMP Report

| S.  | Environmental                       | Pri                       | Secondary data                                                                        |                     |
|-----|-------------------------------------|---------------------------|---------------------------------------------------------------------------------------|---------------------|
| No. | o. Component Parameters Methodology |                           | Methodology                                                                           |                     |
| 7.  | Soil                                |                           | Sampling: USDA<br>Analysis: As per IS<br>2720/USDA                                    | -                   |
| 8.  | Biological<br>Environment           | Flora and fauna           | Quadrate method/ random sampling                                                      | Forest working plan |
| 9.  | Socio- Economic<br>Environment      | Socio- Economic<br>status | Household survey through<br>questionnaire, group<br>discussion and random<br>sampling | Census data, 2011   |

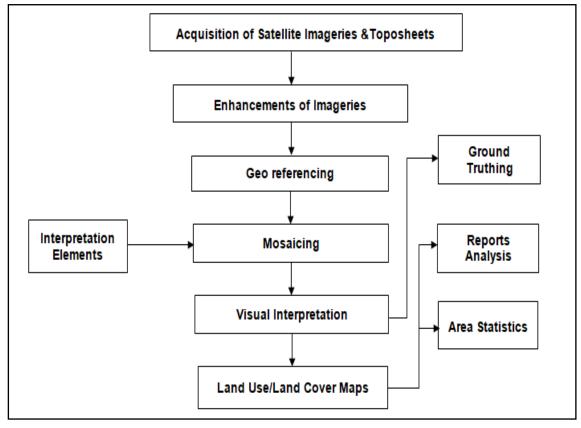
Source: JMEPL lab manual

### 3.3 ESTABLISHMENT OF BASELINE WITH BASE MAPS OF ALL VALUED ENVIRONMENTAL COMPONENTS

#### 3.3.1 Details of LU/LC of Study area

Data of Indian Remote Sensing Satellite Multi Spectral Satellite Image has been used for preparation of Land use/ Land cover thematic map of study area.

#### **Technical details of Data**


- Satellite Image RESOURCESAT-2 (L3FMX)
- Software Used Earth Resources Data Analysis System (ERDAS) Imagine 9.2
- SOI Toposheets No. 56H/7, 56H/8
- Satellite Data Source NRSC, Hyderabad

A hybrid technique has been used i.e., visual interpretation and digital image processing to generate output for land use/land cover map of 10 km radius of the study area on 1:50000 scale. Statistical data observed and results obtained from satellite image are given below:

#### <u>Methodology</u>

The land use/land cover map is prepared by adopting the interpretation techniques of the Satellite image in combination with collateral data such as Survey of India topographical maps. Image classification is done by using visual interpretation techniques and digital classification using any of the image processing software. The various activities for preparation of LULC include pre processing, rectification, image enhancements and classifying the satellite data for assessing the change in land use land cover due to proposed developmental activities.

The imagery is interpreted and ground checked for corrections. The final map is prepared after ground truthing. The different land use/land cover categories in the study area have been carried out based on the NRSC land use/land cover classification system.



#### Description of Land Use Pattern of the Study area

Ten classes of land use/ land cover of study site were classified shown in the table 3.4. Majority (69.56 %) of the study area falls under agricultural land followed by surface water bodies (9.37%), Forest (8.36%), Vegetation/Plantation (3.76%), Settlement (3.38%), Open Scrub/ Waste Land (2.57%), Road (1.89%), Stone Quarry (0.64%), Industries (0.39%), Railway Line (0.08%).

| Details of LU/LC of Study area |                        |              |        |  |  |
|--------------------------------|------------------------|--------------|--------|--|--|
| S. No.                         | Legend                 | Area (in Ha) | % Area |  |  |
| 1.                             | Agricultural Land      | 22796.29     | 69.56  |  |  |
| 2.                             | Surface Water Bodies   | 3072.26      | 9.37   |  |  |
| 3.                             | Forest                 | 2740.95      | 8.36   |  |  |
| 4.                             | Vegetation/ Plantation | 1232.96      | 3.76   |  |  |
| 5.                             | Settlement             | 1104.67      | 3.38   |  |  |
| 6.                             | Open Scrub/ Waste Land | 840.47       | 2.57   |  |  |
| 7.                             | Road                   | 620.24       | 1.89   |  |  |
| 8.                             | Stone Quarry           | 210.88       | 0.64   |  |  |
| 9.                             | Industries             | 126.45       | 0.39   |  |  |
| 10.                            | Railway Line           | 26.75        | 0.08   |  |  |
|                                | Total                  | 32771.92     | 100.0  |  |  |

Table - 3.4Details of LU/LC of Study area

Source: LU/LC Map for Buffer Zone

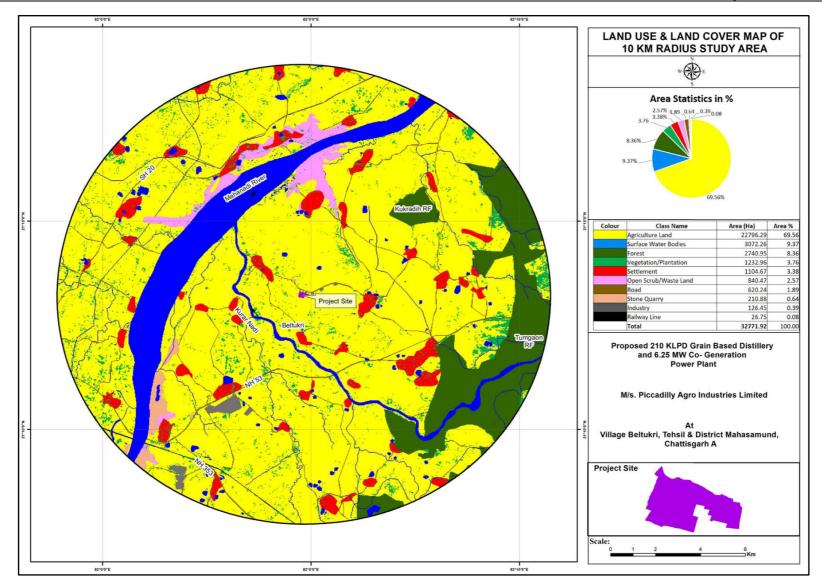
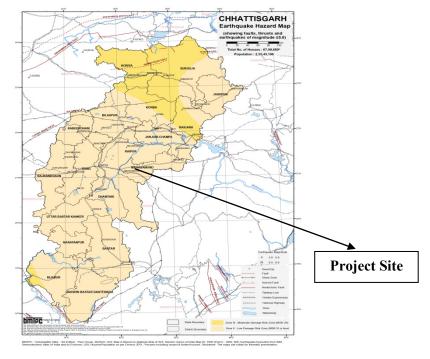



Figure - 3.2: Land Use / Land Cover Map of the Buffer Zone



#### 3.3.2 Seismicity and Flood Hazard Zonation of the Area

#### 3.3.2.1 Seismicity of the Area

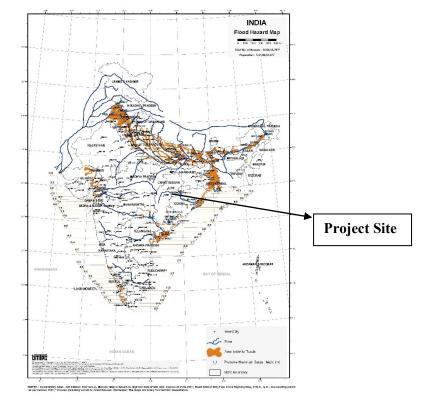

Bureau of Indian Standards [IS-1893 (Part-1): 2002], has grouped the country into four seismic zones viz. Zone-II, III, IV and V. Modified Mercalli (MM) intensity scale measures the impact of the earthquakes on the surface of the earth and is broadly associated with various zones as follows:

| S. No. | Seismic Zone | Risk                |
|--------|--------------|---------------------|
| 1.     | Zone - V     | Very High Risk Zone |
| 2.     | Zone - IV    | High Risk Zone      |
| 3.     | Zone - III   | Moderate Risk Zone  |
| 4.     | Zone - II    | Low Risk Zone       |

Table - 3.5 Seismic Zones in India

*Source*: *Ministry of Earth Science, GOI* 

Chhattisgarh falls in the seismic zoneIII, & II and therefore, the region is vulnerable to earthquakes. Although, in recent past, no major earthquakes have occurred in Chhattisgarh, yet tremors have been felt whenever there is an earthquake in the Himalayan foot-hills. The project site as well as study area lies in **Zone- II** of Seismic Zoning Map of India, updated by India Metrological Department (IMD) and National Institute of Disaster Management (NIDM), and thus can be said to be located in an area of Lowseismic hazard by national standards. Seismic Zoning Map of India and the state showing the project site is given in figure below.




Source: BMTPC

Figure 3.3: Seismic zones of Uttar Pradesh

#### **3.3.2.2** Flood hazard zonation of the area

As per the India Flood Hazard Map, BMPTC, MoHUAthe project site does not fall under "area liable to flood". Flood Hazard Zonation Map showing the project site is given in Figure below.



[Source: Vulnerability Atlas 3<sup>rd</sup> Edition; Peer Group, MoHUA]

#### Figure - 3.4: Flood Hazard Zonation Map

#### Interpretation of drainage and flood scenario of the study area

The map above shows that the entire Mahasamund district does not fall in flood prone zone. According to the District Disaster Management Plan, Mahasamund (Chhattisgarh) some areas of the district are susceptible to flood due to vicinity of Mahanadi River. However, the project site does not fall in the flood prone areas.

Mahanadi and Jonk are the prime rivers of district. The western boundary of the district running along the Mahanadi. The Jonk rivers passes through the central part of the district and is running in northern direction. the Kurar nala, Nami nala, Keswa nala and Sukha nadi forms part of the drainage system for Mahanadi River basin. The Machka nala, Bagh nala, Racme nala, Lath nala forms part of the Jonk River basin.

[Source: District Disaster Management Plan (DDMP-Mahasamund, Revenue & Disaster Management Department, Mahanadi Bhawan, Mantralaya, Atal Nagar, Raipur, Chhattisgarh, Government of Chhattisgarh.]

#### Drainage Pattern of Study Area:

The drainage map witnesses Kurar Nadi (~1.5 km in SW direction), Kantori Nadi (2.5 km in WSW direction),,Mahanadi river (~4 km in NW direction), Joba Nala (~2.5km in NE direction), Dhaskut Nala (~7.2 km in NE direction), Sati Nala (~7.5 km in West direction), Gopiya Nala (~ 8.7 km in SE direction), Kosam Nala (~9 km in NE direction), Patalu Nala (~9.3 km in NNW direction). Many drains & distributaries are present within 10 km radius from project site. Kurar Nadi is the nearest water body from the project site that flows towards west direction and form the part of drainage system for Mahanadi basin. The drainage system cn be classified as dendritic to sub-dendritic in pattern in the study area, which indicates that river follows the natural gradient of the terrain. Significant number of ponds are also present in the study area. Gentle slope is found towards north direction. The drainage characteristics of the area are shown in the map below.

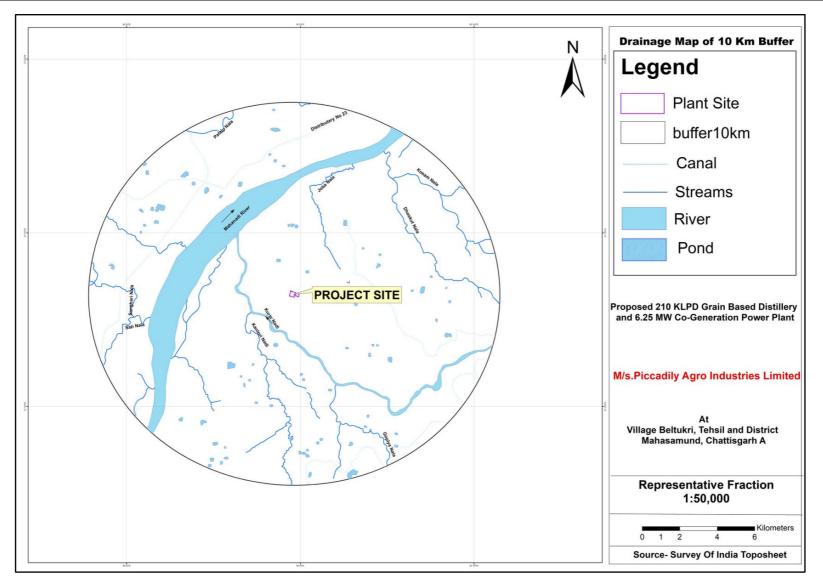
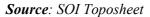




Figure 3.5: Drainage map of the study area



#### 3.3.3 Geological and hydro-geological features Geology of the area:

Mahasamund district is mainly underlain by hard rock belonging to Precambrian age, part from these alluvium and laterite of Quaternary age occur in very isolated pocket with and limited extension. Hard rock mainly include granites and its variants, metasediments, ultramafites, rhyolite etc and also sandstone-shale- limestone / dolomite sequence belonging to Proterozoic Purana rocks of Chhattisgarh super group. The country rocks are intruded by basic and acid intrusive like dolerite dykes and sills and quartz and pegmatite veins. Major part of the district is occupied by granitic rocks belonging to Dongargarh group followed by Purana rocks of Chhattisgarh Supergroup which mainly consists of sandstone, shale, limestone / dolomite sequence. The rock of Chhattisgarh supergroup mainly occupies the eastern and western part of the district. The Chhattisgarh supergroup consists three-group i.e. oldest Singhora group, followed by Chandrapur group and youngest Raipur group. The Singhora group is occur in eastern part of the district, Raipur group occupies western part of the district, while Chandrapur group occur both in eastern and western part, with predominant occurrence in western part. The predominant occurrence of limestone in western part in Raipur group of rocks. The rocks of Bangpal group is occur in central part and rocks of Sonakhan group occur mainly in North eastern part. The Bangpal group of rocks includes high-grade gneiss and schistose rocks and granite etc and Sonakhan group includes metasediments, ultramafics, Rhyolite, Amphibolites etc. The laterite occurs as capping over the country rock in pockets particularly in elevated area in limited thickness. The recent alluvium with limited thickness and extension occur along the major river and stream channels.

[Source:https://cgwb.gov.in/District\_Profile/Chhatisgarh/Mahasamund.pdf

[Source: Ground Water Brochure of Mahasamund District, Chhattisgarh 2012-13, Government of India Ministry of Water Resources Central Ground Water Board.]

#### Depth to water level (mbgl)

Pre Monsoon level (2011): 2.12 to 11.74 mbgl

Post monsoon level (2011): 1.08 to 9.18 mbgl

[Source: Ground Water Brochure of Mahasamund District, Chhattisgarh 2012-13, Government of India Ministry of Water Resources Central Ground Water Board.]

#### 3.3.4 Climate and Rainfall

The district receives rainfall mainly from south-west monsoon. The months of July and August are the heaviest rainfall months and nearly 95% of the annual rainfall is received during June to September months. The average annual rainfall for the district is 1131 mm. The annual temperature varies from 10°C in winter to 40°C in summer. The relative humidity varies from 75% in rainy season to 30-40% during winter.

[Source: Ground Water Brochure of Mahasamund District, Chhattisgarh 2012-13, Government of India Ministry of Water Resources Central Ground Water Board.]

| S.No   | Year                    | Rainfall (mm) |
|--------|-------------------------|---------------|
| 1.     | 2013                    | 1345          |
| 2.     | 2014                    | 1762.01       |
| 3.     | 2015                    | 1069.26       |
| 4.     | 2016                    | 980.69        |
| 5.     | 2017                    | 928.37        |
| 6.     | 2018                    | 1213.67       |
| 7.     | 2019                    | 1383.53       |
| 8.     | 2020                    | 1452.12       |
| 9.     | 2021                    | 1059.01       |
| 10.    | 2022                    | 1198.42       |
| Averag | ge Rainfall in 10 years | 1239.21       |

#### Rainfall data for last 10 years

[Source: https://indiawris.gov.in/wris/#/]

#### 3.4 METEOROLOGY

Meteorological characteristics of an area play significant role in assessing anticipated environmental impacts and in preparing environmental management plan. As meteorological factors show wide fluctuations with time, meaningful interpretation can be drawn only from long-term reliable data. Such source of data is India Meteorological Department (IMD), which maintains a network of meteorological stations at several important locations. The nearest IMD station to the project site is located in Raipur (~43.5 km in West direction).

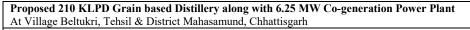
Based on the previous IMD data [Climatological Normals (1981-2010)], the pre-dominant wind direction (seasonal as well as annual) was taken into consideration. As per the data, pre-dominant wind direction throughout study period was observed from West, followed by South West, accordingly the locations for ambient air quality monitoring stations were selected.

Meteorological station was installed at site for recording hourly parameters i.e. relative humidity, temperature, wind direction, wind speed & cloud cover. Wind rose diagram was prepared with the data collected for study period i.e.Summer Season (March, 2023 to May 2023) which is given in Figure below. Summary of the micro-meteorology at site is given in table below. Detailed Hourly Meteorological Data has been enclosed as **Annexure 3** with this EIA / EMP Report.

| Month       | Temperature (°C) |       | 8     | umidity (%) | Wind Speed (m / sec.) |      |
|-------------|------------------|-------|-------|-------------|-----------------------|------|
|             | Min.             | Max.  | Min.  | Max.        | Min.                  | Max. |
| March ,2023 | 16.98            | 38.87 | 13.19 | 85.75       | 0.1                   | 4.95 |
| April ,2023 | 21.63            | 43.58 | 10.06 | 91.31       | 0.2                   | 4.91 |
| May,2023    | 21.99            | 44.42 | 8.56  | 91.69       | 0.14                  | 4.95 |

Table - 3.7 Micro-meteorology at site

Source: Meteorological Station at Site


#### a) Mixing height

Mixing Height (MH) is the vertical limit through which the contaminant plume can be mixed. Forecasting of mixing height is done with the aid of the vertical temperature profile. The MH is a function of stability. In unstable air the MH is higher and in stable air the MH is lower. With a lower MH, there is a smaller volume of air in which the pollutant can be dispersed, resulting in higher concentrations in the ambient environment. There is a seasonal variation of MH. During summer daylight hours, MH can be few thousand feet whereas for winter it can be a few hundred feet. It varies also in the course of a day. It is lowest at night and increases during the day. As site specific mixing heights were not available, mixing heights based on IMD publication, "Atlas of Hourly Mixing Height and Assimilative Capacity of Atmosphere in India", has been considered to establish the worst-case scenario. Secondary information has been used to determine the mixing height over the study region for the study period (March, 2023 to May, 2023) and it varies from80 to 2350meters (IMD).

| Time         Mixing height         Time         Mixing height |      |         |      |  |  |
|---------------------------------------------------------------|------|---------|------|--|--|
| (Hours)                                                       | (m)  | (Hours) | (m)  |  |  |
| 07:00                                                         | 80   | 14:00   | 2050 |  |  |
| 08:00                                                         | 275  | 15:00   | 2150 |  |  |
| 09:00                                                         | 440  | 16:00   | 2350 |  |  |
| 10:00                                                         | 740  | 17:00   | 1825 |  |  |
| 11:00                                                         | 1100 | 18:00   | 1800 |  |  |
| 12:00                                                         | 1750 | 19:00   | 1350 |  |  |
| 13:00                                                         | 2100 |         |      |  |  |

Table –3.8 Mixing Height for the project site Summerseason (March, 202 to May, 2023)

**Source:** IMD publication, "Atlas of Hourly Mixing Height and Assimilative Capacity of Atmosphere in India"



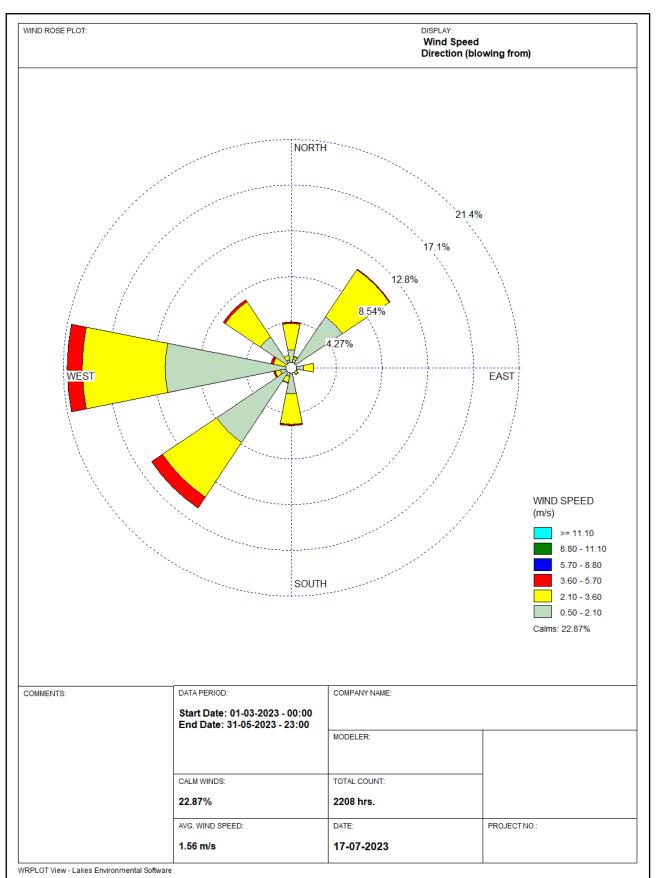



Figure - 3.6: Wind Rose Diagram

Source: IMD& Monitoring station

#### 3.5 AMBIENT AIR ENVIRONMENT

#### Monitoring schedule:

Ambient air quality monitoring is done to determine the general background concentration levels of air pollutants. For baseline study monitoring of air pollutants was conducted for three months (from 1<sup>st</sup>March, 2023 to 31<sup>st</sup>May, 2023). The frequency of samplingwas twice a week at each sampling site. 24-hour average samples for PM<sub>10</sub>, PM<sub>2.5</sub>, SO<sub>2</sub>, NO<sub>2</sub>, CO were collected from each sampling station.Standard methods were followed for analysis of collected samples which is shown in table 3.9.

| S.  | Parameters                                    | Test Method                                    | Range of                                                                             | Limit of                  | Equipment us                                          | ed for monitoring                                 |
|-----|-----------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------|-------------------------------------------------------|---------------------------------------------------|
| No. |                                               | Specification<br>against                       | testing                                                                              | detection                 | Equipment<br>required                                 | Equipment<br>required                             |
|     |                                               | which tests are<br>performed                   |                                                                                      |                           | for Sampling                                          | for Analysis                                      |
| 1.  | Sulphur<br>Dioxide<br>(SO <sub>2</sub> )      | IS: 5182, (P-2),<br>2001<br>Reaffirmed 2017    | 5 μg/m <sup>3</sup><br>to<br>1050 μg/<br>m <sup>3</sup>                              | 5 μg/ m <sup>3</sup>      | Respirable dust<br>sampler/Low<br>flow<br>Pump        | UV<br>spectrophotometer                           |
| 2.  | Nitrogen<br>Dioxide<br>(NO <sub>2</sub> )     | IS: 5182, (P-6),<br>2006<br>Reaffirmed 2017    | 5 μg/ m <sup>3</sup><br>to<br>750 μg/<br>m <sup>3</sup>                              | 5 μg/ m <sup>3</sup>      | Respirable dust<br>sampler/Low<br>flow<br>Pump        | UV<br>spectrophotometer                           |
| 3.  | Particulate<br>Matter<br>(PM <sub>10</sub> )  | IS: 5182, (P-23),<br>2006<br>Reaffirmed 2017   | $\frac{10 \ \mu\text{g/m}^3}{\text{to}}$ $\frac{1000 \ \mu\text{g/m}^3}{\text{m}^3}$ | 10 μg/ m <sup>3</sup>     | Respirable dust<br>sampler                            | Desiccators, high<br>accuracy weighing<br>balance |
| 4.  | Particulate<br>Matter<br>(PM <sub>2.5</sub> ) | JMELPL/STOP/03<br>(Issue Date –<br>09.11.2017) | 10 μg/ m <sup>3</sup><br>to<br>500 μg/<br>m <sup>3</sup>                             | 10 μg/ m <sup>3</sup>     | Fine Particulate<br>sampler                           | Desiccators, high<br>accuracy weighing<br>balance |
| 5.  | Carbon<br>Monoxide<br>(CO)                    | IS: 5182, (P-10),<br>199                       | 0.5 mg/<br>m <sup>3</sup> to<br>50 mg/<br>m <sup>3</sup>                             | 0.5 mg/<br>m <sup>3</sup> | Sampling in<br>Tedlar<br>Bag with low<br>flow<br>pump | Gas<br>chromatography<br>with detector (FID)      |

 Table-3.9

 Methodology adopted for collection and analysis of sample

Protocol Used: CPCB Guidelines/IS-5182

RDS: Respirable Dust Sampler

FPS: Fine Particulate Sampler

#### Sampling locations:

Sampling sites for monitoring of ambient air quality were determined on the basis of meteorological condition (dominant wind direction) and proximity of sensitive places. Wind direction influences the horizontal dilution of air pollution. Sampling sites are shown in table 3.10.Samples were collected in the 10 km study area to observe the existing level of pollutants concentration throughout the region. It helps in providing a data base for evaluation of effects of the plant activity in that region. It will be also useful in ascertaining the quality of air environment in conformity to standards of the ambient air quality during operation phase of project.

#### Table - 3.10

#### Locations of ambient air quality monitoring stations

| S.<br>No. | Name of<br>Monitoring<br>Locations | Tentative distance (from<br>boundary) & direction (from<br>centre point) | Selection Criteria                                                                |
|-----------|------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| 1.        | Project site                       | -                                                                        | Core zone                                                                         |
| 2.        | Village Bargaon                    | ~5.0 km in West direction                                                | As per IMD annual & baseline season<br>data- Upwind of dominant air direction     |
| 3.        | 0.5 km from project<br>site        | ~0.5 km in East direction                                                | As per IMD annual & baseline season<br>data-Downwind of dominant air<br>direction |
| 4.        | Village Bhoring                    | ~2.5 km in East direction                                                | As per IMD annual & baseline season<br>data-Downwind of dominant air<br>direction |
| 5.        | 2.5 km from project<br>site        | ~2.5 km in NE direction                                                  | Downwind of crosswind direction as per<br>IMD annual data                         |
| 6.        | Nr. Village<br>Barbaspur           | ~5.5 km in SW direction                                                  | Upwind of crosswind as per IMD annual data                                        |
| 7.        | Village Achholi                    | ~1.5 km in NW direction                                                  | -                                                                                 |
| 8.        | Village Beltukri                   | ~1.5 km in South direction                                               | Nearest Village                                                                   |

Source: SOI Toposheet

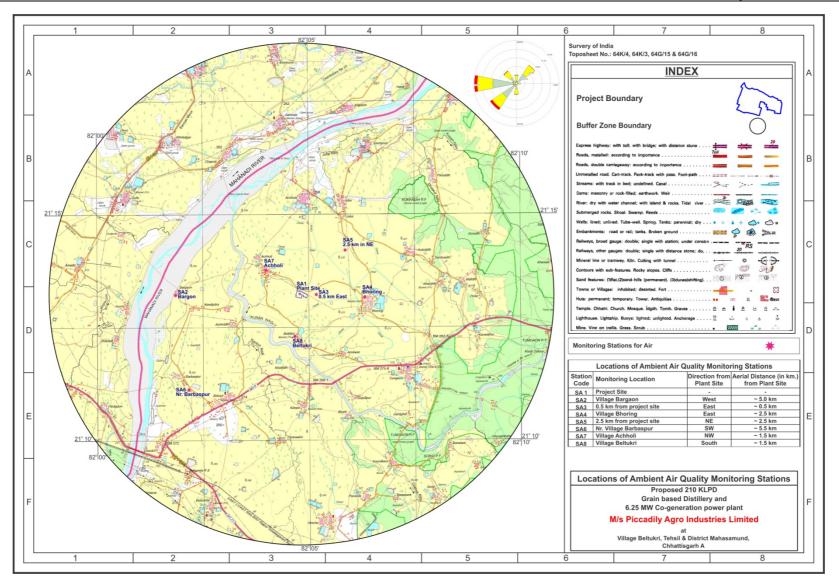



Figure - 3.7: Key Plan Showing Ambient Air Quality Monitoring Locations

Source: SOI toposheet and Google Earth

M/s PiccadilyAgro Industries Ltd.

#### **3.5.1** Ambient Air Quality Monitoring Results

Results of ambient air quality of selected study sites are shown in terms of maximum and minimum concentration with respect to the selected parameters (Table 3.11). All 24 observations of pollutants for each location are detailed in Ambient Air Quality Monitoring Tables enclosed as **Annexure 4**along with this report. Graph depicting ambient air quality monitoring results along with minimum, maximum, average and NAAQS standard is given below.

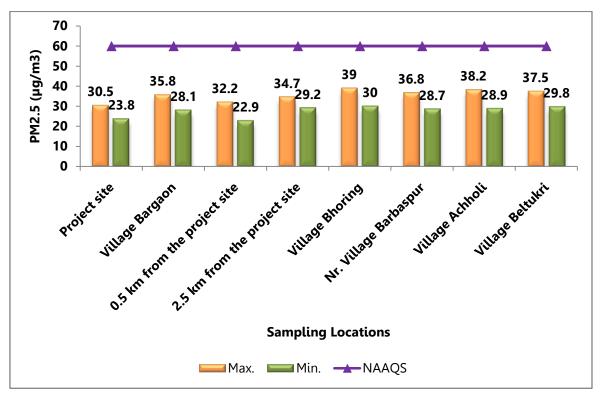
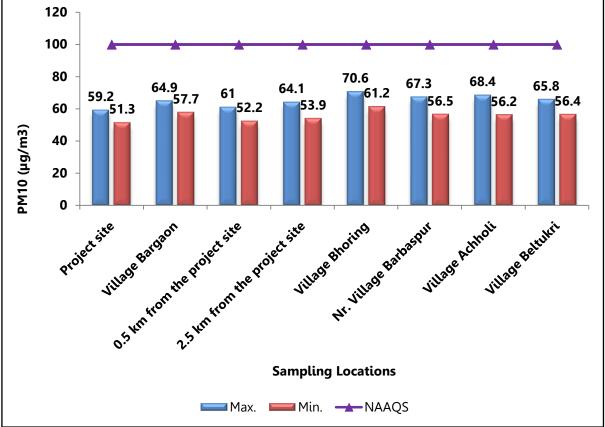
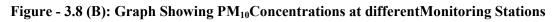

| Station<br>ID | Sampling Location            | Particula<br>2.5 (PM <sub>2.5</sub> | te matter<br>;) (μg/m3) | Partic<br>matter 1<br>(µg/ | (    | Dioxid | ogen<br>e (NO <sub>2</sub> )<br>/m <sup>3</sup> ) | Dioxid | phur<br>le (SO <sub>2</sub> )<br>/m <sup>3</sup> ) |      | Monoxide (CO)<br>mg/m <sup>3</sup> ) |
|---------------|------------------------------|-------------------------------------|-------------------------|----------------------------|------|--------|---------------------------------------------------|--------|----------------------------------------------------|------|--------------------------------------|
|               |                              | Max.                                | Min.                    | Max.                       | Min. | Max.   | Min.                                              | Max.   | Min.                                               | Max. | Min.                                 |
| SAN1          | Project site                 | 30.5                                | 23.8                    | 59.2                       | 51.3 | 19.6   | 13.9                                              | 10.1   | 5.2                                                | BDI  | L (DL-0.50)                          |
| SAN2          | Village Bargaon              | 35.8                                | 28.1                    | 64.9                       | 57.7 | 20.3   | 14.3                                              | 11.7   | 6.1                                                | BDI  | L (DL-0.50)                          |
| SAN3          | 0.5 km from the project site | 32.2                                | 22.9                    | 61.0                       | 52.2 | 19.2   | 13.7                                              | 10.9   | 5.7                                                | BDI  | L (DL-0.50)                          |
| SAN4          | 2.5 km from the project site | 34.7                                | 29.2                    | 64.1                       | 53.9 | 22.6   | 14.3                                              | 12.2   | 6.4                                                | BDI  | L (DL-0.50)                          |
| SAN5          | Village Bhoring              | 39.0                                | 30.0                    | 70.6                       | 61.2 | 23.3   | 14.8                                              | 12.6   | 7.0                                                | 0.76 | 0.54                                 |
| SAN6          | Nr. Village Barbaspur        | 36.8                                | 28.7                    | 67.3                       | 56.5 | 23.9   | 15.2                                              | 12.9   | 6.6                                                | BDI  | L (DL-0.50)                          |
| SAN7          | Village Achholi              | 38.2                                | 28.9                    | 68.4                       | 56.2 | 23.1   | 14.5                                              | 12.8   | 6.3                                                | 0.72 | 0.56                                 |
| SAN8          | Village Beltukri             | 37.5                                | 29.8                    | 65.8                       | 56.4 | 21.9   | 14.6                                              | 11.7   | 6.0                                                | 0.63 | BDL (DL-<br>0.50)                    |
|               | NAAQS*(24 hours)             | 6                                   | 0                       | 1(                         | )0   | 8      | 0                                                 | 8      | 80                                                 |      | 4*                                   |

 Table - 3.11

 Ambient Air Quality Monitoring Results


Source: Ambient Air Quality Monitoring

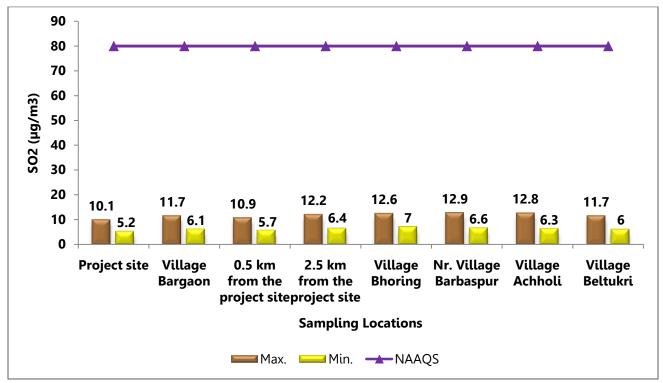
NAAQS - National Ambient Air Quality Standards; Schedule-VII, [Rule 3 (3B)], [Part-II-sec.-3(i)] 16.11.2009



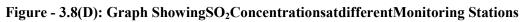

Source: Ambient Air Quality Monitoring






Source: Ambient Air Quality Monitoring




90 80 70 60 NO2 (µg/m3) 50 40 30 23.9 23.3 23.1 22.6 21.9 20.3 19.6 19.2 20 14.8 15.2 14.5 14.3 14.6 13.9 14.3 13.7 10 0 **Project site** Village 0.5 km 2.5 km Village Nr. Village Village Village from the Beltukri Bargaon from the Bhoring Barbaspur Achholi project siteproject site **Sampling Locations** Max. Min. — NAAQS

Source: Ambient Air Quality Monitoring





Source: Ambient Air Quality Monitoring



Chapter - III of Draft EIA / EMP Report

#### 3.5.2 Conclusion

Ambient Air Quality Monitoring reveals that the concentrations of  $PM_{10}$  and  $PM_{2.5}$  for all the 8 AAQM stations were found between 51.3 to 70.6µg/m3 and 22.9 to 39µg/m3 respectively. The concentrations of SO2 and NO2 were found to be in range of 5.2 to 12.9µg/m3and 13.7 to 23.9µg/m3 respectively. Highest PM concentration were found near Village Bhoring as it is located near the confluence of adjoining roads to NH-53. Hence it justifies increased levels of particulate matters. Highest SO2 and NO2 concentration were found near Village Barbaspur which may due the vicinity of NH-53.

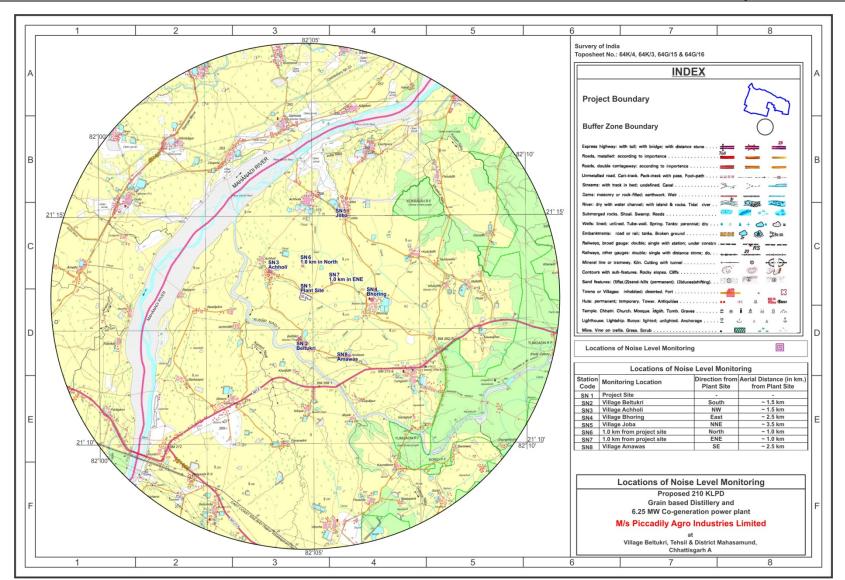
The proposed distillery will result in increase in ambient concentration due to increase in fugitive emissions during construction phase and it will be confined within plant boundaries. During operation phase, the movement of men, material and plant operations will result in increase of fugitive emissions and vehicular emissions and in turn increase in PM, SO2 and NOx concentrations.

The ambient air quality monitored in the season is within the prescribed limits of NAAQS. Proper mitigation measures need to be followed.

#### 3.6 NOISE ENVIRONMENT

Noise often defined as unwanted sound, interferes with speech communication, causes annoyance, distracts from work, and disturbs sleep, thus deteriorating quality of human environment.

**Procedure for ambient noise monitoring** – For the monitoring of ambient noise level in the study area, a Digital Noise/Sound Level Meter was used. Location was selected as per Ambient Noise standards or requirements and instrument was placed with minimum of 1 meter height to know the actual sound pressure on human hearing and Switch ON the instrument. Determine proper measuring range by selecting the range to minimize the tolerance of readout. Note down the reading in dB (A) with the interval of 6 minutes or minimum 10 values in 24 hours.


#### **3.6.1** Sampling Locations

Locations / stations selected for noise level monitoring are given in table and figure below. The results are given further based on monitoring results.

| S.<br>No. | Monitoring stations      | Tentative distance (from plant lease boundary)<br>& direction (from center point) |
|-----------|--------------------------|-----------------------------------------------------------------------------------|
| 01        | Project Site             | -                                                                                 |
| 02        | Village Beltukri         | 1.5 km in South direction                                                         |
| 03        | Village Achholi          | 1.5 km in NW direction                                                            |
| 04        | Village Bhoring          | 2.5 km in East direction                                                          |
| 05        | Village Joba             | 3.5 km in NNE direction                                                           |
| 06        | 1.0 km from project site | 1.0 km in North direction                                                         |
| 07        | 1.0 km from project site | 1.0 km in ENE direction                                                           |
| 08        | Village Amawas           | 3.0 km in SE direction                                                            |

|           | Tabl     | e- 3.12                    |
|-----------|----------|----------------------------|
| Locations | of Noise | <b>Monitoring Stations</b> |

Source: SOI Toposheet



Source: SOI toposheet and Google Earth

Figure - 3.9: Key Plan Showing Ambient Noise Monitoring Locations

#### 3.6.2 Ambient Noise Level Monitoring Results

Ambient noise levels monitoring results monitored at different locations are given below along with prescribed standards.

| Station code | Locations                | Day Time<br>(06:00 AM t<br>o 10:00 PM)<br>Leq in<br>dB(A) | Prescribed<br>CPCB<br>standards<br>Day Time | Night Time<br>(10:00 PM to<br>06:00 AM)<br>Leq in dB(A) | Prescribed<br>CPCB<br>standards<br>Night Time |
|--------------|--------------------------|-----------------------------------------------------------|---------------------------------------------|---------------------------------------------------------|-----------------------------------------------|
| SAN 1        | Project Site             | 50.6                                                      | 75                                          | 40.2                                                    | 70                                            |
| SAN 2        | Village Beltukri         | 53.9                                                      | 55                                          | 43.3                                                    | 45                                            |
| SAN 3        | Village Achholi          | 53.5                                                      | 55                                          | 42.8                                                    | 45                                            |
| SAN 4        | Village Bhoring          | 52.8                                                      | 55                                          | 43.9                                                    | 45                                            |
| SAN 5        | Village Joba             | 54.0                                                      | 55                                          | 43.7                                                    | 45                                            |
| SAN 6        | 1.0 km from project site | 53.6                                                      | 55                                          | 43.9                                                    | 45                                            |
| SAN 7        | 1.0 km from project site | 53.5                                                      | 55                                          | 43.2                                                    | 45                                            |
| SAN 8        | Village Amawas           | 52.3                                                      | 55                                          | 41.6                                                    | 45                                            |

| <b>Table - 3.13</b>                    |
|----------------------------------------|
| Ambient Noise Level Monitoring Results |

Source: Ambient Noise Quality Monitoring

#### **CPCB NOISE STANDARDS**

| Cotogowy of Zonog | Leq | q in dB(A) |
|-------------------|-----|------------|
| Category of Zones | Day | Night      |
| Industrial        | 75  | 70         |
| Commercial        | 65  | 55         |
| Residential       | 55  | 45         |
| Silence Zone      | 50  | 40         |

1. Day Time is from 6.00 AM to 10.00 PM.

2. Night Time is reckoned between 10.00 PM to 6.00 AM

3. Silence Zone is defined as an area up to 100m around premises of Hospitals, Educational Institutions and Courts. Use of vehicle horn, loudspeaker and bursting of crackers is banned in these zones.

Note: Mixed categories of areas be declared as one of the four above mentioned categories by the competent Authority and the corresponding standards shall apply

#### 3.6.3 Conclusion

Ambient noise levels were measured at 8 locations within the 10 km radius from the project site. Noise levels vary from50.6 to 54.0Leq dB (A) during day time and40.2 to 43.9LeqdB(A) during night time. Maximum noise levels are seen near SAN 5 (1.0 km in SE direction), which may be due to its proximity to village road and movements of vehicle in day time. During day &night time, the values are not much varying and some level of noise is always found due to human and vehicular activities for residential areas. From the above study, it can be concluded that the resultant noise levels in the study area are within the limits as prescribed by the Noise Pollution (Regulation and Control) Rules, 2000. All required measures will be adopted to minimize the noise level at the project site during construction operation phase. During construction phase, minor temporary increase of noise levels is envisaged due to movement of vehicles and hauling of

machineries &during operation phase, noise levels will be slightly increased butthey will be confined within plant boundary mostly.

#### **3.7 WATER ENVIRONMENT**

As a significant part of predefined framework of the present study water samples were collected from selected locations. The Reconnaissance survey was undertaken and monitoring locations were finalized based on:

- > Presence, Location and uses of major water bodies in the region
- > Type and Location of Industrial/residential areas, their intake and effluent disposal locations
- Likely area that can represent baseline conditions

The water resources in the study area were divided into two categories for getting ideal upshot of baseline status of water quality of the region. These two major categories as determined are:

- Surface water resources including streams, nalas, ponds, river, canals, estuary
- Ground Water resources (tube well, open well, springs etc.)

#### A) Preservation and storage of water samples

| Parameter              | Container | Minimum          | Preservation                 | Maximum storage     |            |  |
|------------------------|-----------|------------------|------------------------------|---------------------|------------|--|
|                        |           | sample size (ml) |                              | Recommended         | Regulatory |  |
| Acidity                | P/G       | 100              | Refrigerate                  | 24 hrs.             | 14 days    |  |
| Alkalinity             | P/G       | 200              | Refrigerate                  | 24 hrs.             | 14 days    |  |
| BOD                    | G         | 1000             | Refrigerate                  | 6                   | 48 hrs.    |  |
| Boron                  | P/G       | 1000             | HNO3 to pH<2                 | 28 days             | 6 months   |  |
| COD                    | G         | 100              | H2SO4 to pH<2                | 7 days              | 28 days    |  |
| Chloride               | P/G       | 100              | Non required                 | N. S.               | 28 days    |  |
| Chlorine<br>(Residual) | P/G       | 500              | Analyzed immediately         | 0.25 h.             | 0.25 h.    |  |
| Color                  | P/G       | 500              | Refrigerate                  | 48 hrs.             | 48 hrs.    |  |
| Sp.Conductance         | P/G       | 500              | Refrigerate                  | 28 hrs.             | 28 hrs.    |  |
| Fluoride               | P/G       | 100              | Non required                 | 28 hrs.             | 28 hrs.    |  |
| Hardness               | P/G       | 100              | HNO3 or H2SO4<br>topH<2      | 6 months            | 6 months   |  |
| Chromium               | P/G       | 1000             | Refrigerate                  | 24 hrs.             | 24 hrs.    |  |
| Copper                 | P/G       | 1000             | Refrigerate                  | 24 hrs.             | 24 hrs.    |  |
| Nitrate                | P/G       | 100              | Analyzedimmediately          | 48 hrs.             | 48 hrs.    |  |
| Nitrite                | P/G       | 100              | Refrigerate                  | None                | 48 hrs.    |  |
| Oil & Grease           | G         | 1000             | H2SO4 to pH<2<br>Refrigerate | 28 days             | 28 days    |  |
| Phenol                 | P/G       | 500              | H2SO4 to pH<2<br>Refrigerate | As soon as possible | 28 days    |  |
| Dissolve Oxygen        | P/G       | 300              | Analyzed immediately         | 0.25 h.             | 0.25 h.    |  |
| pH                     | P/G       | 50               | Analyzed immediately         | 0.25 h.             | 0.25 h.    |  |
| Phosphate              | P/G       | 100              | Refrigerate                  | 48 hrs.             | N.S.       |  |

**Proposed 210 KLPD Grain based Distillery along with 6.25 MW Co-generation Power Plant** At Village Beltukri, Tehsil & District Mahasamund, Chhattisgarh

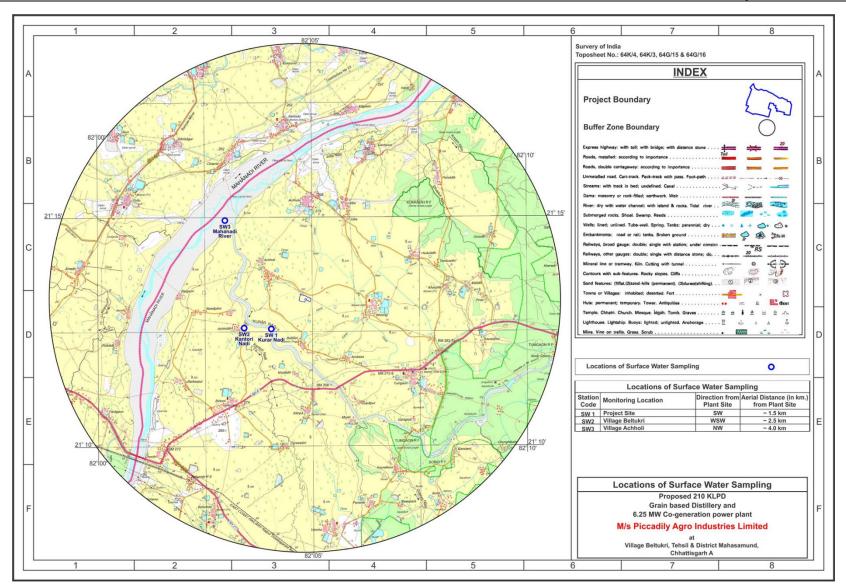
Chapter - III of Draft EIA / EMP Report

| Silica    | P/G | 200 | Refrigerate, Don't<br>Freeze   | 28 days | 28 days |
|-----------|-----|-----|--------------------------------|---------|---------|
| Sulphate  | P/G | 100 | Refrigerate                    | 28 days | 28 days |
| Turbidity | P/G | 100 | Analyze same<br>dayRefrigerate | 24 hrs  | 24 hrs  |

Note: P- PVC, G-Glass

Source: Water and waste water testing manual (J.M. EnviroLabPvt. Ltd.)

#### 3.7.1 Surface Water


There are three water bodies present in the study area. During monitoring two water bodies were found dry, hence, sampleswere collected onlyfrom following locations:

|       | Locations of Surface water Sampling Stations |          |           |                      |  |  |  |  |  |
|-------|----------------------------------------------|----------|-----------|----------------------|--|--|--|--|--|
| S.No. | Sampling Stations                            | Distance | Direction | Status of water body |  |  |  |  |  |
| 3.    | Mahanadi river                               | ~4 km    | NW        | Sample collected     |  |  |  |  |  |

 Table- 3.14

 Locations of Surface water Sampling Stations

Source: SOI Toposheet



Source: SOI toposheet and Google Earth

Figure - 3.10: Key Plan Showing Surface

#### Water Monitoring Locations

| S.  | Parameters                          | Unit       | Mahanadi River  |
|-----|-------------------------------------|------------|-----------------|
| 1.  | pH (at 25°C)                        |            | 7.42            |
| 2.  | Colour                              | Hazen Unit | BDL (DL 1.0)    |
| 3.  | Turbidity                           | NTU        | 8.0             |
| 4.  | Total Hardness as CaCO <sub>3</sub> | mg/l       | 102.35          |
| 5.  | Calcium as Ca                       | mg/l       | 23.61           |
| 6.  | Alkalinity as CaCO <sub>3</sub>     | mg/l       | 123.78          |
| 7.  | Chloride as Cl                      | mg/l       | 26.14           |
| 8.  | Residual free Chlorine              | mg/l       | BDL (DL 0.20)   |
| 9.  | Cyanide as CN                       | mg/l       | BDL (DL 0.02)   |
| 10. | Magnesium as Mg                     | mg/l       | 10.56           |
| 11. | Total Dissolved Solids              | mg/l       | 206.00          |
| 12. | Sulphate as SO <sub>4</sub>         | mg/l       | 14.98           |
| 13. | Fluoride as F                       | mg/l       | 0.63            |
| 14. | Nitrate as NO <sub>3</sub>          | mg/l       | 8.69            |
| 15. | Iron as Fe                          | mg/l       | 0.41            |
| 16. | Aluminium as Al                     | mg/l       | BDL (DL 0.03)   |
| 17. | Boron                               | mg/l       | 0.89            |
| 18. | Phenolic Compounds                  | mg/l       | BDL (DL 0.001)  |
| 19. | Anionic Detergents as MBAS          | mg/l       | BDL (DL 0.02)   |
| 20. | Hexa Chromium as Cr <sup>+6</sup>   | mg/l       | BDL (DL 0.03)   |
| 21. | Zinc as Zn                          | mg/l       | BDL (DL-0.0005) |
| 22. | Copper as Cu                        | mg/l       | BDL (DL 0.02)   |
| 23. | Manganese as Mn                     | mg/l       | BDL (DL-0.01)   |
| 24. | Lead as Pb                          | mg/l       | BDL (DL-0.008)  |
| 25. | Selenium as Se                      | mg/l       | BDL (DL 0.005)  |
| 26. | Arsenic as As                       | mg/l       | BDL (DL 0.002)  |
| 27. | Mercury as Hg                       | mg/l       | BDL (DL 0.001)  |
| 28. | Phosphate as Po <sub>4</sub>        | mg/l       | 0.09            |
| 29. | Total Suspended Solid               | mg/l       | 12.1            |
| 30. | Biochemical Oxygen Demand           | mg/l       | 4.2             |
| 31. | Chemical Oxygen Demand              | mg/l       | 14.5            |
| 32. | Sodium as Na                        | mg/l       | 23.6            |
| 33. | Potassium as K                      | mg/l       | 2.1             |
| 34. | Conductivity                        | μs/cm      | 318.00          |
| 35. | Nickel                              | mg/l       | BDL (DL 0.005)  |
| 36. | Dissolve Oxygen                     | mg/l       | 7.2             |

# Table - 3.15Surface Water Analysis

Source: Surface Water Analysis Report by JMEPL Lab

Note: Surface water quality was also analysed for Colour, Residual free Chlorine, Cyanide as CN, Aluminium as Al, Boron, Phenolic Compounds, Anionic Detergents as MBAS, Hexa Chromium as Cr+6, Zinc as Zn, Copper as Cu, Manganese as Mn, Lead as Pb, Selenium as Se, Arsenic as As, Mercury as Hg and Nickel were found below detection limit.

#### Interpretation

The value of Biochemical Oxygen Demand (BOD) and Chemical Oxygen Demand (COD) were found to be 4.2 mg/l and 14.5 mg/l respectively. The value of BOD and COD indicates that organic pollutants in the river water is too low. The pH of the water sample was found to be 7.42 (slightly alkaline) which is optimum for river water. Based on the BOD and pH value, the surface water falls under D class i.e. water is suitable for propagation of wild life and fisheries. The value of dissolved oxygen was found to be 7.2 mg/l, higher DO during Summer season indicate healthy aquatic environment. On the basis of DO value, surface water falls under Class A category i.e. surface is suitable for drinking water sources without conventional treatment but after disinfection. it can be best used as aquaculture, Irrigation, industrial cooling controlled waste disposal. The colour of water samples were BDL and odourwere agreeable.

#### **Conclusion:**

As per the CPCB standards, the water quality is good and is less polluted due to anthropogenic activity.

| Parameters                                                    | Class A                                                                                 | Class B                           | Class C                                                                       | Class D                                        | Class E                                                              |
|---------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------|
| Designated best use                                           | Drinking water<br>source without<br>conventional<br>treatment but after<br>disinfection | Outdoor<br>bathing<br>(organized) | Drinking water<br>source after<br>conventional<br>treatment &<br>disinfection | Propagation<br>of<br>wildlife and<br>fisheries | Irrigation,<br>industrial<br>Cooling<br>controlled<br>waste disposal |
| pH                                                            | 6.5 - 8.5                                                                               | 6.5 - 8.5                         | 6 - 9                                                                         | 6.5 - 8.5                                      | 6.0 - 8.5                                                            |
| Dissolved Oxygen,<br>mg/l                                     | 6 or more                                                                               | 5 or more                         | 4 or more                                                                     | 4 or more                                      | -                                                                    |
| BOD, mg/l (5 days<br>200C)                                    | 2 or less                                                                               | 3 or less                         | 3 or less                                                                     | -                                              | -                                                                    |
| Total coliform<br>organism, Most<br>Probable Number/100<br>ml | 50 or less                                                                              | 500 or less                       | 5000 or less                                                                  | -                                              | -                                                                    |
| Total Hardness (mg/L)                                         | 300 or less                                                                             | -                                 | -                                                                             | -                                              | -                                                                    |
| Chlorides (mg/L)                                              | 250                                                                                     | -                                 | 600                                                                           | -                                              | 600                                                                  |
| Sulfates (mg/L)                                               | 400                                                                                     | -                                 | 400                                                                           | -                                              | 1000                                                                 |
| Nitrates (mg/L)                                               | 20                                                                                      | -                                 | 50                                                                            | -                                              | -                                                                    |
| Free CO2 (mg/L)                                               | -                                                                                       | -                                 | _                                                                             | 6                                              | -                                                                    |

#### 3.7.1.1 Standards of surface water classification

**Proposed 210 KLPD Grain based Distillery along with 6.25 MW Co-generation Power Plant** At Village Beltukri, Tehsil & District Mahasamund, Chhattisgarh

Chapter - III of Draft EIA / EMP Report

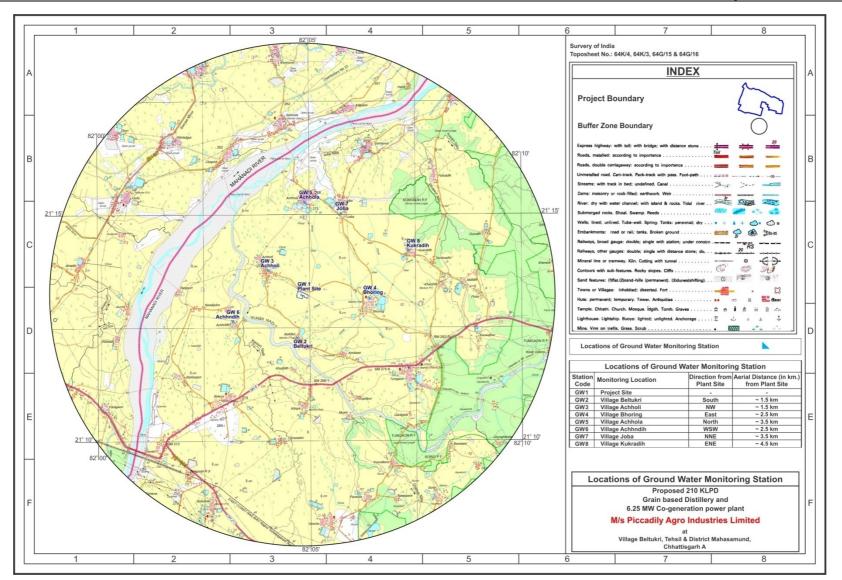
| Free ammonia (as N),<br>mg/l                   | -     | -     | -     | 1.2 or less | -         |
|------------------------------------------------|-------|-------|-------|-------------|-----------|
| Flourides (mg/L)                               | 1.5   | 1.5   | 1.5   | -           | -         |
| Cooper (mg/L)                                  | 1.5   | -     | 1.5   | -           | -         |
| Electrical conductivity,<br>µmhos/cm (at 250C) | -     | -     | -     | -           | 2500 max. |
| Sodium absorption ratio                        | -     | -     | -     | -           | 6 max     |
| Boron (mg/l)                                   |       |       |       |             | 2 max     |
| Iron (mg/L)                                    | 0.5   | -     | -     | -           | -         |
| Zinc (mg/L)                                    | 15    | -     | 15    | -           | -         |
| Barium (mg/L)                                  | 1     | -     | -     | -           | -         |
| Silver (mg/L)                                  | 0.05  | -     |       | -           | -         |
| Arsenic Total (mg/L)                           | 0.05  | 0.2   | 0.2   | -           | -         |
| Mercury (mg/L)                                 | 0.001 | -     | -     | -           | -         |
| Lead (mg/L)                                    | 0.1   | -     | 0.1   | -           | -         |
| Cadmium (mg/L)                                 | 0.01  | -     | 0.01  | -           | -         |
| Chromium (mg/L)                                | 0.05  | 0.05  | 0.05  | -           | -         |
| Selenium (mg/L)                                | 0.01  | -     | 0.05  | -           | -         |
| Cyanide (mg/L)                                 | 0.05  | 0.05  | 0.05  | -           | -         |
| Phenols (mg/L)                                 | 0.002 | 0.005 | 0.005 | -           | -         |
| Anionic Detergents<br>(mg/L)                   | 0.2   | 1     | 1     | -           | -         |
| PAH (mg/L)                                     | 0.2   | -     | -     | -           | -         |

Source : CPCB website (https://cpcb.nic.in/water-quality-criteria-2/)

#### 3.7.2 Ground Water Quality

The sources of potable water are the tube-wells, dug-wells, hand pumps, pipeline for domestic purpose in the area. Details of ground water sampling locations and their distance and directions are given in table and figure below.

 Table - 3.16(A)


 Locations of Ground Water Sampling Stations

| Locations of Ground water Sampling Stations |                  |                                                                      |                                      |  |  |  |  |  |
|---------------------------------------------|------------------|----------------------------------------------------------------------|--------------------------------------|--|--|--|--|--|
| S.<br>No.                                   | Sampling Station | Tentative distance (from boundary)<br>&direction (from center point) | Source of sample<br>collection       |  |  |  |  |  |
| 1.                                          | Project site     | -                                                                    | Core zone                            |  |  |  |  |  |
| 2.                                          | Village Beltukri | ~1.5 km in South direction                                           | Domestic and agricultural activities |  |  |  |  |  |
| 3.                                          | Village Achholi  | ~1.5 km in NW direction                                              | Domestic and agricultural activities |  |  |  |  |  |
| 4.                                          | Village Bhoring  | ~2.5 km in East direction                                            | Domestic and agricultural activities |  |  |  |  |  |
| 5.                                          | Village Achhola  | ~3.5 km in North direction                                           | Domestic and agricultural activities |  |  |  |  |  |
| 6.                                          | Village Achhndih | ~2.5 km in WSW direction                                             | Domestic and agricultural activities |  |  |  |  |  |
| 7.                                          | Village Joba     | ~3.5 km in NNE direction                                             | Domestic and agricultural activities |  |  |  |  |  |
| 8.                                          | Village Kukradih | ~4.5 km in ENE direction                                             | Domestic and agricultural activities |  |  |  |  |  |

Source: Google Image and SOI toposheet

| S.<br>No. | Sampling<br>Station | Tentative distance (from<br>boundary)<br>&direction (from center point) | Elevation<br>(m) | Depth to Water<br>level<br>(m) | Type of<br>well |  |
|-----------|---------------------|-------------------------------------------------------------------------|------------------|--------------------------------|-----------------|--|
| 1.        | Project site        | -                                                                       | 286              | 3.5                            | Borewell        |  |
| 2.        | Village Beltukri    | ~1.5 km in South direction                                              | 286              | 3.35                           | Borewell        |  |
| 3.        | Village Achholi     | ~1.5 km in NW direction                                                 | 282              | 6.5                            | Borewell        |  |
| 4.        | Village Bhoring     | ~2.5 km in East direction                                               | 299              | 4.5                            | Borewell        |  |
| 5.        | Village Achhola     | ~3.5 km in North direction                                              | 287              | 6.5                            | Borewell        |  |
| 6.        | Village<br>Achhndih | ~2.5 km in WSW direction                                                | 294              | 5.5                            | Borewell        |  |
| 7.        | Village Joba        | ~3.5 km in NNE direction                                                | 283              | 6.25                           | Borewell        |  |
| 8.        | Village<br>Kukradih | ~4.5 km in ENE direction                                                | 292              | 7.0                            | Borewell        |  |

Table- 3.16(B)Phreatic surface monitoring in 10 km study area



Source: SOI Toposheet and Google Earth

Figure 3.11: Key plan showing Groundwater & Phreatic Surface Sampling locations

|        | Ground Water Analysis                  |            |               |                  |                 |           |              |           |              |           |
|--------|----------------------------------------|------------|---------------|------------------|-----------------|-----------|--------------|-----------|--------------|-----------|
| S. No. | Parameters                             | Unit       | Project site  | Village Beltukri | Village Achholi | Village   | Village      | Village   | Village Joba | Village   |
|        |                                        |            |               |                  |                 | Bhoring   | Achhola      | Achhndih  |              | Kukradih  |
| 1.     | pH (at 25°C)                           | -          | 7.32          | 7.97             | 7.21            | 7.65      | 7.53         | 7.77      | 7.97         | 7.54      |
| 2.     | Colour                                 | Hazen Unit | BDL (DL-1.0)  | BDL (DL-1.0)     | BDL (DL-1.0)    | BDL (DL-  | BDL (DL-1.0) | BDL (DL-  | BDL (DL-     | BDL (DL-  |
|        |                                        |            |               |                  |                 | 1.0)      |              | 1.0)      | 1.0)         | 1.0)      |
| 3.     | Turbidity                              | NTU        | BDL (DL- 1.0) | BDL (DL-1.0)     | BDL (DL-1.0)    | BDL (DL-  | BDL (DL-1.0) | BDL (DL-  | BDL (DL-     | BDL (DL-  |
|        |                                        |            |               |                  |                 | 1.0)      |              | 1.0)      | 1.0)         | 1.0)      |
| 4.     | Odour                                  | -          | Agreeable     | Agreeable        | Agreeable       | Agreeable | Agreeable    | Agreeable | Agreeable    | Agreeable |
| 5.     | Taste                                  | -          | Agreeable     | Agreeable        | Agreeable       | Agreeable | Agreeable    | Agreeable | Agreeable    | Agreeable |
| 6.     | Total Hardness as<br>CaCO <sub>3</sub> | mg/l       | 207.65        | 241.63           | 279.28          | 175.22    | 221.69       | 211.65    | 217.89       | 286.87    |
| 7.     | Calcium as Ca                          | mg/l       | 40.33         | 44.12            | 54.15           | 36.98     | 47.87        | 59.23     | 55.11        | 46.69     |
| 8.     | Alkalinity as CaCO <sub>3</sub>        | mg/l       | 189.36        | 191.59           | 255.97          | 158.05    | 183.65       | 223.98    | 179.78       | 173.65    |
| 9.     | Chloride as Cl                         | mg/l       | 66.32         | 87.54            | 52.57           | 51.23     | 66.12        | 63.98     | 70.62        | 78.76     |
| 10.    | Cyanide as CN                          | mg/l       | BDL (DL-      | BDL (DL- 0.02)   | BDL (DL- 0.02)  | BDL (DL-  | BDL (DL-     | BDL (DL-  | BDL (DL-     | BDL (DL-  |
|        |                                        | _          | 0.02)         |                  |                 | 0.02)     | 0.02)        | 0.02)     | 0.02)        | 0.02)     |
| 11.    | Magnesium as Mg                        | mg/l       | 26.01         | 31.97            | 35.03           | 20.16     | 24.85        | 15.52     | 19.53        | 41.40     |
| 12.    | Total Dissolved Solids                 | mg/l       | 356.0         | 398.0            | 412.0           | 294.0     | 388.0        | 429.0     | 406.0        | 418.0     |
| 13.    | Sulphate as SO <sub>4</sub>            | mg/l       | 25.36         | 14.56            | 29.97           | 27.89     | 35.43        | 36.69     | 45.45        | 58.12     |
| 14.    | Fluoride as F                          | mg/l       | 0.55          | 0.66             | 0.58            | 0.57      | 0.6          | 0.75      | 0.88         | 0.97      |
| 15.    | Nitrate as NO <sub>3</sub> -N          | mg/l       | 7.29          | 8.24             | 7.97            | 9.42      | 11.73        | 11.62     | 10.12        | 8.68      |
| 16.    | Iron as Fe                             | mg/l       | 0.24          | 0.29             | 0.32            | 0.41      | 0.34         | 0.31      | 0.22         | 0.37      |
| 17.    | Aluminium as Al                        | mg/l       | BDL (DL-      | BDL (DL- 0.03)   | BDL (DL- 0.03)  | BDL (DL-  | BDL (DL-     | BDL (DL-  | BDL (DL-     | BDL (DL-  |
|        |                                        |            | 0.03)         |                  |                 | 0.03)     | 0.03)        | 0.03)     | 0.03)        | 0.03)     |
| 18.    | Boron                                  | mg/l       | 0.28          | 0.32             | 0.36            | 0.42      | 0.51         | 0.36      | 0.42         | 0.22      |
| 19.    | Phenolic Compounds                     | mg/l       | BDL (DL-      | BDL (DL- 0.001)  | BDL (DL-        | BDL (DL-  | BDL (DL-     | BDL (DL-  | BDL (DL-     | BDL (DL-  |
|        |                                        |            | 0.001)        |                  | 0.001)          | 0.001)    | 0.001)       | 0.001)    | 0.001)       | 0.001)    |
| 20.    | Anionic Detergents as                  | mg/l       | BDL (DL-      | BDL (DL- 0.02)   | BDL (DL- 0.02)  | BDL (DL-  | BDL (DL-     | BDL (DL-  | BDL (DL-     | BDL (DL-  |
|        | MBAS                                   |            | 0.02)         |                  |                 | 0.02)     | 0.02)        | 0.02)     | 0.02)        | 0.02)     |
| 21.    | Hexa Chromium as                       | mg/l       | BDL (DL-      | BDL (DL-0.03)    | BDL (DL-0.03)   | BDL (DL-  | BDL (DL-     | BDL (DL-  | BDL (DL-     | BDL (DL-  |
|        | Cr <sup>+6</sup>                       |            | 0.03)         |                  |                 | 0.03)     | 0.03)        | 0.03)     | 0.03)        | 0.03)     |
| 22.    | Chromium as Cr                         | mg/l       | BDL (DL-      | BDL (DL-0.002)   | BDL (DL-0.002)  | BDL (DL-  | BDL (DL-     | BDL (DL-  | BDL (DL-     | BDL (DL-  |

## Table - 3.17Ground Water Analysis

|     |                              |       | 0.002)       |                 |                | 0.002)   | 0.002)        | 0.002)   | 0.002)   | 0.002)   |
|-----|------------------------------|-------|--------------|-----------------|----------------|----------|---------------|----------|----------|----------|
| 23. | Zinc as Zn                   | mg/l  | BDL (DL-     | BDL (DL-0.0005) | BDL (DL-       | BDL (DL- | BDL (DL-      | BDL (DL- | BDL (DL- | BDL (DL- |
|     |                              | -     | 0.0005)      |                 | 0.0005)        | 0.0005)  | 0.0005)       | 0.0005)  | 0.0005)  | 0.0005)  |
| 24. | Copper as Cu                 | mg/l  | BDL (DL-     | BDL (DL-0.02)   | BDL (DL-0.02)  | BDL (DL- | BDL (DL-      | BDL (DL- | BDL (DL- | BDL (DL- |
|     |                              |       | 0.02)        |                 |                | 0.02)    | 0.02)         | 0.02)    | 0.02)    | 0.02)    |
| 25. | Manganese as Mn              | mg/l  | BDL (DL-     | BDL (DL-0.01)   | BDL (DL-0.01)  | BDL (DL- | BDL (DL-      | BDL (DL- | BDL (DL- | BDL (DL- |
|     |                              |       | 0.01)        |                 |                | 0.01)    | 0.01)         | 0.01)    | 0.01)    | 0.01)    |
| 26. | Cadmium as Cd                | mg/l  | BDL (DL-     | BDL (DL-0.002)  | BDL (DL-0.002) | BDL (DL- | BDL (DL-      | BDL (DL- | BDL (DL- | BDL (DL- |
|     |                              |       | 0.002)       |                 |                | 0.002)   | 0.002)        | 0.002)   | 0.002)   | 0.002)   |
| 27. | Lead as Pb                   | mg/l  | BDL (DL-     | BDL (DL-0.008)  | BDL (DL-0.008) | BDL (DL- | BDL (DL-      | BDL (DL- | BDL (DL- | BDL (DL- |
|     |                              |       | 0.008)       |                 |                | 0.008)   | 0.008)        | 0.008)   | 0.008)   | 0.008)   |
| 28. | Arsenic as As                | mg/l  | BDL (DL-     | BDL (DL-0.002)  | BDL (DL-0.002) | BDL (DL- | BDL (DL-      | BDL (DL- | BDL (DL- | BDL (DL- |
|     |                              |       | 0.002)       |                 |                | 0.002)   | 0.002)        | 0.002)   | 0.002)   | 0.002)   |
| 29. | Mercury as Hg                | mg/l  | BDL (DL-     | BDL (DL-0.001)  | BDL (DL-0.001) | BDL (DL- | BDL (DL-      | BDL (DL- | BDL (DL- | BDL (DL- |
|     |                              |       | 0.001)       |                 |                | 0.001)   | 0.001)        | 0.001)   | 0.001)   | 0.001)   |
| 30. | Sodium as Na                 | mg/l  | 36.8         | 33.3            | 23.8           | 26.3     | 23.6          | 43.6     | 32.3     | 22.3     |
| 31. | Potassium as K               | mg/l  | 3.2          | 4.3             | 3.9            | 3.9      | 3.5           | 4.7      | 5.3      | 3.6      |
| 32. | Phosphate as PO <sub>4</sub> | mg/l  | BDL (DL-     | BDL (DL- 0.02)  | BDL (DL- 0.02) | BDL (DL- | BDL (DL-      | BDL (DL- | BDL (DL- | BDL (DL- |
|     |                              |       | 0.02)        |                 |                | 0.02)    | 0.02)         | 0.02)    | 0.02)    | 0.02)    |
| 33. | Nickel                       | mg/l  | BDL (DL-     | BDL (DL-0.005)  | BDL (DL-0.005) | BDL (DL- | BDL (DL-      | BDL (DL- | BDL (DL- | BDL (DL- |
|     |                              |       | 0.005)       |                 |                | 0.005)   | 0.005)        | 0.005)   | 0.005)   | 0.005)   |
| 34. | Conductivity                 | μS/cm | 574.00       | 631.00          | 646.00         | 496.00   | 621.00        | 663.00   | 639.00   | 638.00   |
| 35. | Total Suspended Solid        | mg/l  | BDL (DL-1.0) | BDL (DL-1.0)    | BDL (DL-1.0)   | BDL (DL- | BDL (DL- 1.0) | BDL (DL- | BDL (DL- | BDL (DL- |
|     |                              |       |              |                 |                | 1.0)     |               | 1.0)     | 1.0)     | 1.0)     |

#### Source: Water Analysis Report by JMEPL Lab

BDL- Below Detectable Limit, DL- Detection Level

Parameters found below detection limit range: Colour, Turbidity, Cyanide, Aluminium, boron, Phenolic Compounds, Anionic detergents, HexaChromium, Chromium, Zinc, Copper, Manganese, Cadmium, Lead, Arsenic, Mercury, Nickel, TSS

#### **3.7.2.1** Interpretation of ground water analysis

The physico-chemical analysis of groundwater samples was compared with Drinking Water Standard (IS: 10500-2012) as the groundwater is expected to be good and is utilized for domestic purpose and for irrigation purpose. The pH of the groundwater samples ranged from 7.21 to 7.97 which is within the permissible limit. The color and turbidity were below detection limit and odor and taste were agreeable. The total dissolved solids ranged from 294 to 429 mg/l. Physical quality of the groundwater samples was fair. According to the BIS Standards, the maximum acceptable limit of TDS is 500 mg/l and maximum permissible is 2000 mg/l. WHO states that the water containing TDS concentrations below 900 mg/liter are acceptable for the consumers. Lesser the TDS, Better the Water. This observation is supported by moderate to high values of total hardness175.22 to 286.87(mg/l) and alkalinity158.05 to 255.97 (mg/l).Hard water has no known adverse health effect, WHO says at its Geneva Conference. In addition, very hard water could provide an important supplementary contribution to total calcium and magnesium intake to people who use this water for drinking purposes. However, many industrial and domestic water users are concerned about the hardness of their water. When hard water is heated, solid deposits of calcium carbonate can form. Scaling can reduce the life of equipments, raise the costs of heating the water, lower the efficiency of electric water heaters, and clog pipes due to incrustations. The cost of utilization of water increases for the industries, hence, proper treatment should be done for utilizing groundwater for industrial operations. Samples were less polluted as indicated by the values of chlorides 51.23 to 87.54 (mg/l) and sulphates 14.5 to 58.12 (mg/l). The Fluoride concentration is 0.55 to 0.97 (mg/l).Fluoride when ingested in small quantities (<0.5 mg/L) is beneficial in promoting dental health by reducing dental caries, whereas higher concentrations (>1.5 mg/L) may cause fluorosis. Based on the moderate conductivity values (496 to 663 µS/cm), the groundwater samples are rich in dissolved substances and minerals which are good for irrigation purpose. The sodium22.3 to 43.6 (mg/l) and potassium3.2to 5.3(mg/l) concentration are very low indicating absence of pollution of groundwater samples. Total suspended solids, Nickel, Mercury, Arsenic, Lead, Cadmium, Manganese, Copper, Zinc, Chromium, Anionic Detergents, Phenolic compounds, Boron, Aluminium and phosphates were BDL for all the villages.

#### Conclusion

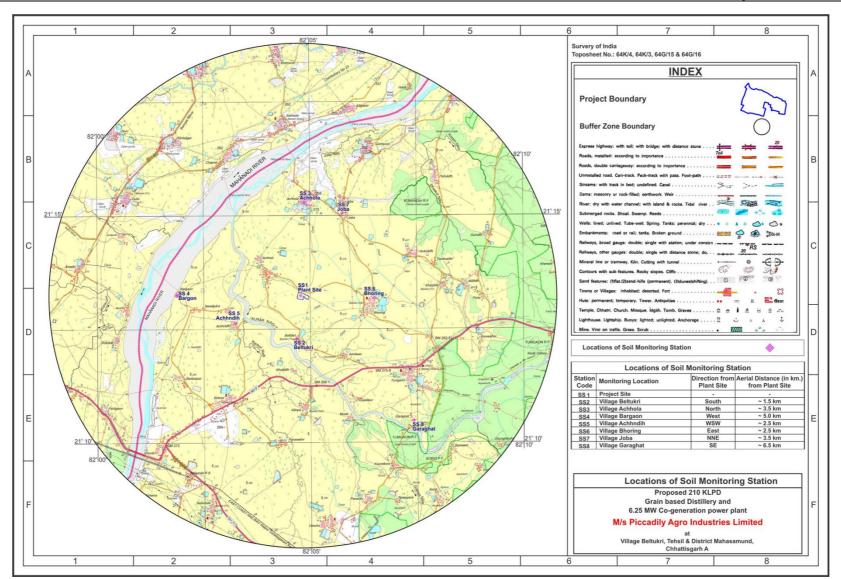
The groundwater samples from the project site and from study area are of fair quality, not polluted and good for irrigation and domestic use.

#### **3.8 SOIL ENVIRONMENT**

The sampling locations were finalized with the following considerations:

- > To enable information on baseline characteristics and,
- To determine the impact of Plant activities on soil characteristics of the proposed distillery unit.

**Details of Sampling Procedure**–Collection of samples from near-surface soil can be accomplished with tools such as spades, shovels, trowels, and scoops. Surface material is removed and sample is collected from 15-30 cm of depth with a stainless steel or plastic scoop or auger. For volatile organic analysis to be done, the sample is transferred directly into an appropriate, labeled container with a stainless-steel lab spoon, or equivalent and cap is closed tightly. Remainder of the sample is placed into a stainless steel, plastic, or other appropriate container facilitating homogenization and mixed thoroughly in order to obtain a homogenous sample representative indicative of the entire sampling interval.


In case of individual sample collection, place the sample is placed in labeled container and capped tightly; or, if more than one/composite samples are to be analyzed then another sample with definite sampling interval is placed or located into the container facilitating homogenization hence mixed thoroughly.

Locations are shown in tabular form and on key plan also. The results are provided on table given further.

| S.<br>No. | Sampling Station   | Distance & Direction from Project<br>site | Major Activity Nearby Sampling<br>Station            |
|-----------|--------------------|-------------------------------------------|------------------------------------------------------|
| 1.        | Project Site       | -                                         | Core zone                                            |
| 2.        | Village Beltukri   | 1.5 km in South direction                 | Grazing/Open land & Catchment area<br>of Kurari nadi |
| 3.        | Village Achhola    | 3.5 km in North direction                 | Human settlement                                     |
| 4.        | Village Bargaon    | 5.0 km in West direction                  | Catchment area of Mahanadi river                     |
| 5.        | Village Achhndih   | 2.5 km in WSW direction                   | Vegetation/plantation                                |
| 6.        | Village Bhoring    | 2.5 km in East direction                  | Agricultural Land                                    |
| 7.        | Village Joba       | 3.5 km in NNE direction                   | Open scrub/barren land                               |
| 8.        | Village Garaghat   | 6.5 km in SE direction                    | Near sensitive area (RF/PF)                          |
| C         | an Town to an Mare |                                           |                                                      |

Table - 3.18Locations of Soil Sampling Stations

Source: Toposheet Map



Source: SOI Topo sheet and Google Earth

Figure 3.12: Key plan showing Soil Sampling locations

Chapter - III of Draft EIA / EMP Report

|     |                                      |        |                 |                   | Soil Analy        | sis             |                   |                 |                   |                   |
|-----|--------------------------------------|--------|-----------------|-------------------|-------------------|-----------------|-------------------|-----------------|-------------------|-------------------|
| S.  | Parameters                           | Unit   | Project site    | Village           | Village           | Village         | Village           | Village         | Village Joba      | Village           |
| No. |                                      |        | Ū               | Beltukri          | Achhola           | Bargaon         | Achhndih          | Bhoring         | 0                 | Garaghat          |
| 1.  | pH (at 25°C) (1:2.5 soil water sus.) | -      | 7.99            | 7.90              | 7.91              | 8.11            | 7.66              | 7.80            | 7.94              | 7.93              |
| 2.  | Conductivity (1:2soil water sus.)    | mS/cm  | 0.51            | 0.46              | 0.34              | 0.41            | 0.37              | 0.39            | 0.45              | 0.52              |
| 3.  | Salinity                             | ppt    | 0.34            | 0.30              | 0.17              | 0.26            | 0.22              | 0.24            | 0.26              | 0.31              |
| 4.  | Soil Texture                         | -      | Clay            | Silty Clay        | Silty Clay        | Clay            | Silty Clay        | Clay            | Silty Clay        | Silty Clay        |
| 5.  | Sand                                 | %      | 10              | 10                | 13                | 18              | 12                | 14              | 16                | 10                |
| 6.  | Silt                                 | %      | 18              | 42                | 42                | 13              | 51                | 18              | 40                | 41                |
| 7.  | Clay                                 | %      | 72              | 48                | 45                | 69              | 37                | 68              | 44                | 49                |
| 8.  | Colour                               | -      | Redish<br>Brown | Blackish<br>Brown | Blackish<br>Brown | Redish<br>Brown | Brownish<br>black | Redish<br>Brown | Brownish<br>black | Brownish<br>black |
| 9.  | Water holding capacity               | %      | 58.9            | 49.3              | 48.4              | 59.7            | 47.6              | 61.9            | 50.3              | 51.3              |
| 10. | Porosity                             | %      | 57.6            | 50.1              | 47.9              | 58.6            | 46.7              | 60.2            | 49.7              | 50.2              |
| 11. | Bulk density                         | gm/cc  | 1.23            | 1.30              | 1.28              | 1.26            | 1.30              | 1.25            | 1.29              | 1.32              |
| 12. | Chloride                             | mg/kg  | 259.82          | 149.54            | 229.75            | 268.76          | 158.87            | 149.69          | 259.51            | 299.22            |
| 13. | Exchangeable Calcium<br>as Ca        | mg/kg  | 2289.6          | 1633.8            | 1566.1            | 1749.3          | 1859.9            | 1409.45         | 1890.56           | 2333.74           |
| 14. | Exchangeable Sodium as<br>Na         | mg/kg  | 243.23          | 150.92            | 134.45            | 137.92          | 245.47            | 167.63          | 160.78            | 169.69            |
| 15. | Available Potassium as<br>K          | kg/hec | 320.12          | 386.36            | 377.76            | 247.28          | 385.43            | 437.24          | 423.45            | 401.23            |
| 16. | Organic Matter                       | %      | 1.22            | 1.24              | 1.26              | 1.22            | 1.33              | 1.23            | 1.29              | 1.19              |
| 17. | Exchangeable<br>Magnesium as Mg      | mg/kg  | 389.59          | 363.36            | 358.41            | 298.25          | 380.36            | 379.15          | 302.68            | 324.56            |
| 18. | Nitrogen as N                        | Kg/hec | 218.43          | 308.69            | 327.78            | 347.96          | 317.96            | 242.54          | 220.56            | 215.65            |
| 19. | Available Phosphorus                 | Kg/hec | 23.74           | 25.03             | 30.73             | 31.88           | 29.66             | 25.65           | 34.14             | 32.12             |
| 20. | Total Zinc as Zn                     | mg/kg  | 19.78           | 20.73             | 28.08             | 31.73           | 29.24             | 36.75           | 34.67             | 33.22             |
| 21. | Manganese as Mn                      | mg/kg  | 401.37          | 448.17            | 500.63            | 485.71          | 508.63            | 338.54          | 414.34            | 424.98            |

Table - 3.19 Soil Analysis

Chapter - III of Draft EIA / EMP Report

| 22. | Chromium as Cr      | mg/kg | 9.65            | 7.02            | BDL (DL<br>5.0) | 6.98            | BDL (DL 5.0) | 8.65            | BDL (DL<br>5.0) | BDL (DL<br>5.0) |
|-----|---------------------|-------|-----------------|-----------------|-----------------|-----------------|--------------|-----------------|-----------------|-----------------|
| 23. | Total Lead as Pb    | mg/kg | 12.35           | 11.96           | 13.67           | 11.98           | 13.67        | 14.68           | 16.98           | 20.32           |
| 24. | Total Cadmium as Cd | mg/kg | BDL (DL<br>5.0) | BDL (DL<br>5.0) | BDL (DL<br>5.0) | BDL (DL<br>5.0) | BDL (DL 5.0) | BDL (DL<br>5.0) | BDL (DL<br>5.0) | BDL (DL<br>5.0) |
| 25. | Total Copper as Cu  | mg/kg | 16.35           | 17.25           | 23.02           | 14.98           | 15.23        | 14.65           | 12.33           | 17.89           |
| 26. | Organic Carbon      | %     | 0.71            | 0.72            | 0.73            | 0.71            | 0.77         | 0.71            | 0.75            | 0.69            |
| 27. | SAR Value           | -     | 1.24            | 0.88            | 0.80            | 0.80            | 1.36         | 1.02            | 0.91            | 0.87            |

Source: Soil Analysis Report by JMEPL Lab,

Parameters found below detection limit range: chromium and cadmium.

Proposed 210 KLPD Grain based Distillery along with 6.25 MW Co-generation Power Plant At Village Beltukri, Tehsil & District Mahasamund, Chhattisgarh

Chapter - III of Draft EIA / EMP Report

| Parameters                       | Classification                                                                                                                                          |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                  |                                                                                                                                                         |
| рН                               | <4.5 extremely acidic                                                                                                                                   |
|                                  | 4.6 - 5.50Strongly acidic                                                                                                                               |
|                                  | 5.6 - 6.5 Moderately acidic                                                                                                                             |
|                                  | 6.6- 6.9 Slightly acidic                                                                                                                                |
|                                  | 7.0 - Neutral                                                                                                                                           |
|                                  | 6.51 - 7.3 Neutral                                                                                                                                      |
|                                  | 7.1 – 8.5 Moderately alkaline                                                                                                                           |
|                                  | >8.5 Strongly alkaline                                                                                                                                  |
| Salinity Electrical Conductivity | Up to 1.0 average                                                                                                                                       |
| (µmhos/cm)                       | 1.01-2 harmful to germination                                                                                                                           |
| 1 ppm = 640 ppm $\mu$ mhos/cm    | 2.01-3 harmful to crops (sensitive to salts)                                                                                                            |
| Organic Carbon (%)               | < 0.5 – Low                                                                                                                                             |
|                                  | 0.5 – 0.75 Medium                                                                                                                                       |
|                                  | >0.75 High                                                                                                                                              |
| Nitrogen (kg/ha)                 | <280 Low                                                                                                                                                |
|                                  | 280-560 Medium                                                                                                                                          |
|                                  | >560 High                                                                                                                                               |
| Phosphorus as P2O5(kg/ha)        | < 10 low                                                                                                                                                |
|                                  | 10 – 24.6 Medium                                                                                                                                        |
|                                  | > 24.6 High                                                                                                                                             |
| Potassium (kg/ha)                | <108 Low                                                                                                                                                |
|                                  | 108– 280 Medium                                                                                                                                         |
|                                  | >280 High                                                                                                                                               |
|                                  | pH<br>Salinity Electrical Conductivity<br>(μmhos/cm)<br>1 ppm = 640 ppm μmhos/cm<br>Organic Carbon (%)<br>Nitrogen (kg/ha)<br>Phosphorus as P2O5(kg/ha) |

# Table 3.20Standard Soil Classification

*Source*: Department of Agriculture & Cooperation Ministry of Agriculture Government of India New Delhi, January, 2011

### 3.8.1 Interpretation of soil analysis

The soil samples including project site and from agricultural and commercial land based on different land uses in study area were collected and analyzed for physico-chemical characterization. Allthe soil samples collected were varying in colouri.e. Reddish Brown, Brownish Black and Blackish Brown. Texture analysis of soil samples were shown different proportion of sand, silt, and clay percentage in soil samples. Higher percentage of clay in soil samples showed relatively smaller pore space that silt and sand, hence contaminant solutes remain adhered to the silt particle surfaces which is acceptable to agriculture. The pH ranged from7.66 to

8.11 which is slightly to moderate alkaline and appropriate for agricultural soils. Water holding capacity (47.6% to 61.9%) is favorable for the crops but showed tendency towards water logging. However, the bulk density 1.23 to 1.32 (g/cc) was within the optimum level.

Calcium ranges from 1409 to 2333.74mg/kg, Sodium 134.45to 245.47 mg/kg, Potassium 247.28to 437.24(kg/ha) was high, Available nitrogen 215.65 to347.96 (kg/ha) was moderate and Available phosphorus 23.74to 34.14(kg/ha) is high. High soil phosphorus levels also can threaten streams, rivers, lakes and oceans. Phosphorus can become water-soluble and mobile, entering surface waters and causing algae and other undesirable plants to grow. This reduces water quality and desirable fish and aquatic plants. This will result in Eutrophication in water bodies and not acceptable. Lead contaminated soil has been found in almost all villages. Lead is one of the most widespread heavy metal contaminant in soils. It is highly toxic to living organisms and has no biological function but can cause morphological, physiological, and biochemical dysfunctions as well as affect water and protein content in plants. Chloride levels range from 149.54 to 299.2 mg/kg and SAR ranges from0.80 to 1.36 of the soil samples. High chloride concentrations can persist in groundwater because of the long traveltimes from recharge areas to discharge at a well or surface-water body. This indicates that soil fertility is medium to high. Nitrogen fertilizer addition may be necessary during plantation and green belt development. The average conductivity values are0.34 to 0.52 (mS/cm) which is average in all locations.

**Conclusion:** The soil samples were affected by the anthropogenic activity. The soils are of medium tohighfertility and using organic fertilizers with known fertilizer values also can significantly improve the recommended rate of application during plantation and green belt development.

#### **3.9 BIOLOGICAL ENVIRONMENT**

### 3.9.1 Introduction

The sum of environments where the life forms exist is called the Biosphere. Biosphere involves a portion of land, water and air occupied with living organisms. Biological environment includes the Habitat (Place where the organism lives) and natural surroundings of all species (living organisms) of the particular area. Biological study is essential to understand the impact of industrialization and urbanization on existing flora and fauna of the study area. Studies on various aspects of ecosystem play an important role in identifying sensitive issues for under taking appropriate action to mitigate the impact, if required.

The biological study was under taken as a part of the EIA/EMP study report to understand the present status of ecosystem prevailing in the study area, to compare it with past condition with the help of available data, to predict changes in the biological environment as a result of present activities and to suggest measures for maintaining its health.

A primary field survey was carried out within 10 km radius impact zone in and around the plant area to study the floral and faunal diversity of the terrestrial and aquatic environment of the study area.

#### 3.9.2 Cropping pattern of the area

Agriculture is practiced in the area during Kharif and Rabi season every year. During the Kharif, cultivation is done through rainfall while during the Rabi season, it is done through ground water as well as partly through surface water like canals and other sources. During Rabi period, 57.4% irrigated area use groundwater. The groundwater abstraction structures are generally Dugwells, Borewells /tubewells. The principal crops are paddy, wheat, vegetables and pulses. Among cereals, the highest crop under cultivation is Rice (272522 ha) followed by Wheat (984 ha), Jowar & Maize (141 ha) and Kodokutki (133 ha). Net irrigated area of district is 99047 ha which involve mainly ground water-based irrigation (57.37%).

[Source: <u>https://cgwb.gov.in/District\_Profile/Chhatisgarh/Mahasamund.pdf</u> [Source: Ground Water Brochure of Mahasamund District, Chhattisgarh 2012-13, Government of India Ministry of Water Resources Central Ground Water Board.]

#### 3.9.3 Interpretation of Flora and fauna study

No Schedule I species was found in the core as well as buffer zone. No endangered or endemic species (as notified in IUCN Red Data Book) are located within the study area. No migratory birds breed in the study area. No Tiger Reserve/ Elephant Corridor/ Turtle breeding place is located within 10 km radius of the study area. Baseline study period was during March , 2023 to May, 2023. Visit was conducted by FAEs concerned.

#### Flora

The present baseline floristic study has been carried out to inventories floral composition in the study area. Sampling stations were selected from project site and buffer zone of 10 km radial area around the core zone for carrying out vegetation surveys and an inventory of various floral species. In order to understand the composition of the vegetation, most of the plant species were identified in the field itself whereas the species that could not be identified a specimen was collected along with their photographs for identification later with the help of available published literature and floras of the region.

The vegetation of the district belongs to moist deciduous forest and presents very open form so that the trees and shrubs are widely spaced. In the present study, a total of 217 floral species including trees, shrubs, bamboos, climbers and grasses have been recorded.

#### Buffer zone of study area

In the buffer area of the plant, many tree species recorded during field survey Palas (*Butea monosperma*), Neem (*Azadirachta indica*), Sheekakai (*Acacia concinna*), Ramphal (*Annona reticulata*), Seetaphal, sareefa (*Annona squamosa*), Kachanar (*Bauhinia variegate*), Palasbel (*Butea superba*) etc. Shrubby vegetation of this zone includes Bantulsi (*Croton bonplandianum*),

Red barleria (Barleria repens), Crown Flower (Calotropis gigantea), Copperleaf (Acalypha wilkesiana) etc. The list of plant species recorded in the study area is given in Annexure 5.

#### Fauna

In order to study wild animals, avifauna, herpetofauna of the project area, a normal systematic transect sampling was done in different strata. Under this sampling, a 2 km long transect walks were carried out in the different locations, and the avifauna and animals were recorded. In addition, information was collected by enquiry with village people and secondary data from the Forest Department The common fauna recorded from the study area were Rohu (*Labeo rohita*), Rita Catfish (*Rita rita*), Nile Tilapia (*Oreochromis niloticus*), IndianGlass Barb (*Laubuca laubuca*) etc. The list of fauna recorded in the study area is given in**Annexure5**.

#### Conclusion

The study area has no reserve or protected forest or national park or sanctuaries. Therefore the biodiversity is medium in the study area due to dominance of anthropogenic activity in the study area. No Schedule I wild life species or rare and endangered species have been recorded from the study area.

# 3.10 SOCIO-ECONOMIC STATUS OF THE STUDY AREA AND POPULATION PROJECTION

In order to assess and evaluate the likely impacts arising out of new project in socioeconomic environment, it is necessary to gauge the status of the people in the surrounding areas. Socio-economic survey/studies an effective tool for processing this requirement.

The Socio-Economic environment includes demography structure, population density, literacy level, and employment levels. The data establish a baseline for the prediction of likely impacts of the proposed activity on the socio-economic environment. Secondary information pertaining to the study area villages was collected from government agencies, census data for the year 2011, and statistical abstracts to compile the socio-economic data. Socio economic survey was conducted in year March 2023.

#### **OBJECTIVES OF THE STUDY**

The main objectives of this socio-economic report consist of:

- > To conduct socio-economic assessment study in Study Area.
- To know the current socio-economic situation in the region to cover the sub sectors of education, health, sanitation, and water and food security.
- > To recommend practical strategic interventions in the sector.
- > To help in providing better living standards.
- > To help in providing employment opportunities to eligible persons.

#### **SCOPE OF WORK**

- > To study the Socio-economic Environment of area from the secondary sources
- > Developing a questionnaire for SIA Survey.

- Data Collection and Analysis
- > Identification of impacts due to the proposed projects
- Mitigation Measures.

#### METHODOLOGY

To understand the socio economic/demographic status of the study area, a Qualitative approach was used. Few primary data during the site visit were also collected.

#### (I) Data Collection:

Data for this project was collected from primary sources like Household survey, Personal Interview, Group Discussion in community meetings etc. and secondary sources like Government department, Census 2011, District Census Handbook, Maps, Literature research etc. JMEPL conducted the socio-economic baseline survey using a survey team of Field Assistants and a Supervisor apprising them about the project area and relevant documents. Detailed demography table enclosed as **Annexure 6**.

#### Sample selection techniques

The Survey was conducted using Simple Random Sampling method with a well-structured questionnaire prepared enabling subjects to reply appropriately. The questionnaires were designed to suit the subjects considering their rural background enabling them to furnish correct information and data to the extent possible. Primary data has been collected at village level, household level by questionnaires and focused group discussions.

The study area for the field survey has been divided into three major segments namely Primary Zone (0 - 3 km), Secondary Zone (3 - 7 km) and Outer Zone (7 - 10 km).

#### Sample size selection-

Sample size refers to a number to a number of factors including the purposed of study

$$n = \frac{n_0 \times N}{n_0 + (N-1)}$$

Here

- *n* = Sample size of known population
- $n_0 = proportion of unknown population$
- N = Known population size

We first calculate the proportion and then use the formula for correction factor to calculate the exact sample size

$$n_{\rm o} = \frac{Z^2 \times P \left(1 - P\right)}{e^2}$$

- Z= Critical value of desired level of confidence (here 95% confidence taken and Z value of it 1.96)
- $e = Margin of error / desired level of precision (That is \pm 5% or 0.05)$
- *P* = Maximum probability of variation in distribution (that can be 50% maximum)

For socio economic survey sample size has been calculated 376 household out of 18418 total household (as per census 2011) in 10 km study area.

#### (II) Data Presentation and Analysis

The data collected were presented in a suitable, concise form i.e., tabular or diagrammatic or graphic form for further analysis. These tabulated data were interpreted and analyzed with the help of various qualitative techniques and ideographic approaches.

#### **BACKGROUND OF THE REGION**

- On July 2, 1998, the district of Raipur was divided to create the district of Mahasamund. It is located in the state's eastern central region. In the north, west, and south, Raigarh and Raipur districts surround it. Odisha State's Nawapara and Bargarh districts the eastern. The district has the name of its head office. Mahasamund town. According to a proverb, the townhad a sizable circular pond, and the name appears to belt had been used to derive "Maha" into "Mahasamund" meaning big, while "Samund" is pond. Mahasamund District is located in the central-eastern region of Chhattisgarh State and spans an area of 4789.75 sq km. The district is surrounded by the districts of Nawapara and Bargarh in the state of Odisha, as well as Raipur and Raigarh in the state of Chhattisgarh, between 20°47 and 21°31'30' north latitude and 82°00 and 83°15'45' east longitude.
- The elevation of this area is 400–600 meters in length. Shishupal (664 meters), Barkothli (597 meters), and Jhanj (681 meters) are the principalthe mountain peaks. Most of this is already addressed. with trees. portions of the northern and some southernTahsil Basna is a plateau. Mama is in the northern section Bilari Dongri (492 meters) and Bhanja Donger (474 meters). In the southern part, at Karia Donger (481 meters), Budha donger (461 meters) and Sirko Donger (478 meters) are mountain peaks.
- There are plateaus in the northern, south-central, and north eastern portions of the Mahasamund tahsil. There are many high mountain peaks in the South Raital woods that are between 500 and 600 meters high, including Chadoura Dongri (429 meters), Sigangarh Kila (63 meters), and ChadouraDongri (429 meters). Pithora is bordered to the north and east by the mountains Chhuria Donger (478 meters) and Honi Donger (368 meters), and to the south and east by Sathpahari (52 meters), another mountain summit.
- Apart from the mountainous area, the remainder of the district is a plain area. There are three sizable plain areas in the Mahasamund tahsil: (1) in the west from Achhola to south of Mahasamund, (2) in the middle from Khallari and east of Pithora, and (3) the surrounding area in the southeast. Between Basna and Saraipali, in the plain region, the terrain is uneven, sloppy, stony, and productive. A sizable portion of plain land is used for agriculture.
- Mahanadi, Jonk, and Surangi are the district's three principal rivers. Sukha and Bagnai rivers flow along the district's southern boundary and join the Mahanadi River, which forms the

district's western border. Other Mahanadi River tributaries include Kurar, Naini, and Sitli. The only river in this tahsil's southern region that runs toward the southwest and eventually empties into the Jonk River is the Kandajori River.

- Narsingpur, Keshwanala, Sunsunia, Thakurdaiya, Lavkeni, Dongri, Kalmijhar, Bemeka, Gonabahal, Lamkeni Manal, Pekin, Mudpar, Sonasili, Chandkhuri, Hinchha, Amodidih, Amakoni, Singhora, Dhabri, Dewalgarh, and Rajdeo are notable ponds in the district.
- In general, the district experiences rising temperatures starting at the beginning of March and continuing through mid-June. In May, the highest temperature reaches 48 C. It is extremely hot before the south-west monsoon from late May to early June. The monsoon season begins in mid-June and lasts through September. The winter season begins in October and lasts through mid-March. Sometimes the temperature in December and January drops from 60 degrees Celsius to 50 degrees. The temperature occasionally drops below 40 C (minimum) throughout the winter due to cold waves mixing with western waves from Northern India.
- The district has a total forest area of 134039.470 hect. There are 33000.660 hect of protected forest and 63995.160 hect of reserved forest. The district is primarily covered in sagon, mixed, and sal woods, which are dry, deciduous forests in arid climates.
- The district is home to a variety of wild creatures, including leopards, nilgais, wild dogs, udbillaos, hyenas, country foxes, rabbits, and wild boars. Because of the loss of forests, fewer wild creatures are now present; often, only hyenas, foxes, and rabbits are visible.
- One of the best and most significant animal sanctuaries in the area is Barnawapara animal Sanctuary, which is situated in the northern section of the Mahasamund district. Tropical dry deciduous forest dominates the vegetation of the Barnawapara Wildlife Sanctuary, with Teak, Sal, Bamboo, and Terminalia being the most notable trees. Semal, Mahua, Ber, and Tendu are a few other notable plants that can be found in the sanctuary. In the sanctuary, a diverse range of species is supported by the abundant and luxuriant vegetation cover.
- The major wildlife of the Barnawapara Sanctuary include Tigers, Sloth Bear, Flying Squirrels, Jackals, Four-horned Antelopes, Leopards, Chinkara, Black Buck, Jungle Cat, Barking Deer, Porcupine, Monkey, Bison, Striped Hyena, Wild Dogs, Chital, Sambar, Nilgai, Gaur, Muntjac, Wild Boar, Cobra, Python to name a few. In addition, the sanctuary is home to a large number of birds, some of which include the following: Parrots, Bulbuls, White-rumped Vultures, Green Avadavats, Lesser Kestrels, Peafowl, Wood Peckers, Racket-tailed Drongos, Egrets, and Herons.
- Limestone, quartzite stone slabs, and trace amounts of gold are found in the area. In Mahanadi Valley, the lower level of Mahasamund generally slopes upward. In the Mahasamund tahsil, excavation of quartzite and sandstones is significant. Additionally, Ghodari hamlet, which is close to the Mahanadi River and Mahasamund, is where dark-

colored limestone is extracted. In several locations throughout Mahasamund, tiny amounts of gold are extracted by breaking crystal rocks.

- The regions of Bagbahra, Basna, and Pithora are home to granite rocks. Rocks in Chhattisgarh are primarily limestone, and they date back to the Upper Pre-Cambrian Cuddapah group, containing layers of sandstone, shale, or limestone quartzite. Quartz, dolerite, and neo-granite in intrusive. The district also contains forms. there is a result extensive and active mining operations.
- The district's agricultural economy is dominated by the paddy crop. Among soil types, Kanhar, Dorsa, Matasi, Urkaha, and Sandy predominate. Paddy, urad, groundnut, lac, kodokutki, moong, and wheat are the main crops. In addition, fruits, vegetables and masalas are sowed, too.
- According to the Department of Animal Husbandry's livestock statistics, there are 363637 cattle, 88097 buffalo, 67263 goat, and 5500 pigs in the district. Other animals include 171137 chickens, 186 horses, and 15985 sheep.
- Most of the settlements in the district feature both small and large ponds. Rivers and ponds are home to a wide variety of fish, including snake-like fish, Bam, Bami, and Jatwami fish. The two primary species of fish with wings are Patla and N-Chitla. Other fish species present in the district include Kotai, Borai, Sarangi, Chela-fool, Chilhari, etc.
- A significant paddy-producing area in the State is this district. The district is home to several small and cottage industries that produce things like building supplies, wood, and bamboo. The main source of employment for the locals in the district is small and medium-sized traditional enterprises including carpentry, brick-making, oil manufacture, handloom weaving, etc.
- The state capital Raipur, as well as other regions of the State, are easily accessible by rail and road to the Mahasamund district. Mahasamund connects a number of south-eastern-central railway trains headed toward Valtair, Vishakhapattanam, etc. in Andhra Pradesh and Kantabhanji, Puri, etc. in Odisha that are passing through Raipur junction. Air travel is not possible. The district is located along National Highway No. 6, and it has excellent road connections to the neighboring districts of Bilaspur, Raipur, and Raigarh, as well as locations like Khariyar Road, Sambalpur, and others in the neighboring state of Odisha.
- The district has many educational institutes like primary schools, secondary schools, degree colleges, medical colleges, engineering colleges etc.
   Source: District Census Handbook 2011, Mahasamund

#### 3.10.1 Study Area

The study area (buffer zone) was categorized on the basis of the distance of the villages from project site. The Primary zone relates to 0 to 3 km radius area, secondary zone 3-7 km and outer zone 7-10 km radius area. The demography of study area is given below:

#### **3.10.2 Demographic Structure**

The state of Chhattisgarh is one of the populated states of India covering an area of 135,192 square kilometers., Almost 76.76% of male working population engaged in non-agricultural pursuits while rest in urban region.

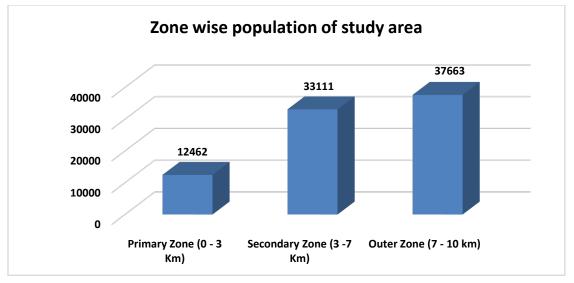
The district Mahasamund has overall literacy rate of 70.72%, with male literacy rate 82.68 % higher than female literacy rate 58.89 %, this gap poses questions on the availability of education for women pertaining in the region. Following table entails brief information about demography structure at state level, district level and study area.

| S. No. | Particular                 | Chhattisgarh | Mahasamund | Study area |
|--------|----------------------------|--------------|------------|------------|
| 1.     | Area (sq. Km.)             | 135,192      | 4790       | 328        |
| 2.     | No. of households          | 56,33,422    | 18418      | 18418      |
| 3.     | Population                 | 25,545,198   | 10,32,754  | 83236      |
| 4.     | Sex ratio                  | 991          | 1017       | 994        |
| 5.     | Schedule caste             | 7,822,902    | 32183      | 15656      |
| 6.     | Schedule tribe             | 3,274,269    | 49208      | 8068       |
| 7.     | Literacy rate (%)          | 71.04        | 70.72      | 69.53      |
| 8.     | Male literacy (%)          | 81.45        | 82.68      | 82.97      |
| 9.     | Female literacy (%)        | 60.59        | 58.89      | 59.96      |
| 10.    | Working population (%)     | 47.68        | 31.45      | 48.29      |
| 11.    | Non-working population (%) | 52.32        | 68.55      | 51.43      |

Source – Census data, 2011

#### 3.10.2.1 Population composition of study area

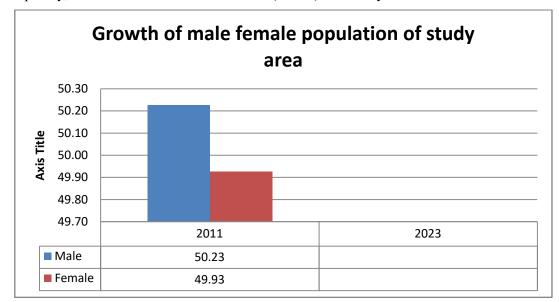
Census data suggests that the study area is composed of 50.23% of male population while 49.93% of female population. Following table entails information about basic demographic structure of 46 villages falling in study area (buffer zone) as primary, secondary and outer zone.


| Zone                         | No. of<br>Villages | Total<br>Household | Total<br>Population | Total<br>Male<br>Population | Total<br>Female<br>Population |
|------------------------------|--------------------|--------------------|---------------------|-----------------------------|-------------------------------|
| Primary Zone (0 - 3<br>Km)   | 6                  | 2804               | 12462               | 6203                        | 6259                          |
| Secondary Zone (3 - 7<br>Km) | 19                 | 6934               | 33111               | 16460                       | 16651                         |
| Outer Zone (7 - 10 km)       | 21                 | 8680               | 37663               | 19144                       | 18646                         |

Source: Census of India, 2011

• Above table highlights that in primary zone (0 - 3 km radius from project site) 6 villages fall where as much as 2804 houses reside with a total population of over 12462 people. Due to shorter distance from project site, it gives people living in here fair opportunity to get

enrolled in upcoming project and avail possible benefits (less transport cost/time saving) than to people living in other zones.


• Secondary and outer zone both comprise of 19 and 21 villages holding a total population of 6934 and 8680 respectively. This suggests that most of the population in the study area lies mainly in the secondary and outer zone when compared to primary.



Source: Census of India, 2011

#### 3.10.2.2 Growth of Male – Female Population

In order to learn about region's social development, understanding gender specific growth pattern is very important. Following graph highlights comparative datasets as per Census 2011 and field survey conducted in 2023. As per census 2011 around 50.23% of male were located in the study area of total population which is almost same 51.25% of total population by the end of year 2023. Subsequently, the ratio of women has decreased (1.42%) from the year 2011 to 2023.



*Source*: Census of India, 2011 & field Survey year 2023

Possible reason for this gap could be gender selective birth and could be growing industries and agriculture related activates in the area, It attracts more men (agriculture labors) than women to work, therefore gender specific migration results in decrease in proportion of women in this region.

#### 3.10.2.3 Gender and Sex Ratio

Gender and sex ratio determine the Human Development Index (HDI) of an area thereby understanding the status of women in that region.

The sex ratio in the study area is 994 females per 1000 males (as per Census 2011) while the female sex ratio is decreasing in surveyed villages (conducted in 2023). This is due to proportion of women in this region to decline since it draws more men than women to work in industries.

| S.<br>No. | Buffer Zone                  | Sex Ratio of Study area<br>Female/ 1000 Male |
|-----------|------------------------------|----------------------------------------------|
| 1         | Primary Zone (0-3 km)        | 1009.028                                     |
| 2         | Secondary zone (3-7 km)      | 1012                                         |
| 3         | Outer Zone (7-10 km)         | 974                                          |
| 4         | Overall Study Area (0-10 km) | 994                                          |

Source: Census of India, 2011

Despite continuing social welfare schemes and awareness programs run by the government, this variation has been referred to restricted sources of earning. Since families in these villages are mostly involved at working in informal sector (as marginal labors) men are preferred more over women. Most of these men are involved at manufacturing industries, stone industries, units, small scale businesses etc. for survival.

#### 3.10.2.4 Child Sex Ratio

In India, Child sex ratio is defined as number of females born per 1000 males in age group 0 - 6 years in a human population. The child sex ratio in study area is 1000 female per 1000 male (as per census 2011).

According to a field survey, each home has an average of 2 to 3 children. There are equal numbers of boys and girls. Since we now understand that there is no longer gender equality, both boys and girls are able to provide for their families in the same ways. It's not like only the boy can work and support the family; both can. This supports the gender equality.

| S. No. | Buffer Zone                  | Child Sex Ratio of Study area<br>Female/ 1000 Male |
|--------|------------------------------|----------------------------------------------------|
| 1.     | Primary Zone (0-3 km)        | 970                                                |
| 2.     | Secondary zone (3-7 km)      | 1029                                               |
| 3.     | Outer Zone (7-10 km)         | 984                                                |
| 4.     | Overall Study Area (0-10 km) | 1000                                               |

Source: Census of India, 2011

#### 3.10.2.5 Vulnerable Groups

While developing an action plan, it is very important to identify the population who fall under the marginalized and vulnerable groups and special attention has to be given towards these groups while making action plans. Special provisions should be made for them. In the observed villages, large number of scheduled caste (S.C.) population is (18.80%) and Schedule Tribe population is (9.69%) in study area while (71.51%) of the population has been observed as others.

#### 3.10.2.6 Literacy Rate

Literacy Rate is the percentage of people in the area with the ability to read and write. The analysis of the literacy levels is done in the study area. The 10 km radius study area demonstrates a literacy rate of 69.53 % as per census data.

The male literacy rate in the study area works out to be 82.97% whereas the female literacy rate, which is an important indicator for social change, is observed to be 59.96% in the study area as per the census data 2011. This shows that women's social growth is necessary, and they should receive more education.

The distribution of literates and literacy rates in the observed village is given in Table----

In the present study, the literacy rate is average level in the study area. Male and Female literacy rate of villages are varying place to place. Although Female literacy rate in the region is coming out low as compared to male.

| Zone                            | No. of<br>Villages | Total Literacy<br>Rate (%) | Male Literacy<br>Rate (%) | Female<br>Literacy Rate (%) |
|---------------------------------|--------------------|----------------------------|---------------------------|-----------------------------|
| Primary Zone (0 - 3 Km)         | 6                  | 61.86                      | 89.29                     | 58.37                       |
| Secondary Zone (3 - 7 Km)       | 19                 | 70.05                      | 81.93                     | 59.67                       |
| Outer Zone (5 - 10 Km)          | 21                 | 71.60                      | 81.83                     | 60.75                       |
| Total in the Study Area (10 Km) | 46                 | 69.53                      | 82.97                     | 59.96                       |

Literacy Level of the Study Area

### 3.10.2.7 Occupational structure

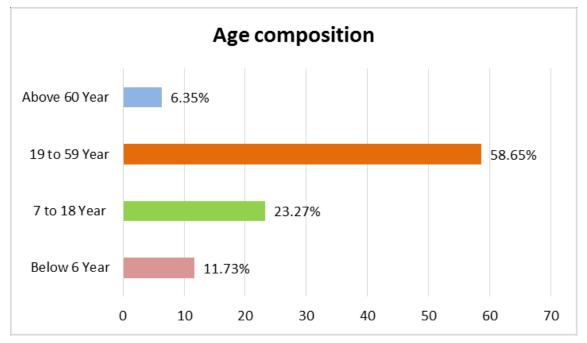
- Occupational structure of surveyed households suggests that most of people are engaged in unorganized sector.
- They either work as an agricultural labors or work at large and small scale industries/ manufacturing units.
- Rice, Pulses, Wheat, Jowar and Maize are cash-crops also involves some people in the region.
- The proposed distillery unit would aim to give most of these people employment opportunity to earn decent living.

- Presence of small projects and portable local businesses in the region, most of them also do not prefer to migrate to other parts of state or country. They either work at industries such as Food industry work, or work as agricultural labors and cultivators.
- The population is divided occupation wise into three categories, viz., main workers, marginal workers and non-workers. The main workers include cultivators, agricultural laborers, those engaged in household industry and other services. The study shows that out of the total working population, the percentage of main workers is 33.03%, while 16.68% are marginal workers. Working population is 48.38% and non-working population is 51.43% in the study area. More percentage of main workers reflects a developing economy and growth of the region.

#### 3.10.2.8 Family size

Size of family also describes about family functioning, resource consumption, total income generated and their expenditure pattern.

| S. No | Family Size | Percent (%) |
|-------|-------------|-------------|
| 1.    | Up to 4     | 59          |
| 2.    | 5 to 7      | 29          |
| 3.    | Above 8     | 12          |


#### Source: Field Survey, 2022

Field survey suggests that most of these households are having family size of 5 to 7 members 29 %, while 59 % of people are up to 4 family members together. There are 12 % families citied with 8 or above family members. These ranges give fair understanding of relating how much resource consumption is being incurred, annual income being generated and spent. Surveyed information revealed that average basic annual income of a family varies from 30,000 to 5.79 lakh where major expenses are borne on food, medical expenses and shelter.

#### 3.10.2.9 Age composition

Age composition or age distribution is proportionate number of persons in successive age categories in a given population of a region. Here, trends of fertility define what proportion of age specific population a region has. Below graph suggests categorically how distribution of population is located in surveyed villages. About 58.65 % of population comes under adult age category (i.e. 19 - 59 years) following with 23.27 % of population is under adolescent age (i.e. 7 - 18 years). Considering both, small proportion of ratio comes under below 6 years of age (11.73 %) and old age people (6.35 %) respectively. This suggest that high proportion of people are potential workers in the region if are unemployed.

Chapter - III of Draft EIA / EMP Report



Source: Field Survey, 2022

#### 3.10.3 Infrastructure Base

A better network of physical infrastructure facilities (well-built roads, rail links, irrigation, power and telecommunication, information technology, market-network and social infrastructure support, viz. health and Education, water and sanitation, veterinary services and co-operative) is essential for the development of the rural economy.

A review of infrastructural facilities available in the area has been done based on the information from base line survey & census data of the study area. Infrastructural facilities available in the area are described in the subsequent sections.

- Administrative offices are located in Mahasamund town area approx. 15 km from project site which is commutable.
- Functioning of Primary health centre and sub centre is fair in these villages. Community health centre is located at Mahasamund, A PHC covers a population of 20,000 in hilly, tribal or difficult areas and 30,000 populations in plain areas with 4-6 indoor/observation beds. It acts as a referral unit for 6 sub-centres.
- Availability of Government pre-primary, primary, middle, secondary, senior secondary schools in all these villages are present within village.
- Various Degree college, technical, Medical College, engineering college, Management College, vocational degree colleges and institutes are present within the region.
- Water availability in the region is mostly household tap water with few depending upon public hand pump.
- LPG Gas cylinders are available in 95 % of these households against provision of 'Ujwala Yojna' scheme, however villagers are unable to fill gas due to unavailability of finances.

- Most of these households are of one to two room dwellings made of brick walls and concrete roofs. It also has functioning toilets inside them.
- Electricity is also available for most of the hours in these households.
- Government Campaign on 'Sanitary and Hygiene' and availability of running welfare social protection schemes are still less. They are restricted to Gram Sabha meeting which usually occurs on 26th January (Republic Day), 1 May (Labour Day), 15 August (Independence Day) and 2nd October (Gandhi Jayanti).
- Settlements in the study area mostly developed alongside road. These settlements are connected with thin roads (metalled roads) that eventually merge with main road and highways.
- During field survey, it was found, villager have requested Gram Panchayat take necessary actions against rebuilding of road.

#### 3.10.4 **Provision to Basic Amenities**

Primary survey conducted in these villages suggests that availability of basic needs such as provision to food, clothes, shelter, employment opportunities, transport connectivity, education availability, health infrastructure, cooking fuel and natural resource availability is fairly well.

- Various irrigation programmes through CSR activities and state government initiatives in the region has helped inhabitants in shaping their livelihood needs.
- Men and women in these villages are involved at large and small industries such as food factory, stone factory, agricultural factory etc.
- The economy of the district is predominantly based on agriculture, as maximum per cent of the population resides in rural areas and their main occupation is agriculture. Kharif and Rabi are the two principal harvests grown in the district. Rice occupies the predominant place in terms of area and production and it is the most important commercial crop in the district. Wheat, Jowar, Maize and Pulses are other main crops of the district.
- In study area, Census 2011 revels that out of total working population, ratio of non-workers is more than working population. In the study area, 48.38% people work while remaining are non-workers (51.43 %). Those who work are mainly cultivators, agricultural labours, small- and large-scale manufacturing workers who are paid however, those performing household duties, dependents, infants / children and adults who are engaged for small period of time (informal and marginal workers) constitutes higher proportion.
- Irrigation is an important factor for improved agricultural production. Tube-wells and canals are the major source of irrigation in the district. Area was irrigated through canals, government tube-wells, private tube-wells, ponds, well and by other sources.

- Surveyed information revealed that average annual income of a family is varying from 30,000 to 5.79 lakh where major expenses are borne on food, medical expenses and shelter.
- While surveying it was found, most of these houses are made up of brick walls and cemented roof tops. Villages located in outer region are built semi structured, with walls made of bricks.
- Facilities relating to sanitary & hygiene in the region is not very satisfactory it need various awareness program. Toilets in the most of these houses are built inside premises while some use community toilets.
- Many households use LPG gas as fuel for cooking with very few still dependent on wood and hay.
- Sources of water are primarily present in the form of tap water, hand pump inside houses or open wells.
- Every household on an average has 1 mobile phone for communication and 1 bicycle for transport.
- People also have motor cycle for commuting otherwise they are dependent on public transport bus and auto.

#### 3.10.4.1 Education

- Household survey on prevailing educational conditions in these villages' highlights that study area performs fairly well, especially at Primary and Secondary schools for both genders.
- Senior Secondary schools however have less participation of female students when compared to male.
- Most of these families have stated that major reason behind this is due to financial constraints. Families prefer their girl child to take care of household chores and look after other young siblings so that adults can work outside and earn.
- Also, because considering women a soft gender they are expected to settle down early than completing her education.
- Provision to free books, uniform and food (mid-day meal) as per Government welfare benefits for students are provided in these primary school however, ratio of teachers to student is extremely low. It becomes little stressful on the teachers run all the five classes in school at this average.
- In these sampled villages, senior secondary schools are available within villages. Thus, if one has to pursue further, he/she has not to go out from village for senior secondary education.

- During survey it was found, high proportion of dropouts occurs between secondary and senior secondary standard, that too independent of gender.
- These dropouts are mainly due to financial crunch. Village communities are not in position to cater multiple needs food, clothing, shelter, medical needs etc.
- Facilities provided by Government in kind such as mid-day meal arrangements are already in practice however still face severe problems of mismanagement among the organizers.
- This area needs larger attention from policy making communities in order to improve prevailing social norms and cultural stigmas related to women.

#### 3.10.4.2 Health

- The gap that exists in basic amenities and education categories appear small when compared to health facilities available in these villages.
- Infrastructure facilities during survey in few of these villages show that government healthcare institutions are available within villages but not in good condition.
- During survey it was found, villages have primary healthcare center and sub center facility. However, for medical issues villagers have to visit community health centre located in tehsil.
- Availability of doctors, physicians and pharmacists are also few in numbers in surveyed region.
- During field visit, it was revealed that government drives for the implementation of vaccinations among children have been quite prevailing across communities and that has played effective role in giving awareness to locals.
- Regarding vaccination of children under the age of 5, 95 % of all communities in these villages were covered, while those who did not participate mainly owes to lack of awareness.
- Ambulance is available in the region during emergency however it is time taking.

#### 3.10.4.3 Transport

- Study area is served by road and rail network mostly.
- These villages are indirectly connected with major road and rail links via thin roads that merge into national and state highway in the region.
- Railways are old to be known here and that people here take best advantage of it while travelling far.
- Rickshaw and auto service are available however is limited only to the city.

#### 3.10.5 Other Issues

- Gender disparity in terms of wage / remuneration, social treatment, decision making power, domestic violence etc.
- Lack of awareness towards Menstrual Hygiene in all these village.
- Poor of road condition.
- Lack of awareness among vulnerable groups for their welfare.
- Requirement of government colleges in these villages.
- Requirement of family welfare centers in the region.
- Requirement and improvement in condition of community health centers and primary health centers in the region.
- Requirement of doctors and nurses in health care centers at village level.
- Requirement of secondary and senior secondary schools at village level.

#### **3.10.6** Interpretation

Based on the data, following inferences could be drawn:

- The literacy rate in the study area is lesserthan the district literacy rate.
- As per census 2011 data, majority of population belongs to Hindu (97.61%) and Muslim religion has population of 1.22% while Christians are only 0.51%.
- The agriculture and rice farming are main sources of income. As total working population is less than 50 % of the total population of the study area.
- The study area is well connected by National Highways and village road (Tar Roads).
- The study area has good telephone/mobile connectivity with 3G / 4 G / Broadband internet facility.
- The study area is well connected by various means of transport.
- The study area (rural) has health facilities of primary level which is not in good condition.
- The study area had average educational facilities. The overall status depicts that the education is limited to primary and middle level.
- The study area is facing the problem of unemployment of youth.
- Due to the proposed project, employment opportunities will be increased in area.
- Considering the above facts, the proposed project will boost the socio-economic development activities in the area and hence will leave positive impact.

#### **3.10.7** Recommendation and Suggestion

The village development plans are made in consultation with the community through Gram Sabha; these appear to address the needs of the community. However, it may be noted that at the implementation stage these plans often are fraught with problem of inadequate funds, lack of proper planning, corruption, vested interests and political agendas. Hence, while ascertaining the scope for convergence with the government activities, care must be taken to ascertain realistic possibilities for implementation.

- Women empowerment– Home based income generation activities, vocational training programmes, common education centre for increase in literacy.
- Education free uniform, construction of common rooms and library, computer education and physical education, additional schools for girls, furniture and equipment in schools.
- Transportation Construction of roads will help in improvement of transportation network of the region.
- Vocational Trainings Establishment of a vocational training center within the villages with a curriculum designed to suit market demands. Vocational training for disability persons.
- Agriculture/livestock Infrastructure such as agriculture electric connections, assistance in buying improved tools and equipment, capacity building, supply and/or knowledge of better variety of seeds, pasture land development and trainings on animal husbandry & facility of veterinary doctor.
- Health Improvement in sanitary conditions of the villages, assistance with construction of latrines, improvement in drainage system, health camps and awareness campaigns for diseases like malaria, typhoid, tuberculosis, pneumonia and covid. Repairing of PHCs and Aanganbadi centers. Free health checkup camps could help more people there.
- Persons with disability–Establishment of centre for special education, sensitization of the community towards disabled and awareness on government schemes.

### 3.10.9 Summary and Conclusion of Socio-Economic Study

The Socio – economic study of the area where distillery project is proposed (Mahasamund district of Chhattisgarh) gives a clear picture of how it is a favorable place in bringing development. It cites demographic patterns (viz. gender and sex ratio, male – female growth, child sex ratio, family size, age composition), present infrastructures, provision to basic amenities, educational facilities, occupational structure, health and hygiene, transport facilities, various social protection schemes running by central and state governmental schemes for welfare of locals and vulnerable groups.

Broadly it suggests that region has normalized difference in the population difference in between male (50.03 %) and female (50.20 %). Considering child sex ratio, Female births and male births are same.

#### Chapter - III of Draft EIA / EMP Report

Since the area has large non-working population and decent proportion of people living in nuclear families, the pressure on using resources and to generate livelihood income becomes high. As far as literacy is concerned, study area has fair literacy patterns among men and women at primary schooling however participation at secondary and senior secondary schools by girl child is comparatively lesser than boys. Also, dropout rates are higher among both genders after completing secondary schooling. Major reason behind this cause is monetary constraint. Considering health facilities in the region, study area has presence of PHCs and dispensaries. Ambulance facilities are available during emergency. Presence of water availability in the region is mainly in the form of tap water, hand pump, tube well and community wells. As far as sanitary and hygiene is concerned in study area, under Swachh Bharat Mission, toilets have been provided in each household. Almost 95% of these households are even using it however those who aren't is possibly due to unavailability of water. Women sanitary hygiene is a matter of concern here as during survey it was found; menstrual hygiene is ignored among women. Therefore, more focus is needed on giving timely awareness on sanitary hygiene and taking benefits of social protection schemes running in the region since many vulnerable groups are still unknown of most of these welfare schemes.

The infrastructure and amenities available in the area denotes the economic wellbeing of the region. The study area as a whole possesses average infrastructural facilities. The proportion of main workers is higher than the marginal workers in the study area. The proposed project would lead to direct and indirect employment opportunities. The unskilled and semi-skilled categories of labour are available from the nearby villages and towns. Further, many of the agricultural laborers are being attracted to take up the steady, round the year employment at industry site. While people are happy with opening of this project and the increase in employment opportunities, more attention and care should be taken so that the population get more exposure to modern facilities of education and development for a bright future.

Thus, this whole study of socio – economic concludes that project site is suitable for sound social economic development and with time it will only keep on positively evolving the region and its inhabitants thereby meeting end needs.

#### 3.11 CONCLUSION

The environment baseline study was conducted in the study area during Summer season. Abiotic factors including air, water and soil were studied for the core & buffer zone. It was found that most of the parameters were within the limits as per the Indian Standards. In general, there is no major threat to the quality of the major components of environment. Similarly, the study for the biotic factors was conducted. Hence, it can be concluded that the present environment status of the study area is good enough for the proposed project. Adoption of adequate pollution control measures will protect the surrounding environment.

 $\circ$ 

#### **CHAPTER - IV**

#### ANTICIPATED ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

#### 4.1 INTRODUCTION

The impact assessment focuses on the study area within 10 km radius around the project site. The anticipated environmental impacts of the proposed installation of distillery and co-generation power project would be due to constructional & operational activities. The impact of proposed project activity may be primary or secondary depending on its direct or indirect impact on environmental variables. Further project activities may influence the environment in construction and operation phase, which will have different extent of impact on environment. Activities during construction phase may have short term environmental impact but operational phase of distillery will pose long term environmental impacts. On the other hand, installation of distillery project will create new opportunities for the development of the local community. Opelations in distillery can disturb the environment in various ways, such as change in air, noise level, water & soil quality of that area. While for the purpose of development and economic up-liftmen of people, there is need for establishment of industries, but these have to be environment friendly. Therefore, it is essential to assess the impacts of proposed project on different environmental parameters, so that abatement measures could be planned in advance for eco-friendly operation in the area. Chapter 3 provides the information on the baseline environmental conditions at the proposed project site for various parameters, while Chapter 4 provides the various pollution loads and stressors that could impact the environment and their mitigation measures which will be implemented by the company.

#### 4.2 POTENTIAL IMPACTS OF PROPOSED PROJECT

Impacts of any project activity have been divided according to the temporal scale into 'Impacts during Construction Phase' and 'Impacts during Operation Phase'.

The environmental impacts of the project will be caused due to activities to be carried out during construction and operation phase. Construction activities spread over pre-construction, installation and commissioning stages, which ends with the induction of manpower and start-up. During the operation phase, impacts would be mostly permanent and irreversible in nature.

#### 4.3 EVALUATION OF IMPACTS

The impact of the proposed project would be assessed on the basis of their characteristics i.e. nature, type, extent, duration, intensity & frequency and its significance.

#### **Characteristics of Impacts**

The impact is described in terms of its characteristics such as nature, type etc. Impact characteristics are given in Table below.

Chapter-IV of Draft EIA / EMP Report

| Characteristic | Classification  | Description                                                                  |
|----------------|-----------------|------------------------------------------------------------------------------|
| Nature         | Positive        | When impact is considered to represent improvement to baseline or            |
|                | impact          | introduce a new positive factor/change.                                      |
|                | Negative        | When impact is considered to represent adverse change from the baseline      |
|                | impact          | or introduce a new undesirable factor/change.                                |
|                | Neutral         | When there is no impact to represent any change from the baseline and not    |
|                |                 | introducing any new factor/change.                                           |
| Туре           | Direct impact   | Resulting from a direct interaction between a project activity and the       |
| <b>7</b> 1     | 1               | receiving environment / receptors.                                           |
|                | Indirect impact | Resulting from other activities that happened as a consequence of the        |
|                | 1               | project.                                                                     |
|                | Cumulative      | Impacts that act together with other impacts (including those from           |
|                | impact          | concurrent or planned future third-party activities) to affect the same      |
|                | 1               | resources and/or receptors as the Project.                                   |
| Extent         | Project Area    | When impact due to the project related activities is restricted within the   |
|                | 110,0001100     | premises of project area i.e. core zone.                                     |
|                | Local           | When impact due to the project related activities is restricted within the   |
|                | 2000            | immediate surroundings i.e. up to 3 km radius.                               |
|                | Zonal           | When impact due to the project related activities is restricted within the   |
|                | 2011            | study area i.e. up to 10 km radius.                                          |
|                | Regional        | When an impact due to the project activity extends within as well as         |
|                | regional        | beyond 10 km radius.                                                         |
| Duration       | Short - term    | When the impact is usually temporary or last for a short time or will have   |
| Durution       | Short term      | an effect soon rather than in the distant future.                            |
|                | Long- term      | When impact would occur during the development of the project and            |
|                | Long term       | either takes a long time or lasts a long time or cause a permanent change in |
|                |                 | the affected receptor/resource.                                              |
| Intensity      | Low             | When resulting in slight changes of prevailing baseline conditions and       |
| intensity      | Low             | quality of existing physical environment is good. Ecological environment     |
|                |                 | as well as human receptors are not likely to be affected due to the project  |
|                |                 | activity.                                                                    |
|                | Medium          | When resulting in changes of prevailing baseline conditions which are        |
|                | Weddian         | within the benchmark norms and quality of existing physical environment      |
|                |                 | shows some signs of stress. Ecological environment as well as human          |
|                |                 | receptors could be sensitive to change in quality of prevailing baseline     |
|                |                 | condition, but human receptors retain an ability to adapt to change.         |
|                | High            | When resulting in changes of prevailing baseline conditions which are        |
|                | 8               | exceeding the benchmark norms and quality of existing physical               |
|                |                 | environment is already under stress. Ecological environment as well as       |
|                |                 | human receptors would be impacted to the larger extent and the ability of    |
|                |                 | human receptors to adapt to changes would be undermined.                     |
| Frequency      | Remote (R)      | When resulting in remote or one off chance of an event due to an activity    |
|                | ~ /             | on a receptor/ resource.                                                     |
|                | Occasional (O)  | When an impact due to an activity is occurring intermittently from time to   |
|                |                 | time on a receptor/resource.                                                 |
|                | Periodic (P)    | When an impact due to an activity is resulting on periodic basis for a week  |
|                | (- )            | or a month on a resource/receptor.                                           |
|                | Continuous      | When an impact due to an activity is continuously resulting on a             |
|                |                 |                                                                              |
|                | (C)             | resource/receptor.                                                           |

Table - 4.1Impact Characteristics

#### **Significance of Impacts**

Impacts are described in terms of 'significance'. Significance is a function of the magnitude &

sensitivity / importance of the impact.

Classification of impact significance is given in Table below.

#### **Table - 4.2 Significance of Impact**

| Significance  | Description                                                                                                                                                                                                                                                              |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Insignificant | Negligible impact or where a resource or receptor (including people) will not be affected in<br>any way by a particular activity, or the predicted effect is deemed to be 'negligible' or<br>'imperceptible' or is indistinguishable from natural background variations. |
| Minor         | Where an effect will be experienced, but the impact is well within accepted standards/guidelines with or without mitigation.                                                                                                                                             |
| Moderate      | Where an effect will be experienced and the impact is within accepted standards/guidelines with mitigation.                                                                                                                                                              |
| Major         | Impact where an accepted limit or standard may be exceeded or the impact occurs to the highly valued/sensitive resource/receptors.                                                                                                                                       |

#### Irreversible and Irretrievable commitments of environmental components

Determining the irreversible and irretrievable commitment of the resources is one of the major stages of impact evaluation, which gives an understanding about the potential impacts that are likely to affect future generations of the area and facilitates for adoption of proper mitigation measure regarding the same.

| Tuble ne                                                               |                                                                                            |  |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Irreversible and Irretrievable commitments of environmental components |                                                                                            |  |  |  |  |  |  |  |  |  |
| Commitment of                                                          | Description                                                                                |  |  |  |  |  |  |  |  |  |
| resources                                                              |                                                                                            |  |  |  |  |  |  |  |  |  |
| Irreversible                                                           | Irreversible commitment of resources refers to the impact or loss of the resources that    |  |  |  |  |  |  |  |  |  |
|                                                                        | cannot be recovered or reversed. Irreversible is a term that describes the loss of future  |  |  |  |  |  |  |  |  |  |
|                                                                        | options. It applies primarily to the impacts of use of non-renewable resources or to       |  |  |  |  |  |  |  |  |  |
|                                                                        | those factors that are renewable only over long periods of time.                           |  |  |  |  |  |  |  |  |  |
| Irretrievable                                                          | Irretrievable is a term that applies to the loss of production, harvest, or use of natural |  |  |  |  |  |  |  |  |  |
|                                                                        | resources. Irretrievable commitment of resources may be considered as the loss of          |  |  |  |  |  |  |  |  |  |
|                                                                        | resources as a result of change (both reversible & irreversible) due to any project        |  |  |  |  |  |  |  |  |  |

activity that cannot be regained or recovered.

Table - 4.3

#### 4.3.1 **Interaction Matrix**

The interaction matrix enables a methodical identification of the potential interactions each project activity may have on the range of resources/receptors within the Area of Influence for the Project. The interaction matrix for the project activities and likely impacted resources/receptors is presented in Table - 4.5 which covers potential interactions, regardless of probability of occurrence. The matrix consists of a list of resources/ receptors that could be affected against a list of project activities.

Entries in the matrix cells are tick marked to indicate whether:

An interaction is not reasonably expected (blank); The interaction is reasonably possible and may lead to potential impact (tick marked).

| S. No. Likely Impacted Resources / Receptors |                               |                                     |  |  |  |  |  |  |
|----------------------------------------------|-------------------------------|-------------------------------------|--|--|--|--|--|--|
| A.                                           | Physical                      | Air                                 |  |  |  |  |  |  |
|                                              |                               | Odour                               |  |  |  |  |  |  |
|                                              |                               | Noise                               |  |  |  |  |  |  |
|                                              |                               | Land Use                            |  |  |  |  |  |  |
|                                              |                               | Topography                          |  |  |  |  |  |  |
|                                              |                               | Geology                             |  |  |  |  |  |  |
|                                              |                               | Ground Water                        |  |  |  |  |  |  |
|                                              |                               | Soil                                |  |  |  |  |  |  |
|                                              |                               | Traffic load                        |  |  |  |  |  |  |
| B.                                           | <b>Biological environment</b> | Flora                               |  |  |  |  |  |  |
|                                              | 0                             | Fauna                               |  |  |  |  |  |  |
| С.                                           | Socio economic environment    | Habitation & Demography             |  |  |  |  |  |  |
|                                              |                               | Land use (w.r.t. population influx) |  |  |  |  |  |  |
|                                              |                               | Economy & Livelihood                |  |  |  |  |  |  |
|                                              |                               | Social & Cultural Structure         |  |  |  |  |  |  |
|                                              |                               | Infrastructure & Public Services    |  |  |  |  |  |  |
|                                              |                               | Public Health                       |  |  |  |  |  |  |
|                                              |                               | Agriculture                         |  |  |  |  |  |  |
|                                              |                               | Transport Infrastructure            |  |  |  |  |  |  |
| D.                                           | Occupation Health & Safety    | Injury                              |  |  |  |  |  |  |
|                                              |                               | Health                              |  |  |  |  |  |  |
|                                              |                               | Non-Routine Risk                    |  |  |  |  |  |  |

| Table: 4.4                            |
|---------------------------------------|
| Likely Impacted Resources / Receptors |

#### Source: Interaction Matrix

According to the interactions identified between project activities and resource/receptors as described in the above table, it is evident that the following aspects are likely to have impact due to the distillery project and therefore, to be considered for Impact Assessment:

Chapter-IV of Draft EIA / EMP Report

| ~         |                                         |                                                     |                                           |                               | _                                         |                                    | WIU                    | iout iii                         | tigation n                                        | icasu                 |                   | -                               |                                          |                                        |                        |                                                                        |                  |                                            |
|-----------|-----------------------------------------|-----------------------------------------------------|-------------------------------------------|-------------------------------|-------------------------------------------|------------------------------------|------------------------|----------------------------------|---------------------------------------------------|-----------------------|-------------------|---------------------------------|------------------------------------------|----------------------------------------|------------------------|------------------------------------------------------------------------|------------------|--------------------------------------------|
| S.<br>No. | Project activity                        |                                                     | Construction phase                        |                               |                                           |                                    |                        |                                  |                                                   |                       | Oper              |                                 | Miscellaneous phase                      |                                        |                        |                                                                        |                  |                                            |
|           | Likely Impacted<br>Resources/ Receptors | Civil works and building of<br>temporary structures | Transportation of<br>equipment /machinery | Heavy equipment<br>onerations | Installation of distillation<br>equipment | Disposal of construction<br>wastes | Influx of construction | Generation of domestic<br>sewage | Transportation of raw<br>material<br>and products | Fermentation process& | Boiler operations | Operation of cooling<br>systems | Storage of raw materials<br>and products | Effluent treatment plant<br>operations | Solid waste generation | Meeting points of workers<br>for rest, shelter, canteen,<br>workshops. | Plant operations | Socio-economic<br>developmental activities |
| А.        | Physical                                |                                                     |                                           |                               |                                           |                                    |                        |                                  |                                                   |                       |                   |                                 |                                          |                                        |                        |                                                                        |                  |                                            |
| 1.        | Air                                     | $\checkmark$                                        | $\checkmark$                              | $\checkmark$                  | $\checkmark$                              | $\checkmark$                       |                        | $\checkmark$                     | $\checkmark$                                      | $\checkmark$          | $\checkmark$      | $\checkmark$                    | $\checkmark$                             |                                        | $\checkmark$           |                                                                        |                  |                                            |
| 2.        | Odor                                    |                                                     |                                           |                               |                                           | $\checkmark$                       |                        | $\checkmark$                     |                                                   | $\checkmark$          |                   |                                 |                                          | $\checkmark$                           | $\checkmark$           |                                                                        |                  |                                            |
| 3.        | Noise                                   | $\checkmark$                                        | 1                                         | $\checkmark$                  | $\checkmark$                              |                                    |                        |                                  | $\checkmark$                                      |                       | √                 | $\checkmark$                    |                                          |                                        |                        | $\checkmark$                                                           |                  |                                            |
| 4.        | Land Use                                |                                                     |                                           |                               | $\checkmark$                              |                                    |                        |                                  |                                                   |                       |                   |                                 | $\checkmark$                             | $\checkmark$                           |                        | $\checkmark$                                                           |                  | $\checkmark$                               |
| 5.        | Topography                              |                                                     |                                           |                               |                                           |                                    |                        |                                  |                                                   |                       |                   |                                 | $\checkmark$                             |                                        |                        |                                                                        |                  |                                            |
| 6.        | Geology                                 |                                                     |                                           |                               |                                           |                                    |                        |                                  |                                                   |                       |                   |                                 | $\checkmark$                             |                                        |                        |                                                                        |                  |                                            |
| 7.        | Drainage pattern                        |                                                     |                                           |                               |                                           |                                    |                        |                                  |                                                   |                       |                   |                                 |                                          |                                        |                        |                                                                        |                  |                                            |
| 8.        | Surface Water                           |                                                     |                                           |                               |                                           | $\checkmark$                       |                        |                                  |                                                   |                       |                   |                                 |                                          | $\checkmark$                           | $\checkmark$           |                                                                        |                  |                                            |
| 9.        | Ground Water                            | $\checkmark$                                        |                                           |                               |                                           | $\checkmark$                       | $\checkmark$           | $\checkmark$                     |                                                   |                       | $\checkmark$      | $\checkmark$                    |                                          | $\checkmark$                           | $\checkmark$           |                                                                        |                  |                                            |
| 10.       | Soil                                    | $\checkmark$                                        |                                           |                               |                                           | $\checkmark$                       |                        | $\checkmark$                     |                                                   | $\checkmark$          | √                 |                                 | $\checkmark$                             |                                        | $\checkmark$           |                                                                        |                  |                                            |

 Table: 4.5

 Imnact Matrix without mitigation measures

#### **Proposed 210 KLPD Grain based Distillery along with 6.25 MW Co-generation Power Plant** At Village Beltukri, Tehsil & District Mahasamund, Chhattisgarh

Chapter-IV of Draft EIA / EMP Report

| S.<br>No. | Project activity                        |                                                     | Cor                                       |                               |                                           |                                    | Opera                  |                                  | Miscellaneous phase                               |                       |   |                                 |                                          |                                        |                        |                                                                        |                  |                                            |
|-----------|-----------------------------------------|-----------------------------------------------------|-------------------------------------------|-------------------------------|-------------------------------------------|------------------------------------|------------------------|----------------------------------|---------------------------------------------------|-----------------------|---|---------------------------------|------------------------------------------|----------------------------------------|------------------------|------------------------------------------------------------------------|------------------|--------------------------------------------|
|           | Likely Impacted<br>Resources/ Receptors | Civil works and building of<br>temporary structures | Transportation of<br>equipment /machinery | Heavy equipment<br>operations | Installation of distillation<br>equipment | Disposal of construction<br>wastes | Influx of construction | Generation of domestic<br>sewage | Transportation of raw<br>material<br>and nroducts | Fermentation process& | ü | Operation of cooling<br>systems | Storage of raw materials<br>and products | Effluent treatment plant<br>operations | Solid waste generation | Meeting points of workers<br>for rest, shelter, canteen,<br>workshops. | Plant operations | Socio-economic<br>developmental activities |
| 11        | Traffic load                            |                                                     | $\checkmark$                              |                               |                                           |                                    |                        |                                  | $\checkmark$                                      |                       |   |                                 |                                          |                                        |                        |                                                                        |                  |                                            |
| В.        | Biological                              |                                                     |                                           |                               |                                           |                                    |                        |                                  |                                                   |                       |   |                                 |                                          |                                        |                        |                                                                        |                  |                                            |
| 1.        | Flora                                   |                                                     |                                           |                               |                                           | $\checkmark$                       |                        |                                  |                                                   |                       |   |                                 | $\checkmark$                             |                                        | $\checkmark$           |                                                                        |                  |                                            |
| 2.        | Fauna                                   |                                                     |                                           |                               |                                           | $\checkmark$                       |                        |                                  |                                                   | $\checkmark$          |   |                                 | $\checkmark$                             |                                        | $\checkmark$           |                                                                        |                  |                                            |
| 3.        | NP/WLS/BR/reserves/For ests etc.        |                                                     |                                           |                               |                                           |                                    |                        |                                  |                                                   |                       |   |                                 |                                          |                                        |                        |                                                                        |                  |                                            |
| C.        | Social / Socio-Economic                 |                                                     |                                           |                               |                                           |                                    |                        |                                  |                                                   |                       |   |                                 |                                          |                                        |                        |                                                                        |                  |                                            |
| 1.        | Demography                              |                                                     |                                           |                               |                                           |                                    | $\checkmark$           |                                  |                                                   |                       |   |                                 |                                          |                                        |                        |                                                                        |                  |                                            |
| 2.        | Physical Displacement                   |                                                     |                                           |                               |                                           |                                    |                        |                                  |                                                   |                       |   |                                 |                                          |                                        |                        |                                                                        |                  |                                            |
| 3.        | Land Use (w.r.t.<br>Population influx)  |                                                     |                                           |                               |                                           |                                    | V                      |                                  |                                                   |                       |   |                                 |                                          |                                        |                        | $\checkmark$                                                           |                  |                                            |
| 4.        | Habitation                              |                                                     |                                           |                               |                                           |                                    |                        |                                  |                                                   |                       |   |                                 |                                          |                                        |                        |                                                                        |                  |                                            |
| 5.        | Economy & Livelihood                    |                                                     |                                           |                               |                                           |                                    | $\checkmark$           |                                  |                                                   |                       |   |                                 |                                          |                                        |                        |                                                                        |                  | $\checkmark$                               |

#### Proposed 210 KLPD Grain based Distillery along with 6.25 MW Co-generation Power Plant At Village Beltukri, Tehsil & District Mahasamund, Chhattisgarh

Chapter-IV of Draft EIA / EMP Report

| S.<br>No. | Project activity                        |                                                     | Construction phase                        |                               |                                           |                                    |                        |                                  |                                                   |                       | Opera        |                                 | Miscellaneous phase                      |                                        |                        |                                                                        |                  |                                            |
|-----------|-----------------------------------------|-----------------------------------------------------|-------------------------------------------|-------------------------------|-------------------------------------------|------------------------------------|------------------------|----------------------------------|---------------------------------------------------|-----------------------|--------------|---------------------------------|------------------------------------------|----------------------------------------|------------------------|------------------------------------------------------------------------|------------------|--------------------------------------------|
|           | Likely Impacted<br>Resources/ Receptors | Civil works and building of<br>temporary structures | Transportation of<br>equipment /machinery | Heavy equipment<br>operations | Installation of distillation<br>equipment | Disposal of construction<br>wastes | Influx of construction | Generation of domestic<br>sewage | Transportation of raw<br>material<br>and products | Fermentation process& | opera        | Operation of cooling<br>systems | Storage of raw materials<br>and products | Effluent treatment plant<br>operations | Solid waste generation | Meeting points of workers<br>for rest, shelter, canteen,<br>workshops. | Plant operations | Socio-economic<br>developmental activities |
| 6.        | Social & Cultural<br>Structure          |                                                     |                                           |                               |                                           |                                    | √                      |                                  |                                                   |                       |              |                                 |                                          |                                        |                        |                                                                        |                  | 1                                          |
| 7.        | Infrastructure and public services      |                                                     | $\checkmark$                              |                               |                                           |                                    |                        |                                  |                                                   |                       |              |                                 |                                          |                                        |                        | $\checkmark$                                                           |                  | 1                                          |
| 8.        | Public Health                           |                                                     |                                           | $\checkmark$                  |                                           | $\checkmark$                       |                        | $\checkmark$                     |                                                   |                       |              |                                 | $\checkmark$                             |                                        | $\checkmark$           | $\checkmark$                                                           |                  | $\checkmark$                               |
| 9.        | Agriculture                             |                                                     |                                           |                               |                                           |                                    |                        |                                  |                                                   |                       |              |                                 |                                          |                                        |                        |                                                                        |                  | $\checkmark$                               |
| 10.       | Transport infrastructure                |                                                     |                                           |                               |                                           |                                    |                        |                                  | $\checkmark$                                      |                       |              |                                 | $\checkmark$                             |                                        |                        |                                                                        |                  | $\checkmark$                               |
| D.        | Occupational Health                     |                                                     |                                           |                               |                                           |                                    |                        |                                  |                                                   |                       |              |                                 |                                          |                                        |                        |                                                                        |                  |                                            |
| 1.        | Injury                                  |                                                     | $\checkmark$                              | $\checkmark$                  | $\checkmark$                              |                                    | $\checkmark$           |                                  | $\checkmark$                                      |                       | $\checkmark$ |                                 |                                          |                                        |                        |                                                                        | $\checkmark$     |                                            |
| 2.        | Health                                  |                                                     |                                           |                               |                                           | $\checkmark$                       | $\checkmark$           |                                  |                                                   | $\checkmark$          | $\checkmark$ |                                 | $\checkmark$                             |                                        | $\checkmark$           |                                                                        | $\checkmark$     |                                            |
| 3.        | Non-routine risk                        |                                                     | $\checkmark$                              | $\checkmark$                  | $\checkmark$                              |                                    | $\checkmark$           |                                  | $\checkmark$                                      | $\checkmark$          | $\checkmark$ |                                 | $\checkmark$                             |                                        |                        |                                                                        | $\checkmark$     |                                            |

The impacts of distillery on various environmental parameters were assessed and are given below:

### 4.4 ANTICIPATED IMPACTS DURING CONSTRUCTION PHASE & PROPOSED MITIGATION MEASURES

During construction phase, the activities related to land de-weeding, leveling of site and construction of building structures and installation of machineries and equipment will lead to emission of particulate matter emissions. Construction activities will temporarily alter the environment of the nearby areas due to movement of heavy machineries and vehicles.

#### 4.4.1 Impact on topography and land use & mitigation measures

Topography of the land is almost flat. Existing land use i.e. Agricultural land will be changed into industrial for installation of proposed project. 33% of the project area will be developed under greenbelt / plantation after implementation of proposed project. There will be change in topography of the site is envisaged due to proposed plant erection.

#### **Mitigation measures**

- Excavated soil in the open area will be stored properly to avoid the spread of wind-blown dust and shall be reused for backfilling and landscape development.
- Proper disposal of construction debris will be maintained so that top soil is not contaminated at the construction place.
- The sewage of domestic routine will be treated properly and garbage if any shall be utilized to make a compost to avoid the impact of these pollutants on the land.

#### 4.4.2 Impact on air quality & mitigation measures

The main sources of dust emissions during the construction phase are the movement of equipment at site leveling, grading, earthwork and foundation works. Exhaust emissions from vehicles and equipment to be deployed during the construction phase is also likely to result in marginal increase in the levels of particulate matter, SO2, NOx and CO. The impact will be for short duration. This will be confined within the plant boundary and is expected to be negligible outside the plant boundary. The impact will, however, be reversible, marginal and temporary in nature and mitigation measures will be taken as below.

#### **Mitigation measures**

- Construction equipment having PUC Certificate will be deployed during the activity to restrict exhaust emission.
- Proper maintenance of vehicles and construction equipment will help in controlling the gaseous emissions.
- Water sprinkling on roads and construction site will prevent fugitive dust.
- > Proper coverage with tarpaulin of all construction material.
- A separate storage area will be demarcated for construction material to confine the dust dispersion.
- Temporary barricading structures shall be provided to reduce carryover of particulates away from the construction area.

- > Ideal running of machinery and vehicles will be avoided.
- Proper PPEs will be provided to workers to avoid accumulation of dust in respiratory tracts and prevent air borne diseases.

#### 4.4.3 Impact on noise environment & mitigation measures

During construction phase, noise will be generated due to following activities/ processes:

- Movement/ operation of transport and construction vehicles/ equipment.
- > Transportation of equipment, materials, and people.
- Other important activities involved in construction stage such as excavation, earthmoving, compaction, concrete mixing, crane operation, steel erection, mechanical/electrical installation. Long term exposure to workers and nearby villagers can cause nasal irritation, disturbance etc.

The noise generated will be high due to construction activities, high noise levels can cause irritation and gradual hearing loss to construction laborer's if high levels of noise are continuously present. Sudden exposure can cause irritation in ear drums and sudden loss in hearing whereas long term exposure will result in gradual ENT problems. Though the noise generation during construction phase will be temporary and will be limited to the project site but workers who are directly exposed to it can have problems related to it.

#### Expected noise levels during construction phase:

| Earth movers                             |                                                 |
|------------------------------------------|-------------------------------------------------|
| Front end loaders                        | 86-94 dB(A)                                     |
| Heavy duty bulldozer                     | 97-107 dB(A)                                    |
| Tractors                                 | 84 dB(A)                                        |
| Scrapers, Graders                        | 85 dB(A)                                        |
| Pavers                                   | 85 dB(A)                                        |
| Pickup Trucks                            | 55 dB(A)                                        |
| Roller                                   | 85 dB(A)                                        |
| Material Handlers:                       |                                                 |
| Concrete Mixer Truck                     | 79-85 dB(A)                                     |
| Concrete Pump Truck                      | 82 dB(A)                                        |
| Tower Crane                              | 70-76 dB(A)                                     |
| Impact Pile Driver                       | 95-101 dB(A)                                    |
| Drum Mixer                               | 80 dB(A)                                        |
| Dump Truck                               | 76- 84 dB(A)                                    |
| Stationary Equipment:                    |                                                 |
| Pumps                                    | 77-81 dB(A)                                     |
| Generators                               | 70 – 82 dB(A)                                   |
| Other Construction Equipment:            |                                                 |
| Welder/Torch                             | 73 dB(A)                                        |
| Source: CPWR – Center for Construction H | Research and Training- OSHA's Approach to Noise |
| Exposure in                              | Construction and                                |

https://www.fhwa.dot.gov/Environment/noise/construction\_noise/handbook/handbook09.cfm\_

#### **Mitigation measures**

- The vehicles used for movement will be taken for preventive maintenance to reduce noise generation.
- > The construction labors will be provided with adequate personal protective equipment.
- Continuous exposure of workers will be avoided by alternating the duties on daily basis.

#### 4.4.4 Impact on water quality & mitigation measures

The water requirement during the construction phase would be approximately 20 KLD which will be easily sourced from ground water. Water requirement has been cited mainly for preparation & mixing of concrete, cooling of construction equipment, usage in spray and sprinklers for dust suppression etc. Water will be stored in RCC tank / overhead and used in civil construction, canteen, besides domestic use by construction workers. Water is a resource and its depletion can certainly affect the concerned areas. Moreover, construction debris and domestic waste, if discharged in water bodies nearby can affect the aquatic flora and fauna to a great extent. If waste water generated during construction activities is discharged on ground, then it can reach the ground water table by leaching and affect the soil quality as well as ground water quality will also be compromised.

#### **Mitigation measures**

- > Domestic waste water will be disposed off in soak pit via septic tank.
- Storm water drains will be properly aligned in conformity with the site drainage pattern so that the alteration is kept to the minimum and flooding or soil erosion does not occur. The storm water drains will be diverted to a water reservoir to collect the runoff. This stored water will be utilized for civil construction purpose.
- Construction workers will be brought from nearby villages so that domestic water is saved in many ways due to temporary requirements only.
- No disposal of solid waste/construction debris of any kind will be done inside or outside plant premises in any water body.
- No discharge of waste water generated during construction activity will be done on soil or land area.

Thus, there will not be any discharge from the site which can have any impact on the water quality and no effluent will be discharged.

#### 4.4.5 Impact on soil & mitigation measures

During construction activity, the impact on soil will be limited to the construction site only. Impact on soil during construction would be mainly due to the left-out construction material. If construction material will be disposed off on land, then it can modify the soil quality to various extent and top soil will get affected which will result in loss of fertility. There will be deteriorating soil quality and decrease in vegetation abundance. It will result in pH, alkalinity, heavy metal content modifications and can affect the vegetation growth of that area.

#### **Mitigation measures**

- Construction wastes will be segregated as much as possible at site itself to increase the feasibility of recycling concrete and masonry as filling material and steel pieces as saleable scrap.
- > Litter disposal and collection points will be established around the work sites.
- Empty packaging materials, drums, glass, tin, paper, plastic, pet bottles, wood, thermocol and other packaging materials, etc. will be disposed through recyclers.
- No dumping on open grounds will be accepted and strict instructions will be given to workers for not disposing any solid or liquid wastes.

#### 4.4.6 Impact on socio-economic environment

The social impact during the construction stage will be of beneficial nature. More than 400 people will get employment during the construction and operational stages on daily average basis. Proposed project will result in growth of the surrounding areas by increased direct and indirect employment opportunities in the region including ancillary development and supporting infrastructure. In addition to the opportunity of getting employment in construction work, the local population would also have employment opportunities in related activities like petty commercial establishments, small contracts and supply of construction materials etc. Local people will be given preference for employment on the basis of their skill and experience. Further, the project will also lead to the development of market, trade centers, activities etc.

## 4.5 ANTICIPATED IMPACTS DURING OPERATION PHASE AND PROPOSED MITIGATION MEASURES

The process involved in the proposed project has varying impacts on the different components of the environment. All these impacts will be considered for impact assessment and accordingly the mitigation measures will be adopted. The design basis for all process units will lay special emphasis on measures to minimize the impact at source itself.

#### 4.5.1 Impact on land topography and suggested mitigation measures

The total project area is 9.0 ha (22.24 acres) & complete land is under possession of company. The company will apply for land conversion to industrial use. Land of 2.97 ha is proposed to be covered under greenbelt and plantation. Besides, no adverse impact on the surrounding land is anticipated. It will be ensured that there would be no effluent discharge from the plant during operation and management will adopt best practice measures for 100% recycling the effluent after treatment in process.

## 4.5.2 Impact on air quality and suggested mitigation measures

During operation phase, air emissions both gaseous and fugitive will be on account of process emissions from stack of boiler unit, fermentation process, D.G. Sets as well as transportation of men and material. The industrial gases like Sulphur oxides and nitrogen oxides if released into the atmosphere result into formation of acids like sulphuric acid and nitric acids and when rainfall occurs, they affect the environment in devastating ways. These gases remain in the atmosphere during winters and form a part of smog that damages the respiratory tract of individuals inhaling in the ambient environment. The gases tend to remain at ground level due to cold winds which are higher in density and form a layer which can harm human respiratory system in various ways. Asthma, bronchitis is severe diseases that can be caused from long term exposure.

| *                          |                                                                                                                                            | 1 V                                                                                                                                                  | 0                       |                |  |  |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------|--|--|
| Impact evaluation element  | Incremental concentrations of pollutants due to more fuel usage and increased fugitive emissions due to transportation, storage activities |                                                                                                                                                      |                         |                |  |  |
| Potential effect/ concern  |                                                                                                                                            | mpact on health of humans and nearby biological/ecological receptors due to ne and point sources of air emissions including fugitive dust emissions. |                         |                |  |  |
| Characteristics of Impacts |                                                                                                                                            |                                                                                                                                                      |                         |                |  |  |
| Nature                     | Posit                                                                                                                                      | ive                                                                                                                                                  | Negative                | Neutral        |  |  |
|                            |                                                                                                                                            |                                                                                                                                                      | $\overline{\mathbf{v}}$ |                |  |  |
| Туре                       | Direct                                                                                                                                     | Indirect                                                                                                                                             | Cumulative              |                |  |  |
|                            | $\checkmark$                                                                                                                               |                                                                                                                                                      | $\checkmark$            |                |  |  |
| Extent                     | Project Area                                                                                                                               | Local                                                                                                                                                | Zonal                   | Regional       |  |  |
|                            |                                                                                                                                            | √                                                                                                                                                    |                         |                |  |  |
| Duration                   | Short -                                                                                                                                    | term                                                                                                                                                 | Long-                   | term           |  |  |
|                            |                                                                                                                                            |                                                                                                                                                      |                         |                |  |  |
| Intensity                  | Lov                                                                                                                                        | W                                                                                                                                                    | Medium                  | High           |  |  |
|                            |                                                                                                                                            |                                                                                                                                                      | $\checkmark$            |                |  |  |
| Frequency                  | Remote (R)                                                                                                                                 | Occasional (O)                                                                                                                                       | Periodic (P)            | Continuous (C) |  |  |
|                            |                                                                                                                                            |                                                                                                                                                      |                         | $\checkmark$   |  |  |
| Significance of Impact     | ·                                                                                                                                          | · · · · · · · · · · · · · · · · · · ·                                                                                                                |                         |                |  |  |
| Significance               | Insignificant                                                                                                                              | Minor                                                                                                                                                | Moderate                | Major          |  |  |
|                            |                                                                                                                                            |                                                                                                                                                      |                         | $\checkmark$   |  |  |

#### Impact evaluation for ambient air quality without mitigation measures

#### A) Stack Emissions

- ESP with adequate stack height (60 m) will be installed with the proposed 60 TPH boiler.
- CO2 generated during the fermentation process will be collected and sold to authorized vendors.
- DG Sets (1 x 1500 KVA) will be provided with adequate stack height as per CPCB Guidelines.
- Greenbelt development around the periphery & within the premises of the plant will help in attenuating the pollutants emitted and maintaining air quality.
- Online Continuous Emission Monitoring System will be installed with the proposed stack and data will be transmitted to CPCB/SPCB servers.
- Regular monitoring will be done to ensure ambient air quality standards

- In order to carry out efficient dispersion of gaseous pollutants, desired velocity of emission shall be ensured through proper functioning of FD/ID fans.
- > Necessary temperature profile will be maintained to decrease nitrogenous emissions.
- Optimum air-fuel ratio (AFR) in the co-generation power plant will be ensured throughout the operation period to reduce the emissions of carbon in the atmosphere.
- Sampling port & monitoring point and online continuous emission monitoring system (OCEMS) will be provided at prescribed stack height.
- **B)** Fugitive emissions
- Transportation: Movement of heavy trucks/vehicles on the roads generates substantial quantity of dust. This is due to the presence of dust over the road, which is carried away by the wind.
- Fuel handling-The handling of biomass/low sulphur coal generates dust that disperses in the ambient environment and sustains for long hours.
- Fly ash handling- The respirable pollutants released from ash handling can affect the normal respiratory behaviors and harm the nearby flora by blocking the stomata pores. Ash remains in environment for long hours, as such inhalation by humans can cause accumulation inside respiratory systems and can cause inhalation problems. The flora present in the area will get affected by long term deposition on leaves surfaces and can cause blockage of stomatal pores. Wilting of leaves of plants primarily exposed to ash can be seen. Deposition of ash on soil surface can reach to ground water and can cause contamination beyond acceptable extents. The dispersion of ash can also cause accumulation in treated waste water and can cause contamination of treated waste water. Bagasse and grain dust is said to cause grain diseases and respiratory problems in humans.

#### **Mitigation measures**

- > All internal roads shall be asphalted to control fugitive emissions.
- Vehicles and machineries will be regularly maintained. Proper upkeep and maintenance of vehicles will be done.
- Adequate greenbelt will be developed in the plant area. Greenbelt acts as a surface for settling of dust particles and thus reduces the concentration of particulate matter in air.
- > Regular water sprinkling on roads will be carried out to suppress any dust dispersion.
- Engines of idle vehicle machineries/equipment shall be turned off.
- Use of low-emission vehicles and wherever feasible, construction equipment powered by electricity shall be preferred.
- All transportation vehicles shall carry a valid PUC (Pollution under Control) Certificate.
- > Proper servicing & maintenance of vehicles will be carried out.
- Pneumatic conveyors are suggested to be used for stacking of husk to avoid manual stacking.

> The overall quality of the ambient air will be maintained within the limit prescribed by CPCB/SPCB after the commencement of the operations of proposed project.

## C) Odor problems and mitigation measures

Odor is a problem in the distillery plant due to typical odor compounds like alcohol, iso-amyl & iso-butyl alcohol (fusel oils). The odour problems are the prime cause of irritation to people working in plant site. Foul odour might not cause direct damage to health but toxic stimulants of odour may cause ill health or respiratory symptoms leading to side effects like nausea, insomnia and discomfort. Strong & continuous odour can result in irritation in nasal pathway, enhance symptoms of breathing problems or asthma.

Thus, the cited mitigation measures for odor control are as follows:

- Adequate greenbelt all around the periphery of the plant will be developed.
- Efficient CO2 collection to avoid carryover of alcohol vapours & other fumes
- > Regular steaming of all fermentation equipment.
- Longer storages of any product/by-products will be avoided & use of efficient biocides to control bacterial contamination.
- Regular use of disinfectants in the storm water drains to avoid generation of microorganisms.
- > Uses of leak proof technology within all pumps and pipelines.
- > Proper maintenance of ETP/CPU and periodic audits to inspect cleanliness.
- > Proper replacement of micro-organisms and no storage of waste water for long intervals.

## 4.5.2.1 Air quality impact prediction through mathematical modelling

The present study assesses the impact on air environment due to the proposed Grain based distillery along with Co-generation power plant.

The present study assesses the impact on air environment due to the proposed project. This section gives the peak incremental ground level concentrations of PM10, PM2.5, SO2 & NOx up to a distance of 10 km radius from the plant site. The concentrations have been predicted in all directions covering all types of weather conditions. Spatial distributions of all the pollutants are also presented in the form of isopleths. Prediction of impacts on air quality has been carried out employing mathematical model based on a steady state Gaussian plume dispersion model designed for multiple point sources for short term. In the present case, AERMET View 10.2.1 and AERMOD View 10.2.1 based on steady state Gaussian plume dispersion, designed for multiple sources and developed by United States Environmental Protection Agency [USEPA] has been used for simulations from Industrial sources.

The options used for short-term computations in AERMOD are:

The plume rise is estimated by Briggs formulae, but the final rise is always limited to that of the mixing layer;

- Stack tip down-wash is not considered;
- Buoyancy Induced Dispersion is used to describe the increase in plume dispersion during the ascension phase;
- Calms processing routine is used by default;
- > Wind profile exponents is used by default, 'Irwin';
- > Flat terrain is used for computations;
- It is assumed that the pollutants do not undergo any physio-chemical transformation and that there is no pollutant removal by dry deposition;
- ➢ Washout by rain is not considered;
- Cartesian co-ordinate system has been used for computations

## 4.5.2.1.1 Model input data

## a) Meteorological data

Meteorological inputs required are temperature, relative humidity, wind speed & wind direction etc. which was recorded at site during Summer Season (March to May, 2023). Hourly meteorological data has been enclosed as **Annexure 3** with this EIA / EMP Report.

## b) Stack emissions

The emission details are given in table below

| i roposed stack emission details |                                                       |                 |                    |                          |                 |     |              |              |                                           |    |           |
|----------------------------------|-------------------------------------------------------|-----------------|--------------------|--------------------------|-----------------|-----|--------------|--------------|-------------------------------------------|----|-----------|
| Stack<br>attached                | Fuel<br>Type                                          | Height<br>from  | Intern<br>al       | Emission Rate<br>(g/sec) |                 |     |              |              |                                           | Ex | haust Gas |
| to.                              |                                                       | ground<br>level | Diamet             | PM                       | SO <sub>2</sub> | NO  | ity<br>(m/se | Temp<br>(°C) | Volumetric<br>Flow (Nm <sup>3</sup> /sec) |    |           |
|                                  |                                                       | (m)             | er<br>(Top)<br>(m) | 10                       |                 | 2   | c)           | (0)          | Flow (Iviii /sec)                         |    |           |
| Proposed<br>60 TPH<br>Boiler     | Biomass/<br>Rice<br>Husk or<br>Low<br>Sulphur<br>coal | 60 m            | 2.5                | 1.0                      | 3.4             | 3.4 | 10           | 150          | 33.685                                    |    |           |

| Т                   | able - 4.6 |             |
|---------------------|------------|-------------|
| <b>Proposed</b> sta | ack emissi | ion details |

## 4.5.2.1.2 Presentation of results

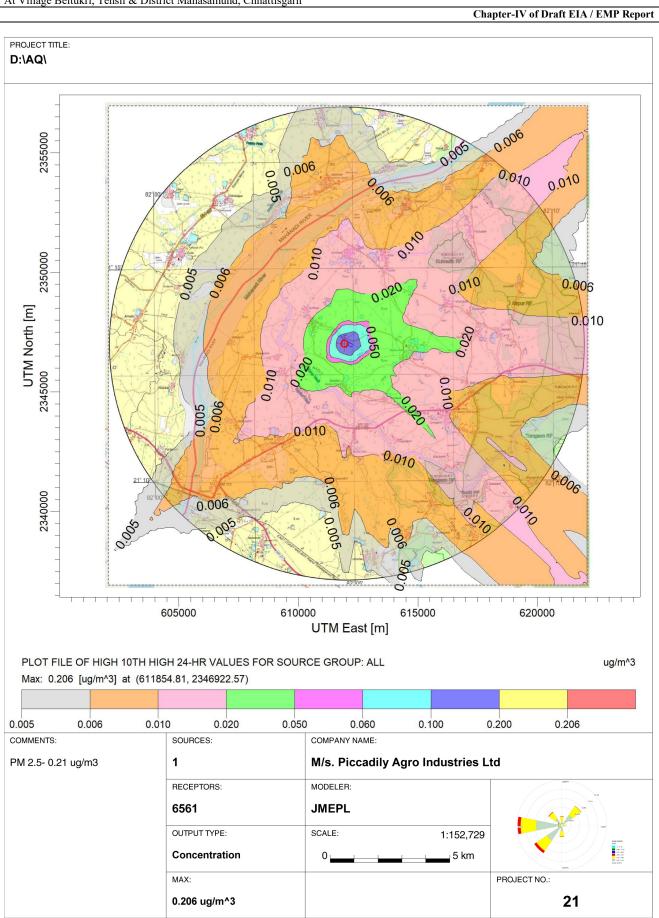
In the present case, model simulations have been carried using the hourly Triple Joint Frequency data. Short-term simulations were carried to estimate concentrations at the receptors to obtain an optimum description of variations in concentrations over the site in 10 km radius covering 16 directions.

The incremental concentrations are estimated for the monitoring period. For each time scale, i.e. for 24 hour the model computes the highest concentrations observed during the period over all the measurement points.

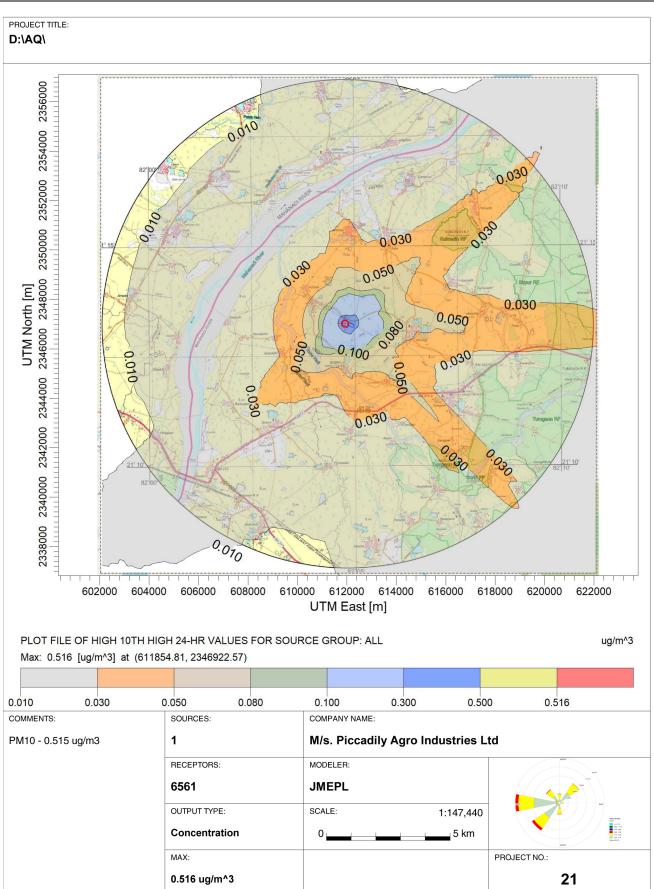
Existing value has been covered in the background ambient air quality monitoring.

| Scenarios                                   | Incremental concentration of pollutan<br>(μg/m <sup>3</sup> ) |                 |                 |
|---------------------------------------------|---------------------------------------------------------------|-----------------|-----------------|
|                                             | <b>PM</b> <sub>10</sub>                                       | SO <sub>2</sub> | NO <sub>2</sub> |
| Maximum Background Concentrations (24 Hrs.) | 59.2                                                          | 10.1            | 19.6            |
| Predicted Max. GLC (24 Hrs.)                | 0.52                                                          | 0.72            | 0.82            |
| <b>Total Concentration</b>                  | 59.72                                                         | 10.82           | 20.42           |
| NAAQS - Industrial Limits                   | 100                                                           | 80              | 80              |

 Table - 4.7

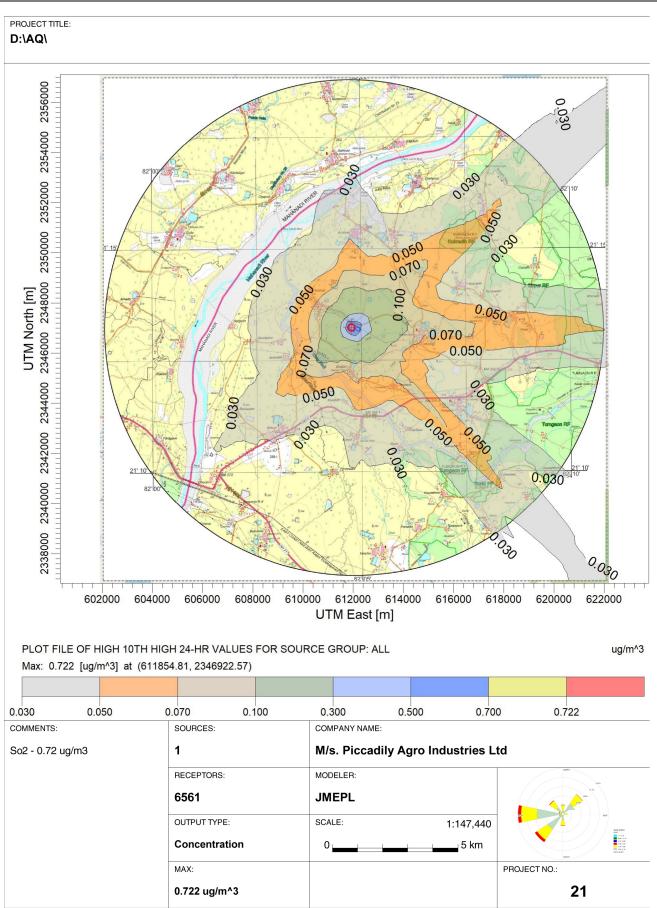

 Peak incremental concentration for different scenarios

Thus, prediction of maximum incremental GLCs has been done for the project.


The maximum incremental GLCs due to the project for particulate matter  $PM_{2.5}$  and  $PM_{10}$  are 0.206  $\mu g/m^3$  and 0.516  $\mu g/m^3$ ; for SO<sub>2</sub> & NO<sub>2</sub> is 0.72  $\mu g/m^3$  & 0.82  $\mu g/m^3$  respectively.

# Conclusion: -

Pollution mitigation and management plan should be followed to curtail the impact of gaseous and dust emissions in the study area. The maximum predicted incremental GLCs after implementation of the project for PM10, PM2.5, SO2 and NOx are superimposed on the maximum monitored baseline concentrations recorded at the plant site are likely to be found within the prescribed NAAQ standards. There will be no significant threat to the gaseous pollutants of the ambient air quality; however, concentration of particulate matter is a subject of concern - though not immediate. Proper mitigation plan for dust control will be implemented in the plant premises. In advent of any failure of APCE, plant will automatically get tripped / shut down; therefore, will not have any impact on the surrounding environment.




#### Proposed 210 KLPD Grain based Distillery along with 6.25 MW Co-generation Power Plant At Village Beltukri, Tehsil & District Mahasamund, Chhattisgarh



# Figure 4.2: Isopleth Showing Maximum Predicted GLC of PM<sub>10</sub>

Chapter-IV of Draft EIA / EMP Report



Chapter-IV of Draft EIA / EMP Report

Figure 4.3: Isopleth Showing Maximum Predicted GLC of SO<sub>2</sub>

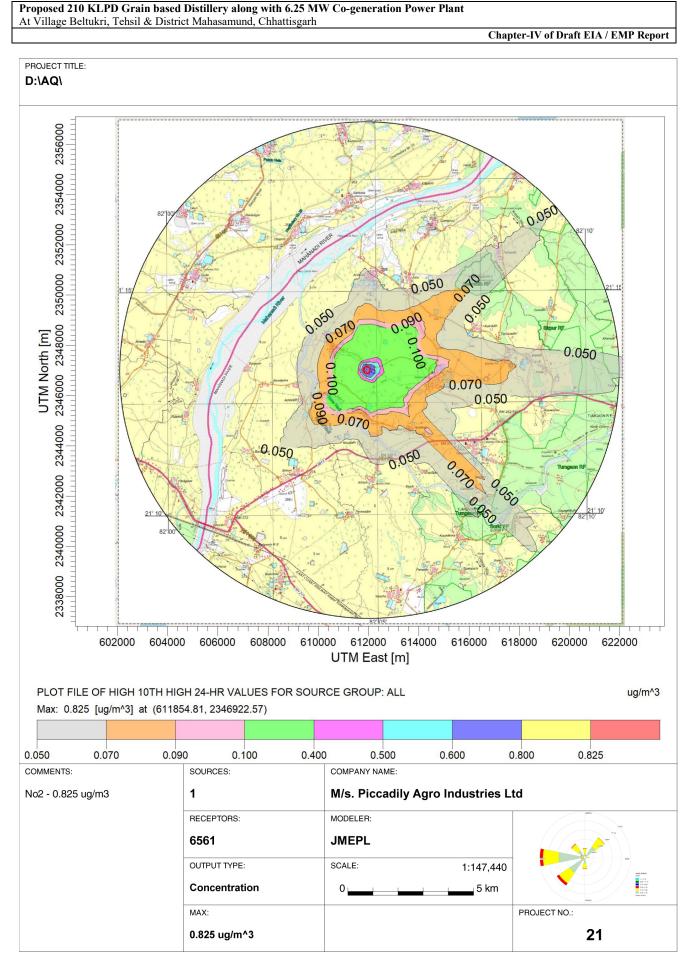



Figure 4.4: Isopleth Showing Maximum Predicted GLC of NO<sub>2</sub>

## 4.5.2.2 Impact due to transportation of raw material & products

The proposed distillery project site is located at Village Beltukri, Tehsil & District Mahasamund, Chhattisgarh. The project site is well connected with NH – 53 (~3.5 km in South Direction), NH 353 (~8.0 km in SW direction), SH – 20 (~8.0 km in SW direction). Nearest Railway Station is Belsonda RS (~8.4 km in SW direction).

| Impact evaluation for trans | nortation infrastructur | e without mitigation measures |
|-----------------------------|-------------------------|-------------------------------|
| impact evaluation for trans | portation mirastructur  | e without miligation measures |

| ks to end |
|-----------|
| ral       |
| ral       |
| ral       |
| ral       |
| tral      |
|           |
|           |
|           |
|           |
| onal      |
|           |
|           |
|           |
| gh        |
|           |
| ous (C)   |
|           |
|           |
| or        |
| ~-        |
| 10        |

## 4.5.2.2.1 Existing traffic count

Traffic survey has been conducted for 24 hours at NH - 53 (~3.5 km in South Direction). The traffic survey monitoring was performed to predict the future traffic growth and the load on the plant road and surroundings due to the proposed project.

## **Details of sample collection:**

Manual Classified Turning Count (MCTC) is the method used for counting the number of vehicles passing through intersections and classify the vehicles according to type (e.g. cars, motorbikes etc.). Measurements of traffic density were made continuously for 24 hours by visual observation and counting of vehicles under six categories, viz., Motor cycle/ scooter, Passenger car/ van/ auto rickshaw, tractors, trucks, bus and trailers. Two persons were deployed to count the number of vehicles from each side. Total numbers of vehicles per hour under the six categories were determined. The details of the traffic volume count have been provided in table given below.

Chapter-IV of Draft EIA / EMP Report

| Time of Monitoring | Types of Vehicles       |                                             |        |       |                |  |  |
|--------------------|-------------------------|---------------------------------------------|--------|-------|----------------|--|--|
|                    | Motor Cycle<br>/Scooter | Passenger Car / Auto<br>rikshaw/ Pickup Van | Trucks | Buses | Total Vehicles |  |  |
| 10:01 to 11:00 am  | 68                      | 105                                         | 41     | 32    | 246            |  |  |
| 11:00 to 12 noon   | 71                      | 99                                          | 39     | 33    | 242            |  |  |
| 12:01 to 1:00 pm   | 56                      | 88                                          | 32     | 23    | 199            |  |  |
| 1:01 to 2:00 pm    | 51                      | 74                                          | 29     | 23    | 177            |  |  |
| 2:01 to 3:00 pm    | 44                      | 71                                          | 21     | 22    | 158            |  |  |
| 3:01 to 4:00 pm    | 39                      | 75                                          | 16     | 21    | 151            |  |  |
| 4:01 to 5:00 pm    | 48                      | 76                                          | 13     | 15    | 152            |  |  |
| 5:01 to 6:00 pm    | 51                      | 99                                          | 39     | 28    | 217            |  |  |
| 6:01 to 7:00 pm    | 55                      | 109                                         | 48     | 22    | 234            |  |  |
| 7:01 to 8:00 pm    | 48                      | 118                                         | 42     | 18    | 226            |  |  |
| 8:01 to 9:00 pm    | 33                      | 86                                          | 38     | 16    | 173            |  |  |
| 9:01 to 10:00 pm   | 21                      | 39                                          | 29     | 13    | 102            |  |  |
| 10:01 to 11:00 pm  | 16                      | 22                                          | 21     | 11    | 70             |  |  |
| 11:01 to 12:00 pm  | 10                      | 17                                          | 16     | 9     | 52             |  |  |
| 12:01 to 1:00 am   | 6                       | 11                                          | 13     | 4     | 34             |  |  |
| 1:01 to 2:00 am    | 4                       | 9                                           | 11     | 3     | 27             |  |  |
| 2:01 to 3:00 am    | 6                       | 7                                           | 9      | 6     | 28             |  |  |
| 3:01 to 4:00 am    | 9                       | 11                                          | 9      | 8     | 37             |  |  |
| 4:01 to 5:00 am    | 11                      | 13                                          | 17     | 11    | 52             |  |  |
| 5:01 to 6:00 am    | 15                      | 38                                          | 13     | 9     | 75             |  |  |
| 6:01 to 7:00 am    | 28                      | 31                                          | 24     | 13    | 96             |  |  |
| 7:01 to 8:00 am    | 40                      | 44                                          | 38     | 18    | 140            |  |  |
| 8:01 to 9:00 am    | 52                      | 62                                          | 42     | 28    | 184            |  |  |
| 9:01 to 10:00 am   | 57                      | 75                                          | 48     | 32    | 212            |  |  |
| Total              | 839                     | 1379                                        | 648    | 418   | 3284           |  |  |

Table- 4.8Traffic Count Survey

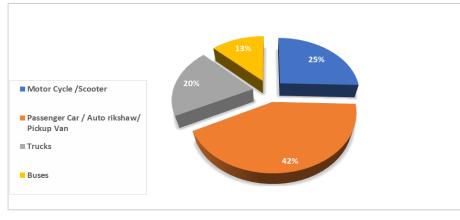



Figure 4.5: Traffic Volume count survey

Chapter-IV of Draft EIA / EMP Report

| S.<br>No. | Vehicle type                               | No. of vehicles<br>per day | Passenger car<br>unit (PCU)<br>factor as per<br>IRC 64:1990 | Total no. of vehicles<br>(PCU)/day |
|-----------|--------------------------------------------|----------------------------|-------------------------------------------------------------|------------------------------------|
| 1.        | Motor Cycle / Cycle/Scooter                | 839                        | 0.5                                                         | 419.5                              |
| 2.        | Passenger Car / Auto<br>rikshaw/Pickup Van | 1379                       | 1.0                                                         | 1379                               |
| 3.        | Truck                                      | 648                        | 3.0                                                         | 1944                               |
| 4.        | Buses                                      | 418                        | 3.0                                                         | 1254                               |
|           | Total                                      | 3284                       |                                                             | 4996.5                             |
|           | PCU/hr=(                                   | PCU/day)/24                |                                                             | 209 PCU/hr                         |

Table- 4.9No. of vehicles with respect to PCU

# EXISTING TRAFFIC SCENARIO & LOS

| Road  | V<br>(Volume in<br>PCU/hr.) | C<br>(Capacity in<br>PCU/hr. as per IRC<br>64:1990) | Existing V/C<br>Ratio | LOS |
|-------|-----------------------------|-----------------------------------------------------|-----------------------|-----|
| NH-53 | 209                         | 625                                                 | 0.33                  | В   |

## CAPACITY AS PER IRC: 64-1990

| V/C       | LOS (Level of Service) | Performance           |
|-----------|------------------------|-----------------------|
| 0.0 - 0.2 | А                      | Excellent             |
| 0.2 - 0.4 | В                      | Very Good             |
| 0.4 - 0.6 | С                      | Good / Average / Fair |
| 0.6 - 0.8 | D                      | Poor                  |
| 0.8 - 1.0 | Е                      | Very Poor             |

# **Traffic Analysis**

From the study, it was observed that traffic movement in the 10 Km radius of the study area is high. At present, the traffic load calculated is 3284 vehicles per day approximately. The majority of vehicles include Motor cycle/cycle/scooter & Passenger car/van. The LOS value is calculated as 0.33 i.e., B and the traffic condition is "Very Good". There will be no major impact of the transport of raw materials and end products on the surrounding environment due to proposed project as the highway is already a busy route and no effect will be seen due to minimal no. of trips required during construction and operation phase. The raw material will be easily transported through road transport.

# 4.5.2.2.2 Additional traffic due to proposed project

The proposed project will have some impact (as discussed earlier) on transportation due to the movement of construction materials as the installation of distillery is taking place. Proper arrangements for movement of vehicles and parking have been proposed in the project site. Parking arrangement will be provided in plant premises after installation also as very less

transportation through road is envisaged for raw material as well as product. The raw material required for the distillery unit will be molasses/cane juice/grain which will be transported by road and fuel from nearby open markets. Fly ash and alcohol will be also be primarily transported by road. Details regarding the additional traffic due to proposed project are given below:

|          | Increa                                        | se in traffic load due to pro             | poseu project                   | Ι                            |
|----------|-----------------------------------------------|-------------------------------------------|---------------------------------|------------------------------|
| S.<br>No | Name of material to be<br>transported by road | Quantity of material<br>required/produced | Type of vehicle<br>and capacity | No. of trips/day<br>(filled) |
|          |                                               | Raw material                              |                                 |                              |
| 2.       | Grain                                         | 464 TPD                                   | Trucks/25 ton                   | 19                           |
| 3.       | Others                                        | -                                         | -                               | 4                            |
|          |                                               | Fuel requireme                            | ent                             |                              |
| 4.       | Biomass/Rice husk                             | 412 TPD                                   | Trucks/15 ton                   | 28                           |
|          |                                               | Product                                   |                                 |                              |
| 5.       | Alcohol                                       | 210 KLPD                                  | Tankers/20 KL                   | 11                           |
|          |                                               | Solid waste                               |                                 |                              |
| 6.       | Fly ash                                       | 116 TPD                                   | Trucks/15 ton                   | 8                            |
| 7.       | DDGS                                          | 88 TPD                                    | Trucks/15 ton                   | 6                            |
| 8.       | CO2                                           | -                                         | -                               | 3                            |
|          |                                               | Total trips/day                           |                                 | 79 trips/day                 |

Table 4.10Increase in traffic load due to proposed project

Note: Calculations have been done considering extreme worst cases.

Total No. of increased trucks / tankers per day=79

Total No. of increased trucks / tankers per hour=4 trucks/hour

Increased PCU / hr. = 4x3.0=12

## MODIFIED TRAFFIC SCENARIO AND LOS (LEVEL OF SERVICE)

| Road | Increased PCU | V (Volume in<br>PCU/hr.) | C<br>(Capacity in PCU/hr as<br>per IRC 64:1990) | V/C<br>Ratio | LOS |
|------|---------------|--------------------------|-------------------------------------------------|--------------|-----|
| NH53 | 12x100%       | 209+12 =221              | 625                                             | 0.35         | В   |

The LOS value is "Very Good" for NH 53 even after calculating additional traffic load increase per day; hence, the additional load on the carrying Capacity of the concern roads has not changed LOS value.

Thus, it can be concluded that the present road network is good enough to bear the minor increased traffic load. The company will take all appropriate measures to reduce the impact of transportation. The additional load of 94 trips per day will also be added to the initial count. Proper mitigation measures will be adopted by the company to minimize traffic flow to the best possible extent resulting in low level of dust, noise & gaseous emissions.

#### **Anticipated impacts**

- > Increase in traffic density will lead to air pollution.
- Movement of vehicles will cause noise pollution.
- > No direct impact envisaged on the flora and fauna of the area.
- > Increased traffic may cause accidental incidences and public health problems.

#### **Mitigation measures**

- > Vehicles with larger capacity will be preferred in order to decrease no. of trips.
- > Trolleys will be preferred as compared to trucks/tractors if the source is near to project site.
- > Vehicles with PUC Certificate will be hired.
- Regular maintenance of vehicles will be done to ensure smooth running of vehicle.
- > Vehicles will be covered with a tarpaulin & not over loaded.
- > Vehicular emissions will be kept under control and regularly monitored.
- > Un-necessary blowing of horn will be avoided.
- > Roads will be maintained in good condition to reduce noise due to traffic.
- > Greenbelt of appropriate quality & width will be maintained
- > To avoid accidents the speed of vehicles will be low near habitation areas.

#### 4.5.3 Impact on water environment and mitigation measures

The effluents generated during distillery process, if not discharged properly can enter into ground water through leaching and can harm the biota to a lethal extent as the pollutants will have the tendency to increase BOD, COD, TSS, TDS of the water body. It will result is loss of aquatic fauna and long term change in characteristics of water bodies present in the vicinity. The discharge will also harm the soil flora and fauna and result in reduction of fertility of soil.

| Impact Evaluation<br>Element | Change in water quality parameters                                                                                            |                 |          |          |  |  |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------|----------|----------|--|--|
| Potential Effect/ Concern    | Impact on aquatic biota and ground water quality due to discharge of tertiary treated waste water/spent wash in nearby drain. |                 |          |          |  |  |
| Characteristics              | s of Impacts                                                                                                                  |                 |          |          |  |  |
| Nature                       | Positi                                                                                                                        | ve              | Negative | Neutral  |  |  |
|                              |                                                                                                                               |                 | √        |          |  |  |
| Туре                         | Direct                                                                                                                        | Indirect        | Cumul    | ative    |  |  |
|                              | √                                                                                                                             |                 | 1        |          |  |  |
| Extent                       | Project Area                                                                                                                  | Local           | Zonal    | Regional |  |  |
|                              |                                                                                                                               | √ ·             |          |          |  |  |
| Duration                     | Short - term Long- term                                                                                                       |                 |          |          |  |  |
|                              | √                                                                                                                             |                 |          |          |  |  |
| Intensity                    | Low                                                                                                                           | Low Medium High |          |          |  |  |

## Impact evaluation of water pollution without mitigation measures

|                        |               |                |              | $\checkmark$   |
|------------------------|---------------|----------------|--------------|----------------|
| Frequency              | Remote (R)    | Occasional (O) | Periodic (P) | Continuous (C) |
|                        |               |                |              | $\checkmark$   |
| Significance of Impact |               |                |              |                |
| Significance           | Insignificant | Minor          | Moderate     | Major          |
|                        |               |                |              | $\checkmark$   |

## Mitigation measures:

- > The Grain based distillery will be based on "Zero Effluent Discharge".
- For Grain based operation: Grain Slops (1163 TPD) will be taken through Centrifuge Decanters for separation of Suspended Solids separated as Wet Cake and which goes as cattle, poultry and fish feed as it contains high protein. (Also known as DWG Distillers Wet Grains). Thin Slops from the Decanter Centrifuge will be partly recycled back to process and balance portions shall be taken to Thins Slops Evaporation Plant for concentration of remaining solids to form Syrup. This Syrup will be also mixed into the Wet Cake coming out of Centrifuge and forms part of Cattle, poultry and fish Feed. DWGS Drier: The Wet Cake (DWGS) and Syrup mixture will be dried in Steam Tube Bundle Dryer for producing DDGS with 8-10% moisture (max.). DDGS (88 TPD) will be utilized as Cattle, poultry and fish feed ingredients.
- During Malt Spirit Process: Malt Spirit Slops will be passed through centrifuge decanters for separation of suspended solids separated as Wet Cake (also known as DWG – Distillers Wet Grains).
- Process condensate, boiler Blowdown, DM plant reject & washing, CT blowdown will be treated in CPU/ETP of capacity 1200 KLPD and treated water will be reused in process activities.
- > Domestic waste water will be treated in Sewage Treatment Plant of Capacity 30 KLPD.
- > Regular monitoring of ground water quality will be carried out.
- Storm water drainage system to collect surface runoff is separately connected to rainwater harvesting tank and water will be reused in plant activities.
- Treated wastewater (such as sewage, industrial wastes, or stored surface runoffs) will be recirculated in the process.

# Zero Effluent Discharge scheme:

Total fresh water requirement for 210 KLPD Grain based operation will be 1102 KLPD (802 KLPD for Distillery along with co-generation power plant, 100 KLPD for Malt spirit plant, 150 KLPD for Bottling plant & 50 KLPD Domestic usage & others), which will be sourced from Surface water (Mahanadi river through Samodha Dam). 100 % waste water will be recycled internally. Waste water generated in the form of Process condensate, boiler Blowdown, DM plant reject & washing, CT blowdown will be treated in CPU/ETP of capacity 1200 KLPD and recycled again within process.

Grain Slops (1163 TPD) will be taken through Centrifuge Decanters for separation of Suspended Solids separated as Wet Cake and which goes as cattle, poultry and fish feed as it contains high protein. (Also known as DWG – Distillers Wet Grains). Thin Slops from the Decanter Centrifuge will be partly recycled back to process and balance portions shall be taken to Thins Slops Evaporation Plant for concentration of remaining solids to form Syrup. This Syrup will be also mixed into the Wet Cake coming out of Centrifuge and DWGS Drier: The Wet Cake (DWGS) and Syrup mixture will be dried in Steam Tube Bundle Dryer for producing DDGS with 8-10% moisture (max.). DDGS (88 TPD) will be utilized as Cattle, poultry and fish feed ingredients. STP (30 KLPD) will be used to treat domestic waste water. Treated water from STP will be used for greenbelt development and miscellaneous purpose. Hence, no discharge will be done outside plant premises.

Details regarding Effluent Treatment Plant/CPU, flow diagram and characteristics of inlet and outlet effluent are given in Chapter 2.

## 4.5.4 Impact on noise level and mitigation measures

During operation phase, there is likely hood of some increase in noise. The sources of noise will be running equipment viz. exhaust fans, compressors, pumps, motors, etc. Unnecessary noise levels increase may occur due to poor lubrication in machinery, worn out parts of old machinery, loosened nuts/ bolts, improper foundation and its mountings, flattened springs support etc. The noise can also be generated due to other ancillary activities and movements of vehicles on roads, highways etc. The noise level near the machinery will be maintained below 85 dB (A) and the expected noise levels at the plant boundary will be maintained below 75 dB (A) during day time & 70 dB (A) during night time. Higher noise level health effects are related to physical and psychological health deterioration by regular & consistent exposure to elevated sound levels. Elevated noise in workplace or ambient noise can cause hearing impairment/damage, ischemic heart disease, hypertension, annoyance and sleep disturbance. Impact on Immune system and birth defects can also be seen due to high & long term noise level exposure.

| Impact Evaluation<br>Element      | Change of noise level due to the proposed project of distillery                                                                                                                                                  |              |          |         |  |  |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|---------|--|--|
| Potential Effect/ Concern         | Impact on health of humans and biological factors/receptors due to noise<br>generated due to distillery activities during day and night time and also on<br>occupational health of the workers exposed to noise. |              |          |         |  |  |
| <b>Characteristics of Impacts</b> |                                                                                                                                                                                                                  |              |          |         |  |  |
| Nature                            | Posit                                                                                                                                                                                                            | ive          | Negative | Neutral |  |  |
|                                   | $\checkmark$                                                                                                                                                                                                     |              |          |         |  |  |
| Туре                              | Direct Indirect Cumulative                                                                                                                                                                                       |              |          |         |  |  |
|                                   | √                                                                                                                                                                                                                | $\checkmark$ |          |         |  |  |

#### Impact evaluation for noise without mitigation measures

| Extent                 | <b>Project Area</b> | Local          | Zonal        | Regional       |
|------------------------|---------------------|----------------|--------------|----------------|
|                        | $\checkmark$        |                |              |                |
| Duration               | Short -             | term           | Long- t      | erm            |
|                        | $\checkmark$        |                |              |                |
| Intensity              | Low                 |                | Medium       | High           |
|                        |                     |                | $\checkmark$ |                |
| Frequency              | Remote (R)          | Occasional (O) | Periodic (P) | Continuous (C) |
|                        |                     |                |              | $\checkmark$   |
| Significance of Impact |                     |                |              |                |
| Significance           | Insignificant       | Minor          | Moderate     | Major          |
|                        |                     |                | $\checkmark$ |                |

#### **Mitigation measures**

Proper noise abatement measures will be taken and persons working just close to machine and machine operators will be provided with personal protective equipment viz. ear plugs / ear muffs etc. for further protection. Vibrations due to any other operation are ruled out.

Apart from the above, the following measures will be taken:

- Personal Protective Equipment like earplugs and earmuffs will be provided to the workers exposed to high noise level.
- Proper maintenance, oiling and greasing of machines at regular intervals will be done to reduce generation of noise.
- All noise producing equipment will be enclosed in acoustic hoods and in sound proof buildings.
- Greenbelt of appropriate width at the plant boundary will be developed to absorb noise and reduce its intensity to an acceptable extent.
- Noise generating equipment like pump, motors, compressors, blower, turbine/engines, power generator sets/ engines etc. will be mounted on sturdy concrete foundations with proper & suitable rubber padding to reduce vibrations & thereby noise generation. Pumps, fans, compressor, etc. will be statically and dynamically balanced.
- The major noise producing equipment such as turbine will be provided with sound proof container, where ever possible. Acoustic enclosure for DG set and similar provision like noise attenuator wherever suitable/possible.

## 4.5.5 Impact due to solid and hazardous waste generation and mitigation measures

Solid waste generated in project will be sludge and conc. spent wash. These solid wastes, if not disposed properly can result in odour issues, top soil degradation, harm to soil fauna and flora etc. Solid and hazardous wastes, if not disposed as per the standards can cause soil pollution and harm to flora and fauna at the regional to local level. It can result in fugitive emissions in the ambient

environment. Yeast sludge will result in odor problems in the surrounding area. Used oil and grease when disposed of incorrectly it can harm the land, waterways, underground reservoirs and the marine environment. Oil stored is also a potential fire hazard.

#### Impact evaluation of solid and hazardous waste management without mitigation measures

| _                          |                                                                              |                                                                            | _                       | -              |  |  |
|----------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------|----------------|--|--|
| Impact Evaluation Element  | Soil, ground, ambient environment of the specific area where solid/hazardous |                                                                            |                         |                |  |  |
|                            | waste will be disp                                                           | waste will be disposed off.                                                |                         |                |  |  |
| Potential Effect/ Concern  | Odour issues, lea                                                            | Odour issues, leaching of harmful chemicals and waste, pollution of ground |                         |                |  |  |
|                            | water, top soil deg                                                          |                                                                            |                         | Ŭ              |  |  |
| Characteristics of Impacts |                                                                              | ,                                                                          |                         |                |  |  |
| Nature                     | Posi                                                                         | tive                                                                       | Negative                | Neutral        |  |  |
|                            |                                                                              |                                                                            | 7√                      |                |  |  |
| Туре                       | Direct                                                                       | Indirect                                                                   | Cumul                   | ative          |  |  |
|                            |                                                                              |                                                                            | $\checkmark$            |                |  |  |
| Extent                     | Project Area                                                                 | Local                                                                      | Zonal                   | Regional       |  |  |
|                            |                                                                              |                                                                            | $\checkmark$            |                |  |  |
| Duration                   | Short – term                                                                 |                                                                            | Long-                   | term           |  |  |
|                            |                                                                              |                                                                            | $\checkmark$            |                |  |  |
| Intensity                  | Low                                                                          |                                                                            | Medium                  | High           |  |  |
|                            |                                                                              |                                                                            | $\checkmark$            |                |  |  |
| Frequency                  | Remote (R)                                                                   | Occasional (O)                                                             | Periodic (P)            | Continuous (C) |  |  |
|                            |                                                                              |                                                                            |                         | $\checkmark$   |  |  |
| Significance of Impact     | -                                                                            |                                                                            |                         |                |  |  |
| Significance               | Insignificant                                                                | Minor                                                                      | Moderate                | Major          |  |  |
|                            |                                                                              |                                                                            | $\overline{\mathbf{v}}$ |                |  |  |

Following mitigation measures will be implemented:

- Solid waste from the Grain based distillery operations generally comprises of fibers and proteins in the form of DDGS (88TPD), which will be ideally used as Cattle, poultry and fish feed ingredients.
- Boiler ash (116 TPD) generated during coal-based operations will be given to cement/brick manufactures & during biomass (62 TPD) based operations will be given to brick manufacturers in covered vehicles.
- Spent resin from DM plant (500 kg/annum) will be supplied to authorized recyclers.
- Used oil & grease (0.5 KL/annum) generated from plant machinery/gear boxes as hazardous waste will be given to the CPCB authorized recyclers or used as in-house lubricant. Proper labeling of hazardous waste will be done.
- Hazardous waste will be stored in separate designated areas where no biological sensitivity is found.
- > Dewatering of sludge and appropriate disposal of solids from the settling tank.
- > Hazardous chemicals shall be stored in tanks, farms, drums, carboys etc.
- > Transfer of chemicals or liquid reactants should be automated to avoid spillage.
- Solid/hazardous waste shall be handled in closed loop to avoid spillage.

## 4.5.6 Impact on soil environment

During operation phase, air pollutants like gaseous and fugitive emissions, if not collected by air pollution control devices i.e. ESP can result in settling on soil environment and affect the flora and fauna of the area as well as ground water by leaching through soil.

The effluent from industrial and domestic wastes, if not treated properly and discharged outside plant premises can result in soil contamination and change in fertility of soil. The soil property will be modified and if leaching occurs, it will result in contamination to deep extents.

The impact of installation of distillery on soil will be mainly due to accumulation of solid or hazardous waste or discharge of waste water on soil environment. If particulate matter are not controlled and prevented from depositing on soil, then it can result in drastic changes in soil environment. Soil will be majorly affected if any kind of waste is discharged without treatment and allowed to decompose on soil.

| •                          |                                                                                        |                | e                      |                      |  |
|----------------------------|----------------------------------------------------------------------------------------|----------------|------------------------|----------------------|--|
| Impact Evaluation Element  | Change in top soil quality if any solid or liquid waste is dumped on soil environment. |                |                        |                      |  |
| Potential Effect/ Concern  | Modification of so<br>soil, leaching of w                                              |                | n soil degradation, de | creased fertility of |  |
| Characteristics of Impacts | <u>.</u>                                                                               |                |                        |                      |  |
| Nature                     | Posi                                                                                   | tive           | Negative               | Neutral              |  |
|                            |                                                                                        |                |                        |                      |  |
| Туре                       | Direct                                                                                 | Indirect       | Cumu                   | lative               |  |
|                            |                                                                                        |                | ١                      | 1                    |  |
| Extent                     | Project Area                                                                           | Local          | Zonal                  | Regional             |  |
|                            |                                                                                        |                | $\checkmark$           |                      |  |
| Duration                   | Short – term Long- term                                                                |                | term                   |                      |  |
|                            |                                                                                        |                | 1                      | 1                    |  |
| Intensity                  | Low Medium                                                                             |                | High                   |                      |  |
|                            |                                                                                        |                | $\checkmark$           |                      |  |
| Frequency                  | Remote (R)                                                                             | Occasional (O) | Periodic (P)           | Continuous (C)       |  |
|                            |                                                                                        |                |                        | 1                    |  |
| Significance of Impact     | •                                                                                      | •              |                        |                      |  |
| Significance               | Insignificant                                                                          | Minor          | Moderate               | Major                |  |
|                            |                                                                                        |                | $\checkmark$           |                      |  |
|                            | 1                                                                                      |                |                        |                      |  |

#### Impact evaluation of soil environment without mitigation measures

## **Mitigation measures**

- Greenbelt development will provide a positive effect by preventing soil erosion and improving top soil quality.
- The social developmental activities by company will include training of farmers on agricultural backgrounds in order to increase productivity of study area and in turn soil fertility.

- The industrial waste will be treated properly as described in air and water pollution mitigation measures and utilized within industry itself in order to avoid soil contamination.
- Regular measures will be undertaken to improve soil fertility.

## 4.5.7 Impact on biological environment & mitigation measures

There may be an impact on the biological environment of the area due to operation of unit, if proper care will not be taken. There are no eco-sensitive zones in 10 km radius study area, so no major impact is envisaged. The local flora and fauna might be affected due to dust and waste water presence in the local environment if not discharged properly. Fugitive emissions due to transportation activity & material handling may degrade the soil quality of surrounding environment that may affect the biodiversity of surrounding environment. Fugitive emissions (dust) may impact the terrestrial flora. The settlement of dust on the laminar surface of plants can impede the efficiency of photo-transduction and thereby, affect the productivity of plants. In some of the plants, it may also smother the leaf surface blocking stomata, resulting in reduced transpiration. The water bodies within 10 km radius of the plant site could possibly be impacted by the fugitive emission in terms of increased turbidity and TS content which ultimately affect the aquatic flora & fauna. Wastewater from the plant may affect the surrounding biodiversity, if it will be discharged in nearby aquatic and terrestrial environment. It will increase BOD, COD, TDS, TSS and decrease DO of water body in which it is discharged.

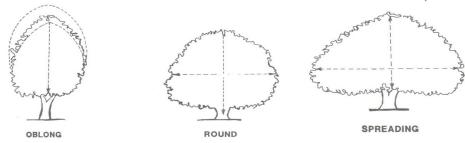
| Impact Evaluation       | Change in the biological resources of the area due to distillery operation and generation |                                                                                           |                         |                    |  |  |  |
|-------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------|--------------------|--|--|--|
| Element                 | of emissions                                                                              |                                                                                           |                         |                    |  |  |  |
| Potential Effect/       |                                                                                           | Loss of habitat, Impact on health of biological receptors due to area and line sources of |                         |                    |  |  |  |
| Concern                 |                                                                                           |                                                                                           | emissions during develo |                    |  |  |  |
| concern                 | activities                                                                                | ing rughtive dust                                                                         | emissions during develo | pinent & operation |  |  |  |
| Characteristics of Impa | 1                                                                                         |                                                                                           |                         |                    |  |  |  |
| Nature                  | Positi                                                                                    | ive                                                                                       | Negative                | Neutral            |  |  |  |
|                         |                                                                                           |                                                                                           | √                       |                    |  |  |  |
| Туре                    | Direct                                                                                    | Indirect                                                                                  | Cumula                  | tive               |  |  |  |
|                         | √                                                                                         |                                                                                           | $\checkmark$            |                    |  |  |  |
| Extent                  | Project Area                                                                              | Local                                                                                     | Zonal                   | Regional           |  |  |  |
|                         |                                                                                           | $\checkmark$                                                                              |                         |                    |  |  |  |
| Duration                | Short –                                                                                   | term                                                                                      | Long- t                 | erm                |  |  |  |
|                         | √                                                                                         |                                                                                           | $\checkmark$            |                    |  |  |  |
| Intensity               | Lov                                                                                       | V                                                                                         | Medium                  | High               |  |  |  |
|                         | √ √                                                                                       |                                                                                           | $\checkmark$            |                    |  |  |  |
| Frequency               | Remote (R)                                                                                | Occasional (O)                                                                            | Periodic (P)            | Continuous (C)     |  |  |  |
|                         |                                                                                           |                                                                                           |                         | $\checkmark$       |  |  |  |
| Significance of Impact  |                                                                                           |                                                                                           |                         |                    |  |  |  |
| Significance            | Insignificant                                                                             | Minor                                                                                     | Moderate                | Major              |  |  |  |
|                         | _                                                                                         | $\checkmark$                                                                              |                         |                    |  |  |  |

| т ит и не | • 4 • 4 • 4 •                         |
|-----------------------------------------------|---------------------------------------|
| Impact Evaluation on biological               | resources without mitigation measures |
|                                               |                                       |

#### **Mitigation measures**

- Proper mitigation measures will be undertaken as described in earlier sections in order to prevent pollutants of air/water/solid and hazardous waste from dispersing in the nearby environment.
- Proper sprinkling of water will be carried out in greenbelt and plantation along the plant boundary and roads.
- Proper greenbelt/plantation will be carried out in order to develop pollutant resistant varieties and to prevent noise levels by absorbance.
- Maintenance of greenbelt will be carried out daily and checked for any kind of alteration in plant growth in order to find out timely any kind of fugitive emissions or leakages within plant premises.
- > Species tolerant to industrial pollutants will be developed.
- > Species that are less prone to hazards will be preferred.

# 4.5.7.1 Greenbelt development program


The company has social obligation to recreate the environmental status by providing thick canopy cover to suppress fugitive emission and provide aesthetic beauty. Trees form important part of the biosphere in the eco-system. The ecological belt maintains the natural balance of the area. 2.97 ha (7.34 acres), i.e. ~33% of the project area will be covered under greenbelt & plantation and the same will be maintained. A greenbelt of tree plantation around the project site will help to arrest the particulate matter in the area and hence attenuate the pollution to a great extent.

The following characteristics will be taken into consideration while selecting plant species for green belt development and tree plantation.

- I. They should be fast growing and tall trees.
- II. The leaf surfaces should be stick and hairy
- III. They should be perennial, evergreen & indigenous.
- IV. They should have thick canopy cover.
- V. The planting should be in appropriate alternate rows around the site to prevent lateral pollution dispersion.
- VI. The trees should maintain regional ecological balance and conform to soil and hydrological conditions. Indigenous species should be preferred.
- VII. They should be resistant to SPM Pollution.
- VIII. Heterogeneous tree species will be selected and planted considering soil and climate adaptability, flowering & growth characteristics, canopy structures & resistance to pollution load.

## Characteristic features of plants to be used for absorption of pollutant gases

- > Plant species should be perennial and evergreen with thick canopy cover.
- The crown of tree (mass of foliage/leaves and branches growing outward from the trunk of the tree) should be either Oblong, Round or Spreading for effective absorption of pollutant gases.



Crown (Canopy Shapes) of trees for plantation

- Plant should have foliage of longer duration.
- The foliage should be freely exposed through: Adequate height of crown, Openness of foliage/leaves in canopy, big leaves (long and broad laminar surfaces).

## Proposed pollutant tolerant species in 2.97 ha

The rate of pollutant removal is found to increase linearly as the concentration of the pollutant increases over the range of concentration that are encountered in ambient air and which are low enough not to cause stomatal closure. Pollutants are absorbed most efficiently by plant foliage near the canopy surface where diffusion process is high due to favorable light conditions. Following species are suggested that will be beneficial for the purpose of reducing pollution.

## **Dust tolerant species:**

Citrus lemon (Lemon), Ficus elastica (India Rubber tree), Tectona grandis (Teak), Mangifera indica (Mango), Ficus benghalensis (Banyan Tree), Anthocephalus kadamba (Kadamba), Bauhinia purpurea (Kanchan).

## Sulphur-dioxide tolerant species:

Azadirachta indica (Neem), Opuntia monocantha (Drooping prickly pear), Caesalpinia pulcherima (Peacock flower), Pithecolobium dulce (Monkey pod), Ficus religiosa (Sacred fig), Alstoniascholaris (Saptapami), Saracaasoca (Ashoka), Cassia fistula (Amaltas).

## Noise absorbing species:

Butea monosperma (Palash), Melia azedarach (Chinaberry), Grevillea pteridifolia (Darwin silky oak), Tamarindus indica (Tamarind).

## **Odour control species:**

Azadirachta indica (Neem), Millingtonia hortensis (Indian cork tree), Pongamia pinnata (karanj)

#### Species having low fire index:

Tectona grandis (Teak), Magnolia grandiflora (bull bay), Parkinsonia aculeate (jelly bean tree),

Dadonea Viscosa (hopbush), Callistemon citrinus (lemon bottlebrush).

[Source: CPCB guidelines]

| Action Plan for greenbelt development |                                  |              |                                                           |                                                                      |  |  |
|---------------------------------------|----------------------------------|--------------|-----------------------------------------------------------|----------------------------------------------------------------------|--|--|
| Planning<br>Schedule                  | Approx.<br>number of<br>saplings | Area<br>(Ha) | Width of<br>greenbelt (along<br>the boundary of<br>plant) | Fund allocation                                                      |  |  |
| 1 <sup>st</sup> Year                  | 3700                             | 1.48         | 10 m                                                      | Funds to be allocated for greenbelt                                  |  |  |
| 2 <sup>nd</sup> Year                  | 3725                             | 1.49         | 10 m                                                      | development and all miscellaneous<br>requirement will be 35 Lakhs as |  |  |
| Total                                 | 7425                             | 2.97         |                                                           | capital cost for 2 years.                                            |  |  |

| <b>Table – 4.11</b>                  |   |
|--------------------------------------|---|
| ction Plan for greenbelt development | t |

# Local/indigenous wild Species of Study Area to be planted:

Neem (Azadirachta indica), Kadamb (Anthocephalus cadamba), Aonla (Phyllanthus emblica), Khamhar (Gmelina arborea), Anjan (Hardwickia binate), Mahua (Madhuca longifolia), Bihi (Psidium guajava), Bahera (Terminalia belleirica), Peepal (Ficus religiosa), Gular (Ficus racemose), Kasai (Bridelia squamosa), Saja (Terminalia tomentosa), Khujuri (Phoenix sylvestris), Tendu (Diopyros melanoxylon), Bija (Pterocarpusmarsupiun), Karra (Cleistanthus collinus), Palas (Butea monosperma), Sitafal (Annona squamosa), Maulsari (Mimusops elengi), Bar (Ficus benghalensis).

## 4.5.8 Impact on socio-economic environment

Project specific potential impacts on socio-economic environment are summarized below and categorized either as positive / beneficial or negative / adverse impacts.

# **Positive Impacts:**

# Employment

Employment opportunities will be created by the company and it will provide a sustainable and safe working environment for workers.

# > Community skills development

The employees will be benefited from the training programs that are instituted by the company to enable the community labor force to work in the different areas of operation.

# Improved standard of living

Employment opportunities created by the project will increase income and therefore, improve the overall standards of living in the area.

# > Community organizational capacity development

Through engagement of community members in development structures such as Community Development Committees, the community organizational capacity will be developed.

#### Economic exposure and development

Implementation of the project will make financial institutions as well as related economic facilities, infrastructure and services available to the people. This will expose and introduce the local population to factors of economic development including the banking system, financial services, and credit and investment schemes.

#### Adverse social impact

#### Health impacts:

The project has the potential for triggering health impacts through air pollutants from heavy vehicles, increased dust, creation of breeding grounds for disease vectors, population influx which might introduce new diseases in the area and inadequate sanitation facilities.

## Livelihood change:

Due to the labor intensity of the manufacturing sector, the project will attract the more ablebodied persons from the community which in turn will lead to low labor availability in other sectors of the economy including agricultural, education and health skilled workers. Local employment opportunities will be created by the project. This impact will not be significant due to low level of education and skills in the area which will result in sourcing skilled workforce from outside the immediate area. But the magnitude of this impact will be high due to high number of dependents in a household.

| Impact Evaluation<br>Element | Impact on socio economics due to the proposed project |                      |                   |                |  |  |
|------------------------------|-------------------------------------------------------|----------------------|-------------------|----------------|--|--|
| Potential Effect/<br>Concern | Employment generat                                    | ion, social developn | nental activities |                |  |  |
| Characteristics of Impa      | acta                                                  |                      |                   |                |  |  |
| Nature                       | Posit                                                 | ive                  | Negative          | Neutral        |  |  |
|                              | 1                                                     |                      |                   |                |  |  |
| Туре                         | Direct                                                | Indirect             | Cumula            | tive           |  |  |
|                              | $\checkmark$                                          |                      |                   |                |  |  |
| Extent                       | Project Area                                          | Local                | Zonal             | Regional       |  |  |
|                              |                                                       |                      | $\checkmark$      |                |  |  |
| Duration                     | Short –                                               | term                 | Long- te          | erm            |  |  |
|                              |                                                       |                      | $\checkmark$      |                |  |  |
| Intensity                    | Lov                                                   | V                    | Medium            | High           |  |  |
|                              |                                                       |                      | $\checkmark$      |                |  |  |
| Frequency                    | Remote (R)                                            | Occasional (O)       | Periodic (P)      | Continuous (C) |  |  |
|                              |                                                       |                      |                   |                |  |  |
| Significance of Impact       |                                                       |                      |                   |                |  |  |
| Significance                 | Insignificant                                         | Minor                | Moderate          | Major          |  |  |
|                              |                                                       |                      |                   | $\checkmark$   |  |  |

## Impact Evaluation of Socio economic Environment

#### **Mitigation Measures**

#### Mitigating health impacts:

An awareness program on health hazards can be implemented to safeguard the employees as well as the local population's health. This way, the health issues can be monitored and addressed.

## Managing loss of livelihood and income:

To cushion the population against impacts of manufacturing unit closure, comprehensive retrenchment packages that include adequate advance warning to employees and contractors to allow them to source alternative opportunities should be undertaken.

## 4.5.9 Occupational health and safety

The distillery unit has few potentially hazardous manufacturing processes. Some examples of hazards associated with the distillery plant are:

- Exposure to dust
- Noise exposure
- Boiler heat exposure
- Physical hazards
- > Others

These hazards are concerned with the workers working within the industry majorly, though some hazards can also affect local & regional public if hazard occurs at a larger scale. During handling, storage, transportation of chemical, accidental exposure can occur in the workplace which may cause acute or long-term detrimental health effects. Biological agents, including microorganisms and toxins produced by living organisms, can cause health problems in workers. Viral infection through Influenza virus is an example of suffering which affects a broad population of workers. Psycho-social hazards are occupational hazards that affect someone's social life or psychological health. Psycho-social hazards in the workplace include occupational burnout and occupational stress, which can lead to burnout.

| r                          | 1                                                                              |                        |                   |          |  |
|----------------------------|--------------------------------------------------------------------------------|------------------------|-------------------|----------|--|
| Impact Evaluation          | Impact on occupational health and safety of workers during natural or man-made |                        |                   |          |  |
| Element                    | hazards.                                                                       |                        |                   |          |  |
| Potential Effect/          | Physical hazards d                                                             | uring construction and | l operation phase |          |  |
| Concern                    |                                                                                | -                      |                   |          |  |
| Characteristics of Impacts |                                                                                |                        |                   |          |  |
| Nature                     | Po                                                                             | sitive                 | Negative          | Neutral  |  |
|                            |                                                                                |                        | √                 |          |  |
| Туре                       | Direct                                                                         | Indirect               | Cui               | mulative |  |
|                            | · √ · · · · · · · · · · · · · · · · · ·                                        |                        |                   |          |  |
| Extent                     | Project Area                                                                   | Local                  | Zonal Regional    |          |  |
|                            | $\checkmark$                                                                   |                        |                   |          |  |
| Duration                   | Short – term Long- term                                                        |                        |                   |          |  |

#### Impact evaluation of occupational health and safety without mitigation measures

|                        |               | $\checkmark$   |              | $\checkmark$   |
|------------------------|---------------|----------------|--------------|----------------|
| Intensity              | I             | Jow            | Medium       | High           |
|                        |               |                |              | $\checkmark$   |
| Frequency              | Remote (R)    | Occasional (O) | Periodic (P) | Continuous (C) |
|                        |               | $\checkmark$   |              |                |
| Significance of Impact |               |                | •            | •              |
| Significance           | Insignificant | Minor          | Moderate     | Major          |
|                        |               |                |              |                |

#### Exposure to dust

Exposure to fine particulates is associated with work in most of the dust-generating stages of plant, but most notably from, raw material handling, internal transfer of materials and transportation etc. Workers with long term exposure to fine particulate dust are at risk of pneumoconiosis, emphysema, bronchitis, and fibrosis.

Methods to prevent and control exposure to dust include the following:

- > Control of dust through implementation of good housekeeping and maintenance
- ▶ Use of air-conditioned, closed cabins
- Use of PPE, as appropriate (e.g. masks and respirators) to address residual exposures following adoption of the above-referenced process and engineering controls.

#### Noise exposure

Exhaust fans, compressors and motors are the main sources of noise and vibrations in a distillery unit. Control of noise emissions includes the use of silencers for ID fans, room enclosures for mill operators, noise barriers, and, if noise cannot be reduced to acceptable levels, personal hearing protection (ear plugs/muffs).

## **Physical hazards**

- Injuries during project operation are typically related to slips, trips, and falls; contact with falling / moving objects; and lifting / over-exertion.
- Other injuries may occur due to contact with, or capture in, moving machinery. Activities related to maintenance of equipment, fans, coolers, and belt conveyors, represent a significant source of exposure to physical hazards. Such hazards may include the following:
- Falling / impact with objects;
- Transportation
- Following management measures will be ensured to prevent the physical hazards in the plant:
- Any person working on equipment with moving parts personally ensures the equipment is de-energized, isolated and locked/tagged out.
- Any person working from a position with the potential risk for a fall from height uses fall protection.
- > Prescribed PPE will be provided to all workers exposed to open processes or systems.
- > In case of any accident immediate & proper medical care will be provided at the plant site

# 4.6 IRREVERSIBLE AND IRRETRIEVABLE COMMITMENT OF ENVIRONMENTAL COMPONENTS

The purpose of this Section is to identify elements of the proposed project that could result in an irreversible or irretrievable commitment of environmental components. The discussion includes a description of the Project's long-term benefits and how these benefits offset the irretrievable commitment of resources.

| Environmental component          | Irreversible and irretrievable commitment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Water                            | Surface water will be withdrawn for industrial operations. Hence, ground water resources will not be depleted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Flora / vegetation               | This is a proposed project; negligible vegetation will be disturbed.<br>Implementation of mitigation measures would ensure that resources will not<br>be significantly impacted.                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Geology and soils                | Construction activities are involved in the proposed project, which would not<br>result in irreversible and irretrievable commitment of losses to geology and<br>soil resources. Though Project's effects to top soil are less than significant as<br>discussed in Section 4.4.1. Greenbelt development and its maintenance will<br>help in enriching the fertility of soil to major levels.                                                                                                                                                                                                    |  |
| Land Use and Planning            | The land will be converted to industrial use so there will be no Irreversible effect to land use due to project activity. Instead land use intensity will increase by introducing advanced technology/equipment.                                                                                                                                                                                                                                                                                                                                                                                |  |
| Mineral Resources                | Construction activities will involve use of rocks, sand, gravel, and other<br>minerals to fabricate construction materials such as steel and concrete. The<br>extraction of mineral resources for various end uses and purposes, most of<br>them construction and development-related, are considered to be non-<br>renewable resources that will be extracted from future uses. Therefore,<br>construction activities will result an irreversible and irretrievable commitment<br>of losses to mineral resources. The use of construction materials is not<br>considered a significant impact. |  |
| Public Services and<br>Utilities | Construction and operation activity would consume fossil fuels, a non-<br>renewable resource to generate energy for vehicles during construction, and to<br>operate pumps for the life of the Project. Though the use of energy is justified.                                                                                                                                                                                                                                                                                                                                                   |  |

## 4.7 ANTICIPATED ENVIRONMENTAL IMPACTS, ASPECTS AND MITIGATION MEASURES

The table showing distillery & malt spirit plant process, factors, aspects and impacts are given below. The respective mitigation measures are also given

below:

| S.  | <b>Project Activity</b>                        | F                      | Pollutant        | Impact                                                             | Mitigation                                                                                                                                                                                                 | Remarks, if any                             |
|-----|------------------------------------------------|------------------------|------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| No. |                                                | Factor                 | Aspect           |                                                                    |                                                                                                                                                                                                            |                                             |
| 1.  | Transportation of<br>raw material &<br>Product | Air                    | PM               | Increase in particulate matter<br>concentration in air environment | <ul> <li>Sprinkling of water</li> <li>Development of greenbelt/<br/>plantation</li> <li>Proper concreting of roads</li> <li>Vehicles should carry valid<br/>PUC certificate</li> </ul>                     | -                                           |
|     |                                                | Water                  | Nil              | -                                                                  | -                                                                                                                                                                                                          | Proper drainage<br>system to be<br>ensured. |
|     |                                                | Noise                  | Noise generation | Increase in noise levels near<br>source generation                 | <ul> <li>Vehicles should carry valid<br/>PUC certificate</li> <li>Development of greenbelt/<br/>plantation</li> </ul>                                                                                      | -                                           |
|     |                                                | Occupational<br>Health | -                | Accidents                                                          | Proper parking arrangement.                                                                                                                                                                                | -                                           |
| 2.  | Grain storage                                  | Air                    | Grain dust       | Increase in dust and respiratory                                   | • Regular water sprinkling in                                                                                                                                                                              | -                                           |
| 3.  | Malt storage                                   | Air                    | Malt dust        | diseases related to grain<br>inhalation                            | <ul> <li>grain &amp; malt storage area.</li> <li>Covered sheds.</li> <li>Silos to be installed.</li> <li>Covered system for transferring of grain &amp; malt and provision of water sprinkling.</li> </ul> |                                             |
| 4.  | Fermentation                                   | Air                    | CO2              | Increase in CO2 concentration<br>in air environment                | <ul> <li>Setting up of CO2 plant for CO2 collection.</li> <li>CO2 generated will be collected and sold to authorized vendors.</li> </ul>                                                                   | -                                           |

| S.  | <b>Project Activity</b>                  | Pollutant              |                                                                                                           | Impact                                              | Mitigation                                                                                                                                                                                                                                                          | Remarks, if any |
|-----|------------------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| No. |                                          | Factor                 | Aspect                                                                                                    |                                                     | _                                                                                                                                                                                                                                                                   |                 |
|     |                                          | Water                  | Leakage                                                                                                   | Contamination of ground water                       | <ul><li>Proper drain area around fermentation tanks.</li><li>Regular checking of tanks.</li></ul>                                                                                                                                                                   | -               |
|     |                                          | Noise                  | Noise Generation                                                                                          | Increase in noise levels near source generation     | <ul> <li>Proper maintenance of pumps<br/>will be done.</li> <li>Pumps will be kept in closed<br/>enclosures.</li> </ul>                                                                                                                                             | -               |
|     |                                          | Solid waste            | Yeast Sludge                                                                                              | Soil contamination                                  | Mixed with wet cake in case of grain operation.                                                                                                                                                                                                                     | -               |
| 5.  | Distillation<br>Column along<br>with MEE | Water                  | Spent wash (High<br>organic<br>Effluent).<br>Spent lees Effluent,<br>MEE Condensate &<br>other effluents. | Water & soil contamination                          | <ul> <li>Concentration and drying of spent wash to obtain DDGS in case of malt spirit plant followed by grain based operation.</li> <li>Spent lees recycled in process directly.</li> <li>MEE condensate is sent to CPU/ ETP then reused in the process.</li> </ul> | -               |
|     |                                          | Solid waste            | Spent Wash                                                                                                | Soil & water contamination                          | Dried in DWGE dryer to obtain DDGS.                                                                                                                                                                                                                                 | -               |
|     |                                          | Occupational<br>Health | Steam around column                                                                                       | Burn, injuries if collapse                          | Proper PPEs for working zone employees.                                                                                                                                                                                                                             | -               |
| 6.  | Co-generation<br>power plant             | Air                    | PM, SO2, NOx                                                                                              | Increase in the concentration in<br>air environment | <ul> <li>Installation of ESP for control<br/>of PM emissions.</li> <li>Maintenance of proper stack<br/>height for gaseous emissions.</li> <li>Installation of continuous<br/>online stack monitoring system.</li> </ul>                                             | -               |
|     |                                          | Water                  | Boiler blow down                                                                                          | Contamination of water                              | Sent to RO for proper treatment and recycled within process.                                                                                                                                                                                                        | -               |
|     |                                          | Noise                  | Noise generation                                                                                          | Increase in noise levels near                       | • Proper maintenance of                                                                                                                                                                                                                                             | -               |

Chapter-IV of Draft EIA / EMP Report

| S.  | <b>Project Activity</b> | I                      | Pollutant                     | Impact                                                   | Mitigation                                                                                                                                                                                     | Remarks, if any                                                    |
|-----|-------------------------|------------------------|-------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| No. |                         | Factor                 | Aspect                        |                                                          |                                                                                                                                                                                                |                                                                    |
|     |                         |                        |                               | source generation                                        | <ul> <li>machines (turbine) should be<br/>done</li> <li>Acoustic enclosures</li> <li>Proper PPEs to workers</li> </ul>                                                                         |                                                                    |
|     |                         | Solid waste            | Fly Ash                       | Contamination of soil                                    | Closed loop system for ash<br>collection.<br>Ash will be supplied to<br>brick/cement manufacturers in<br>closed covered trucks.                                                                | -                                                                  |
|     |                         | Occupational<br>Health | Particulate matter            | Effect on lungs, eye irritation,<br>respiratory diseases | <ul> <li>Personal protective measures to<br/>reduce occupational hazard.</li> <li>Proper fly ash management<br/>plan.</li> </ul>                                                               | -                                                                  |
| 7.  | Cooling Tower           | Water                  | CT blow down                  | Water contamination                                      | Treated in CPU/ETP and then reused in the process.                                                                                                                                             | -                                                                  |
|     |                         | Noise                  | Noise generation              | Increase in noise levels near source generation          | Proper maintenance of machines<br>should be done.<br>Proper PPEs                                                                                                                               | -                                                                  |
|     |                         | Occupational<br>Health | No direct impact              | -                                                        | Personal protective measures to reduce occupational hazard                                                                                                                                     | -                                                                  |
| 8.  | ETP, CPU                | Air                    | Odour problems                | Irritation in nasal area, flies and<br>insects problems  | <ul> <li>Regular cleaning of all tanks.</li> <li>No longer storages of culture or microbes in the aeration or anaerobic tanks.</li> <li>Proper greenbelt in and around ETP/CPU area</li> </ul> | -                                                                  |
|     |                         | Water                  | Leakage                       | Contamination of ground water                            | • Proper HDPE lining of the tanks.                                                                                                                                                             | If leakage happens<br>there will be ground<br>water contamination. |
|     |                         | Solid waste            | Primary & Secondary<br>Sludge | Soil contamination                                       | Used as manure                                                                                                                                                                                 | -                                                                  |
|     |                         | Occupational           | Trip or fall                  | Physical injuries                                        | Proper PPEs while visiting the                                                                                                                                                                 | -                                                                  |

Chapter-IV of Draft EIA / EMP Report

| S.  | <b>Project Activity</b>             | Ι                      | Pollutant                                                                          | Impact                                                                                                                                 | Mitigation                                                                                                                                                                                                                                                                                                                                                                                             | Remarks, if any |
|-----|-------------------------------------|------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| No. |                                     | Factor                 | Aspect                                                                             |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                        |                 |
|     |                                     | Health                 |                                                                                    |                                                                                                                                        | ETP/CPU area and for people working in that area.                                                                                                                                                                                                                                                                                                                                                      |                 |
| 9.  | Odour from<br>working zone<br>areas | Air                    | ETP/CPU,<br>Bacterial growth in<br>interconnecting pipes<br>& unattended<br>drains | Ambient environment is<br>contaminated and irritation to<br>people present near bad odor<br>areas, flies and insects are<br>attracted. | <ul> <li>Proper Housekeeping</li> <li>Sludge management in<br/>biological ETP/CPU units,<br/>Steaming of major pipe lines</li> <li>Regular use of disinfectants in<br/>the drains</li> <li>Efficient handling, prompt &amp;<br/>proper disposal of sludge.</li> <li>Adequate development of<br/>greenbelt which are odour<br/>absorbent.</li> </ul>                                                    | -               |
| 10. | Alcohol storage                     | Water & soil           | Leakage or explosion<br>of alcohol tank                                            | Ground water contamination<br>and modification in soil<br>characteristics                                                              | <ul> <li>Proper flow meters in tanks</li> <li>Proper storage in tanks</li> <li>Regular checking of tanks</li> </ul>                                                                                                                                                                                                                                                                                    | -               |
|     |                                     | Occupational<br>Health | Fire or explosion                                                                  | Physical injuries                                                                                                                      | <ul> <li>Use of extinguishing media<br/>surrounding the fire as water,<br/>dry chemicals (BC or ABC<br/>powder), CO, Sand, dolomite,<br/>etc.</li> <li>The storage shall be at cool &amp;<br/>dry temperatures</li> <li>Proper cross air supply i.e.<br/>proper ventilated storage and<br/>closed containers.</li> <li>Container shall be grounded to<br/>eliminate static electric sparks.</li> </ul> | -               |

## 4.8 SUMMARY AND CONCLUSION

Though every development activity has some negative impact on the environment, but by taking proper mitigation measures and with the help of environment management systems, such impacts can be checked to acceptable levels. In this project, use of improved technology, appropriate pollution control equipment, development & maintenance of greenbelt development (~33% of the total project area) will help in abating pollution at source and will prevent any significant impact on the environment and human health of the study area.



#### **CHAPTER-V**

# ANALYSIS OF ALTERNATIVES (TECHNOLOGY AND SITE)

#### 5.1 ANALYSIS OF ALTERNATIVES

As per EIA Notification dated 14<sup>th</sup> Sept., 2006 and its subsequent amendments; the Chapter on "Analysis of Alternatives (Technology and Site)" is applicable only, if the same is recommended at the Scoping stage. As per the ToR points issued by MoEFCC, New Delhi vide letter no IA-J-11011/277/2023-IA-II(I) dated 31<sup>st</sup> July, 2023 for the proposed project, the Analysis of Alternatives of Site is not required.

#### 5.1.1 Alternative Site

No alternative site has been taken into consideration as the proposed site has been acquired by the company keeping in mind following mentioned factors:

- > The land is completely under the possession of the company.
- > Geographical diversification of the Group as the existing plants are located at North India.
- Raw material availability & markets for both products & by-products within the state.
- Sales Avenues through Oil Marketing Companies
- Nearness to NH 53 (~3.5 km in South Direction), NH 353 (~8.0 km in SW direction), SH 20 (~8.0 km in SW direction) makes it easier to transport raw materials & final product to market.
- No National Parks, Wildlife Sanctuaries, Biosphere Reserves, Tiger/ Elephant Reserves, Wildlife Corridors etc. lies within 10 km radius.
- > The proposed project site falls in the safe groundwater zone.

## 5.1.2 Alternative Technology

In Grain based operations & Malt Spirit Plant, spent wash is the main pollutant which has high BOD, COD, TDS, TSS and if not treated properly can create many environmental issues within the distillery itself.

In case of Malt spirit plant followed by Grain based operation, some distilleries decant the spent wash generated through decanter centrifuge and the solid/heavy particles remaining known as DWGS (Distillers wet grain soluble/stillage) is sold as cattle feed which contains unfermented grain residues (protein, fibers, fat and  $\sim$ 70% moisture) having a shelf life of 2-3 days only. The water content is too much so it can be transported only to small distances.

Overcoming the issues mentioned above, the company has proposed DWGS dryer technology. This technology is used for drying DWGS obtained to such extent so that moisture level decreases to 10-12% from  $\sim$ 70%. This decrease in moisture favors indefinite shelf life and it may be shipped

to long distances also favoring easy handling and storage. Also, DDGS is a good source of protein, fibers for cattle, poultry feeds.

Thus, the company will be installing best and proven technologies with increased energy utilization in manufacturing products that are useful for mankind. Thus, the company will be installing best and proven technologies in grain based operations and no alternative technology will be required.



# **CHAPTER - VI**

# ENVIRONMENTAL MONITORING PROGRAMME

## 6.1 INTRODUCTION

Post-project monitoring is a necessity to keep check on the environmental status of the area. The project will be regularly monitoring quality status of the various environmental components. The monitoring will be carried out on a regular basis as per Environmental Clearance obtained and as per CPCB norms to:

- > Record the level of pollution within the plant site and nearby areas
- Monitor the efficiency of pollution control system adopted at the plant site
- > To fulfill and obey the statutory and community obligations

# 6.2 MEASUREMENT METHODOLOGIES

#### 6.2.1 Instruments to be used

Below given instruments will be used majorly for monitoring:

- 1. Respirable Dust Sampler (RDS)
- 2. Fine Particulate Matter (FPM) Sampler
- 3. Stack Monitoring Kit
- 4. Online continuous monitoring device for stack emissions
- 5. Sound Level Meter
- 6. Water Level Indicator

| Attributes                           | Measurement method                                                                                             | Test procedure                                                                                                                                                                       |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ambient air environment              |                                                                                                                |                                                                                                                                                                                      |
| PM <sub>10</sub> & PM <sub>2.5</sub> | Gravimetric method                                                                                             | -                                                                                                                                                                                    |
| SO <sub>2</sub>                      | EPA Modified West & Geake method                                                                               | Absorption in Potassium Tetra<br>Chloromercurate followed by Colorimetric<br>estimation using P-Rosaniline hydrochloride<br>and Formaldehyde (IS: 5182 Part - II).                   |
| NO <sub>2</sub>                      | Arsenite modified Jacob &<br>Hochheiser                                                                        | Absorption in dil. NaOH and then estimated<br>colorimetrically with sulphanilamide and N<br>(I-Nepthyle) Ethylene diamine<br>dihydrochloride and Hydrogen Peroxide<br>(CPCB Method). |
| Stack monitoring                     |                                                                                                                |                                                                                                                                                                                      |
| PM                                   | Gravimetric method                                                                                             | As per CPCB guidelines                                                                                                                                                               |
| SO <sub>2</sub>                      | As Per IS-11255-part (2) 1985<br>(Absorbing Solution of H <sub>2</sub> O <sub>2,</sub><br>Isopropanol Reagent) | Absorption in $H_2O_{2,}$ Isopropanol followed<br>by Colorimetric estimation using Sulphuric<br>acid and Barium Chloride as Per IS-11255<br>part (2) 1985                            |
| NO <sub>2</sub>                      | As Per IS-11255-part (7) 2005                                                                                  | Absorption of Sample in NOx flask                                                                                                                                                    |

 Table 6.1

 Measurement methodologies

Chapter-VI of Draft EIA / EMP Report

|                                                                                                                                                                                                  | with NOx flask assembly. | assembly Followed by Colorimetric<br>estimation using Phenol-di-sulphonic acid<br>and other reagent as Per IS-11255 part (7)<br>2005                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Water environment                                                                                                                                                                                |                          |                                                                                                                                                                                                                                                                                       |
| pH, Turbidity, Colour,<br>Odour, Taste, TDS, Total<br>Hardness, Calcium<br>hardness, Magnesium<br>hardness, Chloride,<br>Fluoride, Sulphate, Nitrates,<br>Alkalinity, Iron, Copper,<br>Manganese | As per IS 10500-2012     | Samples for water quality should be<br>collected and analyzed as per: IS: 2488 (Part<br>1-5) methods for sampling and testing of<br>Industrial effluents.<br>Standard methods for examination of water<br>and wastewater analysis published by<br>American Public Health Association. |
| Noise monitoring                                                                                                                                                                                 |                          |                                                                                                                                                                                                                                                                                       |
| Noise levels at Day & night<br>time -Leq dB (A)                                                                                                                                                  | As per CPCB norms        | As per CPCB norms                                                                                                                                                                                                                                                                     |

# 6.3 MONITORING FREQUENCY AND LOCATIONS

The frequency of monitoring is different for different components. The monitoring frequency will be decided as per conditions of EC and CTO.

The locations of the monitoring stations will be selected on the basis of prevailing micrometeorological conditions of the area and consultation with SPCB. Three AAQM stations will be selected (including minimum 1 location in upwind side, more sites in downwind side / impact zone) to assess ambient air quality of the area. Noise level monitoring will be carried out on plant boundary and in high noise generating area within the site. Water and soil monitoring locations will be decided on the basis of general slope of the area and drainage pattern. Locations for the post project monitoring are given in table below:

|     | Frequency & locations for post project monitoring |                             |                                       |  |  |  |  |
|-----|---------------------------------------------------|-----------------------------|---------------------------------------|--|--|--|--|
| S.  | Description                                       | Frequency of Monitoring     | Locations of monitoring               |  |  |  |  |
| No. |                                                   |                             | C                                     |  |  |  |  |
| 1.  | Ambient Air Quality                               | As per EC/CTO condition     | 3-4 Location in and around plant site |  |  |  |  |
|     |                                                   | -                           | (1 within and 3 outside plant area at |  |  |  |  |
|     |                                                   |                             | an angle of $120^{\circ}$ each)       |  |  |  |  |
| 2.  | Stack Monitoring                                  | Continuous Monitoring       | Plant Site (Boiler)                   |  |  |  |  |
| 3.  | Performance Guarantee (PG)                        | Yearly                      | All pollution control devices         |  |  |  |  |
|     | test of pollution control                         |                             |                                       |  |  |  |  |
|     | equipment                                         |                             |                                       |  |  |  |  |
| 4.  | Fugitive Emission                                 | As per EC/CTO condition     | In the plant site                     |  |  |  |  |
| 5.  | Ground water quality                              | Twice a year (Pre and Post  | In & around the plant site            |  |  |  |  |
|     |                                                   | Monsoon)                    |                                       |  |  |  |  |
| 6.  | Effluent quality (CPU)                            | Daily (In house laboratory) | ETP Outlet                            |  |  |  |  |
| 7.  | Noise Level Monitoring                            | As per EC/CTO condition     | In & around the plant site            |  |  |  |  |
| 8.  | Soil Quality                                      | Yearly                      | In & around the plant site            |  |  |  |  |
| 9.  | Medical checkup of employees                      | Yearly                      | Nearby hospitals/dispensary           |  |  |  |  |
| 10. | Compliance Audit                                  | Half yearly                 | In & around the plant site            |  |  |  |  |
| 11. | OHS Audit                                         | Yearly                      | In & around the plant site            |  |  |  |  |

Table - 6.2Frequency & locations for post project monitoring

#### 6.4 DATA ANALYSIS

Monitoring data analysis will always be carried out by MoEFCC approved laboratory as per CPCB guidelines and will be regularly submitted to concerned authority (specified in Environment Clearance Letter issued by MoEFCC, New Delhi and Consent issued by UPPCB on regular basis.

#### 6.5 **REPORTING SCHEDULES**

Post project environmental monitoring program will be prepared considering conditions stipulated in the Environmental Clearance issued by the MoEFCC, New Delhi and Consent to Operate issued by UPPCB.

Half yearly compliance reports will be submitted to the concerned regulatory authorities. There will be submission of environmental statement report for each financial year ending 31<sup>st</sup> March in Form V as is mandate shall be submitted to the concerned SPCB as prescribed under EPA rules, 1986.

The Environmental Statement Report should also be uploaded on the website of the company along with status of EC compliance regularly and also sent to respective Regional Offices of MoEFCC.

#### 6.6 EMERGENCY PROCEDURES

During an emergency, the main center to look at the scenario is Emergency Control Center. EMC has certain hierarchy as per EC conditions which is well defined and people are aware of their responsibilities related to any kind of emergency.

#### **Emergency planning**

- The complete distillery unit will have a provision of interlocking system where failure of an equipment or machinery will shutdown the whole process instantly and after rectifying only, the whole process will be started.
- During an emergency, the Emergency Management Staff, including the site controller shall gather in the ECC.
- The ECC will be consisting of all adequate communication systems in the form of telephones and other equipment in order to respond quickly and inform the whole plant instantly.
- The communication systems will be designed such that they are protected from possible shutdown.
- The center will have its own lighting arrangement in case of emergency and electric communication system.
- Automatic fire detectors will be installed leading to fire alarms and proper control system.
- > The hydrant pipeline network will be provided at all danger prone areas.

All emergency valves and switches and emergency handling facilities shall be made easily accessible.

Detailed description is provided in Chapter VII under the head Emergency Planning and Procedures.

#### 6.7 DETAILED BUDGET

Environmental monitoring budget will be decided by the environmental management cell according to the requirements of the industry. EMC shall inspect the necessity & availability of the materials, technologies, services & maintenance works. There will be regular view of records in order to detect any gaps and appropriate budgetary allocations will be made on the basis of it.

|           | EIII                                  | i onnentar montor mg but             | 500                                              |
|-----------|---------------------------------------|--------------------------------------|--------------------------------------------------|
| S.<br>No. | Attributes                            | Approximate Capital<br>cost (Crores) | Approximate recurring cost per<br>annum (Crores) |
| 1.        | Lab & instruments                     |                                      |                                                  |
| 2.        | Monitoring instruments & others       | 0.7                                  | 0.1                                              |
| 3.        | Third party investment for monitoring |                                      |                                                  |

Table 6.3Environmental monitoring budget



### CHAPTER–VII ADDITIONAL STUDIES

#### 7.1 ADDITIONAL STUDIES

As per the EIA Notification dated 14<sup>th</sup> September, 2006, and its subsequent amendments. The Committee had issued Terms of Reference (ToR) vide letter no. IA-J-11011/277/2023-IA-II(I) dated 31<sup>st</sup> July, 2023 for the preparation of Environmental Impact Assessment (EIA) and Environmental Management Plan (EMP). The following additional studies were done in reference to the additional Terms of References;

- A) Public Consultation
- B) Risk Assessment

#### 7.2 PUBLIC HEARING

For the proposed project, public hearing is yet to be conducted.

#### 7.3 RISK ASSESSMENT

Accidents related to industrial hazards results in great personal & financial loss. Accidental risk needs to be managed and in today's environment, this is the concern of every industry, because these risk and hazards can quickly jeopardize the financial viability of a business. The main objective of the risk assessment study is to propose a comprehensive but simple approach to carry out risk analysis and conducting feasibility studies for planning hazard analysis in Indian context.

#### 7.3.1 Hazard Identification & Risk Assessment (HIRA)

Hazard identification involves the enlisting of hazards in each unit of the distillery and conduct HAZOP study on the basis of it. Risk assessment involves the finding of impact evaluation of a hazard, its frequency, its probability of major accidents etc.

Major on site and off site hazards in distillery are given below:

#### **On-site**

- > Uncontrolled exposure to fugitive dust, noise, and other emissions
- Contact with chemicals and solid wastes
- > Accidents like uncontrolled emissions/spillages due to handling of product and raw material

#### **Off-site**

- > Exposure to pollutants due to release from offsite/ storage/related activities
- > Unpredicted contamination due to accidental explosions/release due to a natural hazard
- > Possible sudden releases and deposition of toxic pollutants in vegetation

#### 7.3.1.1 Identification of hazards and proposed safety systems

Disasters at a distillery & malt spirit plant and co-generation power plant may occur due to following hazards:

- > Fire electric panels
- Oil storage area
- Alcohol storage area
- Explosion in boiler house etc.
- ➢ Electrocution
- Chemical containers
- ➢ Fall of material etc.

The potentially hazardous areas and the likely accidents with the concerned area have been enlisted below:

|        | Possible naza                        | ruous locations on site                          |
|--------|--------------------------------------|--------------------------------------------------|
| S. No. | Hazardous Area                       | Likely Accident                                  |
| 1.     | Boiler Area                          | Explosion                                        |
| 2.     | Turbine room                         | Explosion                                        |
| 3.     | Electrical rooms                     | Fire and electrocution                           |
| 4.     | Transformer area                     | Fire and electrocution                           |
| 5.     | Cable tunnel                         | Fire and electrocution                           |
| 6.     | Storage yard                         | Sliding, fire                                    |
|        | (biomass like Rice Husk/low sulphur  |                                                  |
|        | coal)                                |                                                  |
| 7.     | Storage tank (alcohol & malt spirit) | Fire                                             |
| 8.     | Stack                                | Uncontrolled air pollution due to failure of ESP |
| 9.     | Lagoon storage                       | Odor                                             |
| 10.    | HSD storage area                     | Fire due to spillage                             |

## Table 7.1Possible hazardous locations on site

#### Fire

It might occur in the boiler area, fuel storage yard, electrical rooms, transformer area etc. due to accidental failure scenario.

#### Explosion

Explosion may lead to release of heat energy & pressure waves.

#### Electrocution

Fatal accidents during working hours if not proper care is undertaken.

#### 7.3.2 Hazard identification and Risk Assessment Matrix

Defining scales based on assumptions:

| Sc   | ale, S1 |      | Sc         | ale, S2  |             | Risk cla | ssification |
|------|---------|------|------------|----------|-------------|----------|-------------|
|      |         | Li   | kelihood   | Level of | Consequence |          |             |
| 0-5  | Low     | 0-5  | Rare       | 0-5      | Low         | 0-50     | Low         |
| 6-8  | Medium  | 6-8  | More often | 6-8      | Medium      | 51-80    | Medium      |
| 9-10 | Severe  | 9-10 | Frequent   | 9-10     | High        | 81-100   | High        |

|       | RISK CALCULATOR       |                                                                                                                       |                  |                |  |  |  |  |  |  |  |  |
|-------|-----------------------|-----------------------------------------------------------------------------------------------------------------------|------------------|----------------|--|--|--|--|--|--|--|--|
| LEVEL | PROBABILITY           | SEVERITY(S)                                                                                                           | RISK<br>CATEGORY | RISK<br>RATING |  |  |  |  |  |  |  |  |
| 1.    | Unlikely/ Remote      | Negligible/minor injury/ minimal env.<br>Impact/ minor theft                                                          | LOW RISK         | 1, 2           |  |  |  |  |  |  |  |  |
| 2.    | Likely/<br>Occasional | Major/injuries beyond first aid/major spillage<br>contained within unit/forced entry/mineral<br>loss of critical info | MEDIUM<br>RISK   | 3, 4           |  |  |  |  |  |  |  |  |
| 3.    | Certain               | Serious accidents/ fatality/ major spills spread<br>outside unit/counterfeiting                                       | HIGH RISK        | 6, 9           |  |  |  |  |  |  |  |  |

| S.<br>No. | Activity | Hazard                      | Impact                                                        | Present<br>Controls<br>Available                                       | Legal<br>Requirement<br>(Y/N) | Severity<br>(S) | Likelihood<br>(P) | Risk<br>Rating<br>(S) X<br>(P) | Risk<br>Level | additional<br>control<br>measures     | Responsibility | Target<br>Date |
|-----------|----------|-----------------------------|---------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------|-----------------|-------------------|--------------------------------|---------------|---------------------------------------|----------------|----------------|
| 1.        | Blending | ENA                         | It is<br>harmful<br>for human<br>being and<br>environm<br>ent | Use PPE<br>during the<br>handling                                      | No                            | High            | Low               | High                           | 4             | No                                    | Blending Head  |                |
| 2.        | Blending | Fire                        | It is<br>harmful<br>for human<br>being and<br>environm<br>ent | Use PPE<br>during the<br>handling &<br>fire<br>extinguisher            | Yes                           | Low             | Low               | Low                            | 2             | No                                    | Blending Head  |                |
| 3.        | Blending | Confined<br>space           | It is<br>harmful<br>for human<br>being                        | Such space<br>are labeled<br>and enter are<br>only after<br>permit     | No                            | High            | Low               | Mediu<br>m                     | 4             | No                                    | Blending Head  |                |
| 4.        | Blending | Contract<br>ual<br>activity | Untrained<br>worker<br>may lead<br>to hazards<br>like fire    | Contractor<br>is allowed to<br>work in<br>factory only<br>after permit | Yes                           | High            | Low               | Mediu<br>m                     | 4             | Administrat<br>ive control<br>in unit | Blending Head  |                |
| 5.        | Blending | Spillage                    | Risk of<br>slip trip<br>injury                                | Regular<br>cleaning<br>activity                                        | No                            | High            | Low               | Low                            | 2             | Administrat<br>ive control<br>in unit | Blending Head  |                |

| S.<br>No | Activity                          | Hazard                  | Impact                                                     | Present<br>Controls<br>Available                                       | Legal<br>Requirement<br>(Y/N) | Severity<br>(S) | Likelihoo<br>d (P) | Risk<br>Rating<br>(S) X (P) | Risk<br>Level | Additiona<br>l Control<br>Measures       | Responsi<br>bility     | Target<br>Date |
|----------|-----------------------------------|-------------------------|------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------|-----------------|--------------------|-----------------------------|---------------|------------------------------------------|------------------------|----------------|
| 1.       | DG House<br>and Diesel<br>Storage | Diesel                  | It is harmful<br>for human<br>being and<br>environment     | Use PPE<br>during the<br>handling                                      | No                            | High            | Low                | High                        | 4             | No                                       | Power<br>House<br>Head |                |
| 2.       | DG House<br>and Diesel<br>Storage | Fire                    | It is harmful<br>for human<br>being and<br>environment     | Use PPE<br>during the<br>handling &<br>fire<br>extinguisher            | Yes                           | Low             | Low                | Low                         | 2             | No                                       | Power<br>House<br>Head |                |
| 3.       | DG House<br>and Diesel<br>Storage | Confined<br>Space       | It is harmful<br>for human<br>being                        | Such space are<br>labeled and<br>enter are only<br>after permit        | No                            | High            | Low                | Medium                      | 4             | No                                       | Power<br>House<br>Head |                |
| 4.       | DG House<br>and Diesel<br>Storage | Contractual<br>activity | Untrained<br>worker may<br>lead to<br>hazards like<br>fire | Contractor is<br>allowed to<br>work in<br>factory only<br>after permit | Yes                           | High            | Low                | Medium                      | 4             | Administr<br>ative<br>control in<br>unit | Power<br>House<br>Head |                |
| 5.       | DG House<br>and Diesel<br>Storage | Spillage                | Risk of slip<br>trip injury                                | Regular<br>cleaning<br>activity                                        | No                            | High            | Low                | Low                         | 2             | Administr<br>ative<br>control in<br>unit | Power<br>House<br>Head |                |

| S.<br>No. | Activity               | Hazard                               | Impact                                                 | Present<br>Controls<br>Available              | Legal<br>Requiremen<br>t (Y/N) | Severit<br>y (S) | Likelihoo<br>d (P) | Risk<br>Rating<br>(S) X<br>(P) | Risk<br>Leve<br>l | Additional<br>Control<br>Measures | Responsibilit<br>y   | Targe<br>t Date |
|-----------|------------------------|--------------------------------------|--------------------------------------------------------|-----------------------------------------------|--------------------------------|------------------|--------------------|--------------------------------|-------------------|-----------------------------------|----------------------|-----------------|
| 1         | Distillati<br>on Plant | Fire due to<br>flammable<br>material | It is harmful<br>for human<br>being and<br>environment | Use PPE<br>during the<br>handling and<br>fire | Yes                            | Low              | Low                | Low                            | 2                 | No                                | Distillation<br>Head |                 |

|    |                        |                                                                                              |                                                                         | extinguisher                                                              |     |      |     |            |   |                                       |                      |  |
|----|------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------|-----|------|-----|------------|---|---------------------------------------|----------------------|--|
| 2. | Distillati<br>on Plant | Confined<br>space entry<br>during<br>repair and<br>maintains<br>of<br>distillation<br>column | It is harmful<br>for human<br>being                                     | Such space are<br>labeled and<br>enter are only<br>after permit           | No  | High | Low | Mediu<br>m | 4 | No                                    | Distillation<br>Head |  |
| 3. | Distillati<br>on Plant | Contractua<br>l activity                                                                     | Untrained<br>worker may<br>lead to<br>hazards like<br>fire              | Contractor is<br>allowed to<br>work in factory<br>only after<br>permit    | Yes | High | Low | Mediu<br>m | 4 | Administrativ<br>e control in<br>unit | Distillation<br>Head |  |
| 4. | Distillati<br>on Plant | spillage                                                                                     | Risk of slip<br>trip injury                                             | Regular<br>Cleaning<br>activity                                           | No  | High | Low | Low        | 2 | Administrativ<br>e control in<br>unit | Distillation<br>Head |  |
| 5. | Distillati<br>on Plant | Electrical<br>hazard due<br>to<br>improper<br>handling<br>of<br>electrical<br>equipment      | Fire may<br>lead to loss<br>of life as<br>well as<br>infrastructur<br>e | Regular<br>maintenance of<br>electrical<br>installation                   | Yes | High | Low | Low        | 4 | Engineering<br>control in unit        | Distillation<br>Head |  |
| 6. | Distillati<br>on Plant | Health<br>hazard to<br>worker as<br>it may bite<br>workers                                   | Health<br>hazard, risk<br>of injury                                     | Implementatio<br>n of building<br>maintenance<br>and cleaning<br>schedule | No  | High | Low | Low        | 4 | Administrativ<br>e control in<br>unit | Distillation<br>Head |  |
| 7. | Distillati<br>on Plant | Use of<br>temporary<br>fixture                                                               | Health<br>hazard, risk<br>of injury                                     | Implementatio<br>n of building<br>maintenance<br>and cleaning<br>schedule | No  | High | Low | Low        | 4 | Engineering<br>control in unit        | Distillation<br>Head |  |

| 8. | Distillati | Use of | Health       | Regular        | No | High | Low | Low | 4 | Engineering     | Distillation |  |
|----|------------|--------|--------------|----------------|----|------|-----|-----|---|-----------------|--------------|--|
|    | on Plant   | loose  | hazard, risk | maintenance of |    |      |     |     |   | control in unit | Head         |  |
|    |            | wiring | of injury    | electrical     |    |      |     |     |   |                 |              |  |
|    |            |        |              | installation   |    |      |     |     |   |                 |              |  |

| S.<br>No. | Activity                | Hazard                  | Impact                                                     | Present<br>Controls<br>Available                                       | Legal<br>Requirement<br>(Y/N) | Severity<br>(S) | Likelihood<br>(P) | Risk<br>Rating<br>(S) X<br>(P) | Risk<br>Level | Additional<br>Control<br>Measures | Responsibility | Target<br>Date |
|-----------|-------------------------|-------------------------|------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------|-----------------|-------------------|--------------------------------|---------------|-----------------------------------|----------------|----------------|
| 1.        | ENA<br>Storage<br>House | ENA                     | It is harmful<br>for human<br>being and<br>environment     | Use PPE<br>during the<br>handling                                      | No                            | High            | Low               | High                           | 4             | No                                | QC Head        |                |
| 2.        | ENA<br>Storage<br>House | Fire                    | It is harmful<br>for human<br>being and<br>environment     | Use PPE<br>during the<br>handling &<br>fire<br>extinguisher            | Yes                           | Low             | Low               | Low                            | 2             | No                                | QC Head        |                |
| 3.        | ENA<br>Storage<br>House | Confined<br>space       | It is harmful<br>for human<br>being                        | Such space<br>are labeled<br>and enter are<br>only after<br>permit     | No                            | High            | Low               | Medium                         | 4             | No                                | QC Head        |                |
| 4.        | ENA<br>Storage<br>House | Contractual<br>activity | Untrained<br>worker may<br>lead to<br>hazards like<br>fire | Contractor is<br>allowed to<br>work in<br>factory only<br>after permit | Yes                           | High            | Low               | Medium                         | 4             | Administrative<br>control in unit | QC Head        |                |
| 5.        | ENA<br>Storage<br>House | Spillage                | Risk of slip<br>trip injury                                | Regular<br>cleaning<br>activity                                        | No                            | High            | Low               | Low                            | 2             | Administrative control in unit    | QC Head        |                |

| S.<br>No. | Activity                    | Hazard                  | Impact                                                     | Present<br>Controls<br>Available                                                                                           | Legal<br>Requirement<br>(Y/N) | Severity<br>(S) | Likelihood<br>(P) | Risk<br>Rating<br>(S) X<br>(P) | Risk<br>Level | Additional<br>Control<br>Measures | Responsibility      | Target<br>Date |
|-----------|-----------------------------|-------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------|-------------------|--------------------------------|---------------|-----------------------------------|---------------------|----------------|
| 1.        | Power<br>House &<br>Turbine | Electrical<br>Shock     | It is harmful<br>for human<br>being and<br>environment     | All<br>equipment<br>proper<br>earthling is<br>done and<br>same also<br>checked<br>and use<br>PPE during<br>the<br>handling | No                            | High            | Low               | High                           | 4             | No                                | Power House<br>Head |                |
| 2.        | Power<br>House &<br>Turbine | Fire                    | It is harmful<br>for human<br>being and<br>environment     | Use PPE<br>during the<br>handling &<br>fire<br>extinguisher                                                                | Yes                           | Low             | Low               | Low                            | 2             | No                                | Power House<br>Head |                |
| 3.        | Power<br>House &<br>Turbine | Confined<br>space       | It is harmful<br>for human<br>being                        | Such space<br>are labeled<br>and enter<br>are only<br>after permit                                                         | No                            | High            | Low               | Medium                         | 4             | No                                | Power House<br>Head |                |
| 4.        | Power<br>House &<br>Turbine | Contractual<br>activity | Untrained<br>worker may<br>lead to<br>hazards like<br>fire | Contractor<br>is allowed<br>to work in<br>factory only<br>after permit                                                     | Yes                           | High            | Low               | Medium                         | 4             | Administrative<br>control in unit | Power House<br>Head |                |
| 5.        | Power<br>House &<br>Turbine | Spillage                | Risk of slip<br>trip injury                                | Regular<br>cleaning<br>activity                                                                                            | No                            | High            | Low               | Low                            | 2             | Administrative control in unit    | Power House<br>Head |                |

| S.<br>No. | Activity                       | Hazard                             | Impact                                                     | Present<br>Controls<br>Available                                                                                        | Legal<br>Requirement<br>(Y/N) | Severity<br>(S) | Likelihood<br>(P) | Risk<br>Rating<br>(S) X<br>(P) | Risk<br>Level | Additional<br>Control<br>Measures | Responsibility | Target<br>Date |
|-----------|--------------------------------|------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------|-------------------|--------------------------------|---------------|-----------------------------------|----------------|----------------|
| 1.        | Softener &<br>Cooling<br>tower | H2SO4 and<br>anticline<br>chemical | It is harmful<br>for human<br>being and<br>environment     | All<br>equipment<br>proper<br>earthling is<br>done and<br>same also<br>checked and<br>use PPE<br>during the<br>handling | No                            | High            | Low               | High                           | 4             | No                                | Plant Head     |                |
| 2.        | Softener &<br>Cooling<br>tower | Fire                               | It is harmful<br>for human<br>being and<br>environment     | Use PPE<br>during the<br>handling &<br>fire<br>extinguisher                                                             | Yes                           | Low             | Low               | Low                            | 2             | No                                | Plant Head     |                |
| 3.        | Softener &<br>Cooling<br>tower | Confined<br>space                  | It is harmful<br>for human<br>being                        | Such space<br>are labeled<br>and enter<br>are only<br>after permit                                                      | No                            | High            | Low               | Medium                         | 4             | No                                | Plant Head     |                |
| 4.        | Softener &<br>Cooling<br>tower | Contractual activity               | Untrained<br>worker may<br>lead to<br>hazards like<br>fire | Contractor<br>is allowed<br>to work in<br>factory only<br>after permit                                                  | Yes                           | High            | Low               | Medium                         | 4             | Administrative<br>control in unit | Plant Head     |                |
| 5.        | Softener &<br>Cooling<br>tower | Spillage                           | Risk of slip<br>trip injury                                | Regular<br>cleaning<br>activity                                                                                         | No                            | High            | Low               | Low                            | 2             | Administrative control in unit    | Plant Head     |                |

| S.<br>No. | Activity                    | Hazard                  | Impact                                                     | Present<br>Controls<br>Available                                       | Legal<br>Requirement<br>(Y/N) | Severity<br>(S) | Likelihood<br>(P) | Risk<br>Rating<br>(S) X<br>(P) | Risk<br>Level | Additional<br>Control<br>Measures | Responsibility             | Target<br>Date |
|-----------|-----------------------------|-------------------------|------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------|-----------------|-------------------|--------------------------------|---------------|-----------------------------------|----------------------------|----------------|
| 1.        | Water<br>Treatment<br>Plant | HCL and<br>NaoH         | It is harmful<br>for human<br>being and<br>environment     | Use PPE<br>during the<br>handling                                      | No                            | High            | Low               | High                           | 4             | No                                | Water<br>Treatment<br>Head |                |
| 2.        | Water<br>Treatment<br>Plant | Fire                    | It is harmful<br>for human<br>being and<br>environment     | Use PPE<br>during the<br>handling &<br>fire<br>extinguisher            | Yes                           | Low             | Low               | Low                            | 2             | No                                | Water<br>Treatment<br>Head |                |
| 3.        | Water<br>Treatment<br>Plant | Confined<br>space       | It is harmful<br>for human<br>being                        | Such space<br>are labeled<br>and enter<br>are only<br>after permit     | No                            | High            | Low               | Medium                         | 4             | No                                | Water<br>Treatment<br>Head |                |
| 4.        | Water<br>Treatment<br>Plant | Contractual<br>activity | Untrained<br>worker may<br>lead to<br>hazards like<br>fire | Contractor<br>is allowed<br>to work in<br>factory only<br>after permit | Yes                           | High            | Low               | Medium                         | 4             | Administrative<br>control in unit | Water<br>Treatment<br>Head |                |
| 5.        | Water<br>Treatment<br>Plant | Spillage                | Risk of slip<br>trip injury                                | Regular<br>cleaning<br>activity                                        | No                            | High            | Low               | Low                            | 2             | Administrative control in unit    | Water<br>Treatment<br>Head |                |

| S.<br>No. | Sub<br>Operations                                      | Activities                 | Interacts<br>with<br>Env.<br>Y/N | Direct<br>(D)/<br>Indirect<br>(I) | Conditions<br>N/A/E | Environmental<br>Aspects                                        | Environmental<br>Impacts                  | A | B | С | D | E | F | Total G | S/NS | Remarks                                                          |
|-----------|--------------------------------------------------------|----------------------------|----------------------------------|-----------------------------------|---------------------|-----------------------------------------------------------------|-------------------------------------------|---|---|---|---|---|---|---------|------|------------------------------------------------------------------|
| 1         | Manufacturing<br>and<br>utility/machine<br>maintenance | All machine operation      | Y                                | D                                 | Α                   | Generation of noise                                             | Noise pollution                           | 3 | 4 | 2 | 1 | 1 | 3 | 72      | NS   | Major to be<br>taken and ear<br>plugged to be<br>used            |
|           |                                                        | All machine<br>maintenance | Y                                | D                                 | Ν                   | Generation of<br>cotton waste<br>soaked in oils<br>& lubricants | Waste<br>management                       | 3 | 4 | 2 | 1 | 1 | 3 | 72      | NS   | All generated<br>waste to be<br>kept in the<br>specified<br>yard |
|           |                                                        | All utilities<br>cleaning  | Y                                | D                                 | Ν                   | Generation of<br>waste                                          | Waste<br>management                       | 3 | 4 | 5 | 1 | 2 | 2 | 144     | S    | The disposal<br>of liquid<br>waste sell be<br>done there<br>ETP  |
|           |                                                        | Running of<br>D.G. sets    | Y                                | D                                 | А                   | Emission of<br>smoke & high<br>of D.G stack                     | Air ambient air<br>pollution              | 2 | 4 | 2 | 1 | 1 | 3 | 48      | NS   | Testing is<br>done from<br>external<br>source                    |
|           |                                                        | Running of<br>D.G. sets    | Y                                | D                                 | А                   | Generation of noise                                             | Noise pollution                           | 3 | 4 | 2 | 1 | 1 | 2 | 48      | NS   | Testing is<br>done from<br>external<br>source                    |
|           |                                                        | Running of<br>D.G. sets    | Y                                | D                                 | Е                   | Use of<br>lubricants &<br>diesel                                | Air pollution &<br>land<br>contaminations | 3 | 3 | 2 | 1 | 1 | 3 | 54      | NS   | Care as taken<br>by maintains                                    |
|           |                                                        | Running of air             | Ν                                | D                                 | Ν                   | Uses of Power                                                   | Resource                                  | 3 | 2 | 3 | 1 | 2 | 3 | 108     | S    | Switch off<br>when not in                                        |

Aspect and Impact (Manufacturing Process & Maintenance)

|  | compressor                      |   |   |   |                          | depletion             |   |   |   |   |   |   |     |    | use                                                                        |
|--|---------------------------------|---|---|---|--------------------------|-----------------------|---|---|---|---|---|---|-----|----|----------------------------------------------------------------------------|
|  | Running of<br>air<br>compressor | Y | D | А | Generation of<br>noise   | Noise pollution       | 3 | 4 | 2 | 1 | 1 | 2 | 48  | NS | Major to be<br>taken and ear<br>plugged to be<br>used                      |
|  | Running of<br>air<br>compressor | Y | D | А | Explosion of air<br>tank | Noise pollution       | 4 | 1 | 4 | 1 | 1 | 2 | 32  | NS | Half yearly<br>inspection is<br>done by<br>external<br>competent<br>person |
|  | Electric<br>panel               | N | D | N | Uses of power            | Resource<br>depletion | 3 | 2 | 3 | 1 | 2 | 3 | 108 | S  | Switch off<br>when not in<br>use                                           |
|  | Water tank<br>over flow         | Y | D | A | Water wastage            | Resource<br>wastage   | 3 | 4 | 3 | 1 | 1 | 2 | 72  | NS | Care is taken<br>by<br>maintenance                                         |
|  | Cables                          | Y | D | A | Fining &<br>Smoke        | Air pollution         | 4 | 1 | 4 | 1 | 2 | 2 | 64  | NS | Major to be<br>taken by<br>safety team                                     |
|  | Transformer<br>maintains        | Y | D | A | Oil spillage &<br>fining | Air pollution         | 4 | 1 | 4 | 1 | 2 | 2 | 64  | NS | Care to be<br>taken by<br>maintenances                                     |

| S.<br>No. | Sub<br>Operations | Activities                                                                               | Interacts<br>with<br>Env. Y/N | Direct<br>(D)/<br>Indirect<br>(I) | Conditions<br>N/A/E | Environmental<br>Aspects                                                                         | Environmental<br>Impacts | A | B | С | D | E | F | Total<br>G | S/NS | Remarks                                                                                            |
|-----------|-------------------|------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------|---------------------|--------------------------------------------------------------------------------------------------|--------------------------|---|---|---|---|---|---|------------|------|----------------------------------------------------------------------------------------------------|
| 1         | Store             | Storage of fresh<br>diesel<br>barrels/cans                                               | Y                             | D                                 | N                   | Oil spillage<br>from damage<br>barrel/canon<br>concrete yard                                     | DNR                      | 3 | 3 | 3 | 1 | 1 | 3 | 81         | NS   | Measure to<br>be taken                                                                             |
|           |                   | Storage of<br>material like<br>machine parts,<br>electrical part,<br>plastics parts etc. | Y                             | D                                 | Ε                   | Catch fire                                                                                       | AP                       | 3 | 2 | 4 | 1 | 2 | 2 | 96         | NS   | Safety team<br>will work as<br>per need &<br>time to time<br>fire mock<br>drill to be<br>conducted |
|           |                   | Storage of grease<br>barrels/box                                                         | Y                             | D                                 | N                   | Grease spillage<br>from damaged<br>barrel/box on<br>concrete floor                               | DNR                      | 2 | 2 | 2 | 1 | 2 | 3 | 48         | NS   |                                                                                                    |
|           |                   | Storage of grease<br>barrels/box                                                         | Y                             | D                                 | N                   | Catch fire                                                                                       | AP                       | 2 | 2 | 4 | 1 | 2 | 2 | 64         | NS   |                                                                                                    |
|           |                   | Unloading of<br>diesel berried<br>cans                                                   | Y                             | D                                 | N                   | Opening of oil<br>barrels/cans<br>while unloading<br>and oil falling<br>on the concrete<br>floor | DNR                      | 2 | 2 | 2 | 1 | 2 | 3 | 48         | NS   |                                                                                                    |
|           |                   | Unloading of<br>grease<br>barrels/box                                                    | Y                             | D                                 | N                   | Opening of<br>grease<br>barrels/box<br>while unloading                                           | DNR                      | 2 | 2 | 2 | 1 | 2 | 3 | 48         | NS   |                                                                                                    |

Aspect and Impact (Store)

|                                                                                                          |   |   |   | and falling<br>while unloading<br>& falling on the<br>concrete floor |     |   |   |   |   |   |   |     |    |                                                                             |
|----------------------------------------------------------------------------------------------------------|---|---|---|----------------------------------------------------------------------|-----|---|---|---|---|---|---|-----|----|-----------------------------------------------------------------------------|
| Respires of lead<br>acid batteries,<br>glass wool and<br>paints                                          | Y | D | N | Chances of<br>leakage on floor<br>like acid, paint<br>etc.           | WM  | 2 | 2 | 2 | 1 | 2 | 3 | 48  | NS |                                                                             |
| Receipt of<br>waste/scrap<br>material like<br>damage<br>glass/bottles/used<br>oil glass wood,<br>plastic | Y | D | N | Chances of<br>leakage used oil<br>scattered glass<br>wood            | WM  | 2 | 2 | 2 | 1 | 2 | 3 | 48  | NS |                                                                             |
| Receipt of<br>waste/scrap<br>material like<br>damage<br>glass/bottles/used<br>oil glass wood,<br>plastic | Y | D | E | Catch fire                                                           | AP  | 3 | 2 | 4 | 1 | 2 | 2 | 96  | NS |                                                                             |
| Energy<br>consumption in<br>light. Fan, AC,<br>scanner, printer<br>etc                                   | Y | D | N | Consumption of power                                                 | DNR | 3 | 2 | 3 | 1 | 2 | 3 | 108 | NS | Switch off<br>when not in<br>use                                            |
| Paper<br>consumption                                                                                     | Ν | D | N | Consumption of<br>Paper                                              | DNR | 3 | 4 | 3 | 1 | 3 | 1 | 108 | NS | Double side<br>printing to<br>be done &<br>soft date<br>need to be<br>kept. |

| S.<br>No. | Sub<br>Operations  | Activities                                                             | Interacts<br>with<br>Env.<br>Y/N | Direct<br>(D)/<br>Indirect<br>(I) | Conditions<br>N/A/E | Environmental<br>Aspects          | Environmental<br>Impacts | Α | B | C | D | E | F | Total<br>G | S/NS | Remarks                                                                            |
|-----------|--------------------|------------------------------------------------------------------------|----------------------------------|-----------------------------------|---------------------|-----------------------------------|--------------------------|---|---|---|---|---|---|------------|------|------------------------------------------------------------------------------------|
| 1         | Office<br>Activity | Energy<br>consumption<br>in light. Fan,<br>AC, scanner,<br>printer etc | Y                                | D                                 | N                   | Consumption of power              | DNR                      | 3 | 2 | 3 | 1 | 2 | 3 | 104        | S    | Wastage to<br>energy to<br>controlled<br>and switch<br>off when not<br>in use      |
|           |                    | Paper<br>consumption                                                   | N                                | D                                 | Ν                   | Consumption of<br>Paper           | DNR                      | 3 | 4 | 3 | 1 | 3 | 1 | 108        | S    | Double side<br>printing to<br>be done &<br>soft date<br>need to be<br>kept.        |
|           |                    | Disposable of<br>stationary<br>wastes                                  | N                                | D                                 | N                   | Disposable of<br>stationary waste | IC                       | 1 | 3 | 1 | 1 | 3 | 2 | 18         | NS   | To be sold<br>out the<br>responsible<br>source who<br>use as<br>recycle<br>purpose |
|           |                    |                                                                        |                                  |                                   |                     |                                   | DNR                      |   |   |   |   |   |   |            |      | Care threw maintenance                                                             |

#### Aspect and Impact (HR, Quality, Marketing, Purchase)

| 2. | Housekeeping<br>and premises | Consumption<br>of water                  | Y | Dt | N | Consumption of water                   | DNR | 3 | 3 | 3 | 1 | 2 | 1 | 54 | NS | Disposed<br>through<br>drainage                            |
|----|------------------------------|------------------------------------------|---|----|---|----------------------------------------|-----|---|---|---|---|---|---|----|----|------------------------------------------------------------|
|    |                              | Discharge of<br>waste water              | Ν | Dt | N | Disposable of<br>waste water           | WP  | 2 | 4 | 2 | 1 | 3 | 1 | 48 | NS | Dispose as<br>dumping<br>yard                              |
|    |                              | Disposable of<br>housekeeping<br>waste   | N | Dt | N | Disposable of<br>housekeeping<br>waste | LC  | 2 | 4 | 2 | 1 | 3 | 1 | 48 | NS | Mopping<br>water<br>sprinkling<br>done where<br>required   |
|    |                              | Dust<br>generation                       | Y | Dt | N | Generation of<br>dust                  | AP  | 1 | 4 | 2 | 1 | 3 | 2 | 48 | NS | Mask used<br>spraying<br>done during<br>occupance<br>hours |
|    |                              | Generation of<br>mist during<br>spraying | Y | Dt | N | Generation of<br>mist                  | АР  | 1 | 2 | 2 | 1 | 3 | 2 | 24 | NS | Use as per<br>requirement                                  |
| 3. | Washroom                     | Consumption<br>of water                  | Y | D  | N | Consumption of<br>water                | DNR | 2 | 4 | 3 | 1 | 3 | 1 | 72 | NS | Care<br>thought<br>energy<br>congestions                   |
|    |                              | Discharge of<br>waste water              | Y | D  | Ν | Disposable of<br>waste water           | WP  | 2 | 4 | 2 | 1 | 3 | 1 | 48 | NS | Periodic<br>maintenance                                    |
|    |                              | Water<br>leakage from                    | Ν | D  | Ν | Consumption of                         | DNR | 2 | 1 | 3 | 1 | 4 | 2 | 48 | NS | Use as per                                                 |

|   |                               | taps overflow<br>of water tank          |   |    |   | water                                 |                |   |   |   |   |   |    |     |    | requirement                            |
|---|-------------------------------|-----------------------------------------|---|----|---|---------------------------------------|----------------|---|---|---|---|---|----|-----|----|----------------------------------------|
| 4 | Guarding and<br>horticulture  | Consumption<br>of water                 | Ν | Dt | N | Consumption of water                  | DNR            | 2 | 3 | 3 | 1 | 3 | 1  | 54  | NS | Use as per<br>requirement              |
|   |                               | Tree<br>plantation                      | Y | Dt | N | If tree<br>plantation is not<br>there | Global warming | 4 | 3 | 4 | 1 | 1 | 3  | 144 |    | Care of plants                         |
|   |                               | Disposable of<br>waters leaves<br>twigs | N | Dt | N | Disposable of<br>waste                | IC, IP         | 1 | 3 | 2 | 1 | 3 | 3  | 54  | NS | Disposable f<br>dumping<br>yard        |
|   |                               | Generation of<br>mist during<br>sparing | N | Dt | N | Generation of<br>mist                 | AP             | 1 | 2 | 2 | 1 | 3 | 3  | 56  | NS | Mask used                              |
| 5 | Painting and<br>white washing | Use of paint,<br>thinner etc            | N | Dt | N | Disposable of<br>waste                | DNR            | 3 | 1 | 3 | 1 | 3 | 2  | 54  | NS | Use as per<br>requirement              |
|   |                               | Disposal of<br>brusher<br>clothes etc.  | N | Dt | N | Disposable of<br>waste                | IC             | 1 | 1 | 1 | 3 | 3 | 18 | NS  |    | Taken back<br>by<br>contractor         |
|   |                               | Fire in plant<br>thinner                | N | Dt | A | Disposable of<br>waste                | AP             | 3 | 1 | 5 | 1 | 3 | 1  | NS  |    | No smoking<br>area handle<br>carefully |

#### 7.3.3 **Proposed mitigation measures**

- (A) Electricity hazard
  - All electrical equipment/machinery to be provided with proper earthing.
  - Earthed electrode shall be regularly tested and maintained
  - Emergency lighting shall be available at all critical locations
  - Easy accessibility of fire-fighting facilities
  - All electrical equipment shall be free from carbon dust, oil deposits
  - Use of approved insulated tools
  - Flame and shock detectors and central fire announcement system to be provided
  - Temperature sensitive alarm and protective relays to make alert and disconnect equipment before overheating shall be provided

#### (B) Fuel storage

- Biomass handling unit/Agency will be at minimum 500 meters away from the residential area and eco-sensitive zones.
- Biomass handling unit will be located at a minimum 500 meters away from the state or national highway.
- The unit will have adequate water supply through pipe. Biomass storage unit is to be ensured for stacking in heaps.
- Ash dispersion will be prevented by covered transportation.
- Fire-fighting measures will be readily available

#### (C) Precautionary measures for falling material

- Safety helmets to be used to protect workers against falling material.
- Barriers like toe boards or mesh guards is to be provided to prevent items from slipping or being knocked off the edge of a structure.
- No-entry zone will be defined in working areas.
- Dangerous areas during construction phase will be excluded and proper PPEs will be made available.

#### (D) Safety measures for storage & handling of alcohol

Handling and storage of alcohol will be done as per prescribed norms. Automated handling will be installed. Following precautionary measures would be taken for safety:

#### (a) Handling and storage measures

- (i) Alcohol storage area shall be kept away from oxidizers, heat and flames.
- (ii) Proper care will be ensured for handling alcohol.
- (iii) Ventilation shall be properly provided.
- (iv) Avoidance of storage of plastics, rubber and coatings in the alcohol area.

 (v) Grounding of the container and transferring of equipment to eliminate static electric sparks.

#### First aid measures

For skin contact, eye contact & inhalation.

#### (b) Fire Fighting Measures

Following media will be used for extinguishing fire as water, dry chemicals (BC or ABC powder), CO, Sand, dolomite, etc. Foam System will be provided to extinguish fire from the alcohol storage tank. The foam blanket will suppress the flammable vapors that can combine with air and result in more fire subsequently.

Special Fire Fighting Procedures; Keeping the fire upwind and avoiding downwind direction, closing all possible sources of ignition. Water in straight hose stream shall be avoided which will scatter and spread fire. Spray or fog nozzles will be promoted.

Hazardous Decomposition Products: gases of Carbon Monoxide (CO) & Carbon Dioxide (CO2).

#### (c) Accidental release measures

In case of alcohol spillage, removal & shutting off of all possible sources of ignition, absorb small quantities with paper towels and safe place like fume hood shall be chosen for proper evaporation and burning of these towels should be done in a safe manner, use of respiratory and/or liquid-contact protection by the clean-up personnel will be promoted.

#### 7.3.3.1 Need of establishing a fire fighting group

The alcohol spillage can cause uncontrolled fire and explosion scenes which will result in great economic losses and loss of life as well as property. Fire extinguishers/ hydrants/ water monitors/hose boxes/ nozzles etc will be regularly checked/ tested. The plant will have trained firefighting staff (security men) under control of Security Officer.

#### Inspection

Fire alarm panel (electrical) will cover the entire site. There will be regular inspection of fire extinguishers and hydrant networks. Two types of the inspections are carried out in the plant i.e. On Stream Inspection & Shutdown Inspection.

The emergency telephone number boards will be displayed at vital points.

#### Procedure for extinguishing fire

The following steps will be taken during a fire accident in the system:

- On receiving message about fire, one of the systems will be diverted to the place of the fire accident along with a staff member.
- Followed by plant fire station to be informed by phone or walkie-talkie of nearby area.
- In the meanwhile, the pipe system will be operated to obtain maximum pressure on output.

#### Fire-fighting with water

Adequate and reliable arrangement is required for fighting the fire with water such as:

- Provision for fire hydrant.
- Arrangement of pipelines of water all around vulnerable areas.
- Provision of valves at appropriate points
- > Provision of overhead tanks which will be providing water.

#### Fire-fighting with fire extinguishers

Carbonaceous fire can be extinguished with water, whereas other types of fire require suitable fire extinguishers to do the job effectively. Adequate number of fire stations would be provided.

- > In case of fire, other spray groups will be diverted to the fire area.
- In case of fire in the greenbelt, greenbelt will be cut near the burning portion to save the remaining parts.
- > Foam material fire-fighting will be provided to control fire from the alcohol storage tank.

#### 7.3.3.2 Environment Health and Safety Cell

The company will have full-fledged EHS cell (Environment Health & Safety Cell). Main function of EHS cell will be

- To assess/quantify the potential risks/hazards to environment, health of employees & society
- Provide safety within the plant.
- Supervising installation of fire-fighting system, fire alarm, provision of safety/protective equipment to workers
- ▶ Keep a record of regular medical check-ups.
- Periodic monitoring of different parameters shall be carried out to ensure safety of environment and society.
- Conduction of trainings and mock drills in regular intervals for workers to ensure the safety in case of any accident or natural hazard.

#### 7.3.3.3 Emergency Planning & Procedure

#### **Emergency Control Center**

Emergency Control Centre (ECC) is a cell which is active during emergency majorly and from where emergency operations are directed and coordinated. This center gets activated as soon as on-site emergency is declared.

#### **General Description of ECC**

The ECC will be designated in an area that poses minimal risk being directly exposed to possible accidents. During an emergency, site controller and emergency management staff shall gather. ECC shall consist of adequate communication systems in the form of telephones and other equipment to allow proper control in case of emergency.

Only limited no. of people specific to various tasks required in emergency are admitted to the ECC, when in use to avoid unnecessary interference, confusion & panic.

The ECC will consist of following facilities:

- > Updated manual of the On-site Disaster Management Plan.
- > Contact numbers required at the time of emergency.
- > Contact numbers of external agencies, Govt. authorities.
- More than two telephones to be kept.
- > Emergency lights, clocks, personal protective equipment.
- > List showing fire extinguishers with their type no. and location, capacity, etc.
- > No. of Safety helmets list of quantity & location.
- Material safety data sheets for hazardous chemicals to be handled.
- Several maps of the facility including drainage system for surrounding area showing hazardous material storage area, water pipelines, PPEs storage, Pumping stations and water resources, roads and main entrances and assembly area along with network of hydrant lines.

#### 7.3.3.4 Emergency planning for disaster due to fire and major hazards

Fire prone areas are cable rooms, transformer unit, auxiliary transformers, oil tanks, etc. within the plant for which emergency plan has to be delineated. Stores, workshop, canteen and administrative building will be included.

#### 7.3.3.4.1 Consequence analysis

Major hazards associated with distillery are fire and explosion. Fire hazard due to alcohol storage, fuel storage, boiler operations etc. and explosion due to boiler operations. Ethanol is a highly flammable liquid.

Hazards due to ethanol - Flammable. Risk of ignition. Vapors may form explosive mixtures with air. Vapours of ethanol might travel/spread to a potential source of ignition capability and then flash back immediately. Containers may explode when heated. Vapors may form explosive mixtures with air. *[Source: MSDS of ethanol]* 

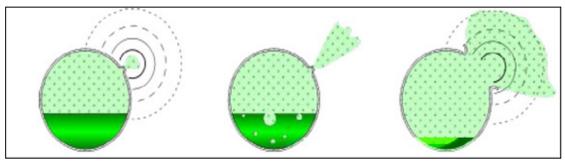
Fire due to ethanol leakage can cause irreparable damage within plant premises. Burning of men and property in areas of leakage.

#### **Common terminologies**

#### **Accident Site**

The location either the factory premises or a transportation route where an unexpected event of failure / release of hazardous substance which have the potential of resulting into serious injuries or loss of life, extensive damage to property and/or environment occurs.

#### Airborne release


Release of any chemical into the air.

#### **Boiling Liquid Expanding Vapor Explosion (BLEVE)**

A BLEVE is a combination of fire and explosion with an intense radiant heat emission within a relatively short time interval. The phenomenon can occur within a vessel or tank containing pressurized liquid is ruptured as a result of a weakening of its structure, the contents are instantaneously released from the vessel as a turbulent mixture of liquid and gas, expanding rapidly and dispersing in air as a cloud. When this cloud is ignited, a fireball occurs, causing enormous heat-radiation intensity within a few seconds. This heat intensity is sufficient to cause severe skin burns and deaths at several hundred meters from the vessel, depending on the quantity of the gas involved. BLEVE can be caused by a physical impact on a vessel or tank, which is already overstressed or damaged.

A BLEVE event is shown below, the liquid of this vessel; heats up, the pressure rises and the relief valve operates, the release being ignited by the flame playing on the vessel. For a time the metal of this vessel is kept cool by liquid in contact with it, but the level falls as the liquid is vaporized, metal cooled only by vapor is exposed, becomes hot, weakens and ruptures. A large fraction of the flammable liquid gas released, vaporizes and forms a burning vapor cloud, often a fireball, causing enormous heat-radiation intensity within a few seconds. This heat intensity is sufficient to cause severe skin burns and deaths at several hundred meters from the vessel, depending on the quantity of the gas involved.

## BLEVE OF A VESSEL CONTAINING A FLAMMABLE LIQUID GIVES RISE TO THE FOLLOWING EFFECTS



While the term BLEVE is most often used to describe the results of a container of flammable liquid rupturing due to fire, a BLEVE can occur even with a non-flammable substance such as water, liquid nitrogen, liquid helium or other refrigerants or cryogens, and therefore is not usually considered a type of chemical explosion.

#### Chemical Abstract Service Number (CAS No.)

The chemicals will be listed by their common names and also by their Chemical Abstract Service (CAS) Number. While a chemical may be known by several different trade names, the CAS Number provides a unique and unambiguous identification.

#### **Domino Effects (Knock-on)**

An event at one site/plant may be the cause of a further event at another site / plant leading to escalation of hazard.

#### Evacuation

Removal of occupants and other persons from an area of danger.

Fire:

#### **Pool Fire-**

A pool fire occurs when a flammable liquid spills onto the ground and is ignited. A fire in a liquid storage tank is also a form of pool fire, as is a trench fire. A pool fire may also occur on the surface of flammable liquid spilled on to water.

#### Jet Fire

The ejection of flammable liquid from a vessel, pipe or pipe flange can give rise to a jet flame if the material ignites. Scenarios involving jet flames are not easy to handle, since a large jet flame may have a substantial reach sometimes up to 50 m or more. Jet flame may cause overheating of adjacent vessel and burst, giving a boiling liquid expanding vapor explosion or BLEVE.

#### Flash Fire / Vapor Cloud Explosion

When hydrocarbons' vapor is released accidentally and spread out in the direction of wind, it finds a ignition source before dispersed completely below the LEL (Lower Explosive limit) a flash fire occurs. If such fire occurs under pressure occurs the event is called vapor cloud explosion (VCE)

#### Fireball-

Fireball usually occurs as part of a BLEVE when a vessel ruptures after it has been engulfed in fire or has been subjected to a direct flame. The fireball may result either by bursting of a pressure vessel that may occurs under fire conditions and be part of a BLEVE /momentum forces predominate if a fireball is formed from bursting of a vessel, and buoyancy forces predominate in one formed from a vapor cloud in the absence of fire or by formation of a vapor cloud.

#### **Threshold Limit Value (TLV)**

TLV is a recommended time-weighted average concentration of a substance to which most workers can be exposed without adverse effect on health. The TLV's for gases and vapors are expressed in ppm (parts per million), which stands for parts of gases or vapors per million parts of air. The TLV's for fumes, mists, and some dusts are given as milligrams per cubic meter (mg/m3).

#### Vapour Cloud Explosion (VCE)

Clouds of flammable vapours with concentration within LEL and UEL (Upper Explosive Limit) may explode when it finds a source of ignition. Such explosions may occur within or outside the plant depending upon how the vapour has drifted before it finds the source of ignition. The explosion radiates intense heat.

#### Vulnerable Zone

An estimated geographical area that may be affected by the toxic release at levels that could cause irreversible acute health effects or death to human population within the area following an accidental release.

| S.  | Heat             | Type of Damage Intensity                                                             |                                                                           |
|-----|------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| No. | loads<br>(kW/m2) | Damage to Equipment                                                                  | Damage to People                                                          |
| 1.  | 37.5             | Damage to process equipment                                                          | <ul><li>100% lethality in 1 min.</li><li>1% lethality in 10 sec</li></ul> |
| 2.  | 25.0             | Minimum energy required to ignite wood                                               | 50% Lethality in 1 min. Significant injury in 10 sec                      |
| 3.  | 19.0             | Maximum thermal radiation intensity<br>allowed on thermally unprotected<br>equipment |                                                                           |
| 4.  | 12.5             | Minimum energy required to melt plastic tubing                                       | 1% lethality in 1 min                                                     |
| 5.  | 4.0              |                                                                                      | First degree burns, causes pain<br>for exposure longer than 10 sec        |
| 6.  | 1.6              |                                                                                      | Causes no discomfort on long<br>exposures                                 |
|     |                  | Bank (1988). Technical Report No. 55: Technique<br>The World Bank                    | es for Assessing Industrial Hazards. ,                                    |

#### List of damages envisaged at various heat loads

Carbon dioxide gas released during fermentation can also cause various hazards if not collected properly and leakage occurs. Carbon dioxide is an odourless, colourless and toxic gas. The consequence analysis at various concentrations is given below: Carbon Dioxide is a powerful cerebral dilator. Carbon dioxide, if present at concentrations between 2 and 10% might cause nausea, dizziness, headache, mental confusion, increased blood pressure and respiratory rate. Above 8% nausea and vomiting might appear and above 10% it might cause suffocation and

lethality can occur within minutes. [Source: SDS of Carbon dioxide]

| Structural<br>Element  | Failure                                                                                                                                           | Approximate peak<br>side-on<br>overpressure psi<br>(1 bar = 14.7 psi) |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Window Panes           | 5 % broken                                                                                                                                        | 0.1 - 0.15                                                            |
|                        | 50 % broken                                                                                                                                       | 0.2 - 0.4                                                             |
|                        | 90 % broken                                                                                                                                       | 0.5 - 0.9                                                             |
| Houses                 | Tiles displaced                                                                                                                                   | 0.4 - 0.7                                                             |
|                        | Doors and window frames broken                                                                                                                    | 0.8 - 1.3                                                             |
|                        | Inhabitable after repair-some damage to Ceilings, windows and tiling                                                                              |                                                                       |
|                        | Minor structural damage, partitions                                                                                                               | 0.2 - 0.4                                                             |
|                        | Uninhabitable: partial or total collapse of Roof, partial<br>demolition of one or two external walls, severe damage to load<br>bearing partitions |                                                                       |
|                        | 50-75 % external brickwork destroyed or rendered unsafe                                                                                           |                                                                       |
|                        | Almost complete demolition                                                                                                                        | 0.5 - 0.9                                                             |
| <b>Telephone Poles</b> | Destroyed                                                                                                                                         | 10-25                                                                 |
| Large Trees            | Destroyed                                                                                                                                         | 24 - 55                                                               |
| Rail freight<br>Wagons | Limit of derailment                                                                                                                               | 12 - 27                                                               |

#### Effects of blast over-pressure on structure

#### **Emergency Response Planning Guidelines (ERPGs)-**

ERPGs estimate the concentrations at which most people will begin to experience health effects if they are exposed to a hazardous airborne chemical for 1 hour. (Sensitive members of the public—such as old, sick, or very young people—aren't covered by these guidelines and they may experience adverse effects at concentrations below the ERPG values.) A chemical may have up to three ERPG values, each of which corresponds to a specific tier of health effects.

The three ERPG tiers are defined as follows:

| ERPG-3 | The maximum airborne concentration below which it is            |               |
|--------|-----------------------------------------------------------------|---------------|
|        | believed that nearly all individuals could be exposed for up to |               |
|        | 1 hour without experiencing or developing life- threatening     |               |
|        | health effects.                                                 |               |
| ERPG-2 | The maximum airborne concentration below which it is            |               |
|        | believed that nearly all individuals could be exposed for up to | NOL           |
|        | 1 hour without experiencing or developing irreversible or       | RA'           |
|        | other serious health effects or symptoms which could impair     |               |
|        | an individual's ability to take protective action.              | CONCENTRATION |
| ERPG-1 | The maximum airborne concentration below which it is            |               |
|        | believed that nearly all individuals could be exposed for up to |               |
|        | 1 hour without experiencing other than mild transient health    |               |
|        | effects or perceiving a clearly defined, objectionable odor.    |               |
|        |                                                                 |               |

# ERPG-3 ERPG-2 ERPG-1

#### 7.3.3.4.2 Proposed Alcohol Storage tanks:

| S.  | Fluid         | Material of  | No. of tank | Size     | ( <b>mm</b> ) | Capacity in KL |
|-----|---------------|--------------|-------------|----------|---------------|----------------|
| No. |               | Construction |             | Diameter | Height        |                |
| 1   | Ethanol       | MS           | 3           | 6000     | 8000          | 678            |
| 2   | Ethanol       | MS           | 2           | 15000    | 15500         | 5478           |
| 3   | Ethanol       | MS           | 1           | 6000     | 9000          | 254            |
| 4   | ENA           | MS           | 3           | 6000     | 8000          | 678            |
| 5   | ENA           | MS           | 3           | 7200     | 9500          | 1160           |
| 6   | RS            | MS           | 2           | 6000     | 8000          | 452            |
| 7   | Impure spirit | MS           | 2           | 2500     | 4500          | 44             |
| 8   | Impure spirit | MS           | 1           | 5000     | 8000          | 157            |
| 9   | Malt Spirit   | SS           | 3           | 2000     | 4000          | 37             |
| 10  | Malt Spirit   | SS           | 2           | 6500     | 8000          | 530            |

#### Scenario of Ethanol in different forms:

#### **SITE DATA:**

Location: MAHASAMUND, CHHATTISGARH, INDIA Building Air Exchanges Per Hour: 0.5 (user specified) Time: August 5, 2023, 17:25 hours ST (using computer's clock) <u>CHEMICAL DATA:</u> Chemical Name: ETHANOL

CAS Number: 64-17-5

Molecular Weight: 46.07 g/mol

ERPG-1: 1800 ppm ERPG-2: 3300 ppm ERPG-3: N/A

IDLH: 3300 ppm LEL: 33000 ppm UEL: 190000 ppm

Ambient Boiling Point: 77.5° C

Vapor Pressure at Ambient Temperature: 0.098 atm

Ambient Saturation Concentration: 101,581 ppm or 10.2%

#### **ATMOSPHERIC DATA: (MANUAL INPUT OF DATA)**

Wind: 2.5 meters/second from W at 3 meters

Ground Roughness: open country

Cloud Cover: 5 tenths

Air Temperature: 29° C

Stability Class: C

No Inversion Height

Relative Humidity: 65%

## SCENARIO 1: LEAKING TANK, CHEMICAL IS NOT BURNING AND FORMS AN EVAPORATING PUDDLE

Potential hazards from flammable chemical which is not burning as it leaks from tank.

- Downwind toxic effects
- Vapour cloud flash fire
- Over pressure (blast force) from vapour cloud explosion

#### **SOURCE STRENGTH:**

Leak from hole in vertical cylindrical tank Flammable chemical escaping from tank (not burning) Tank Diameter: 15 meters Tank Length: 15.5 meters Tank Volume: 2,739 cubic meters Tank contains liquid Internal Temperature: 29° C Chemical Mass in Tank: 2,035,668 kilograms Tank is 95% full Circular Opening Diameter: 20 centimeters Opening is 3.88 meters from tank bottom Ground Type: Concrete Ground Temperature: equal to ambient Max Puddle Diameter: Unknown Release Duration: ALOHA limited the duration to 1 hour

Max Average Sustained Release Rate: 538 kilograms/min

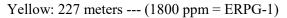
(averaged over a minute or more)

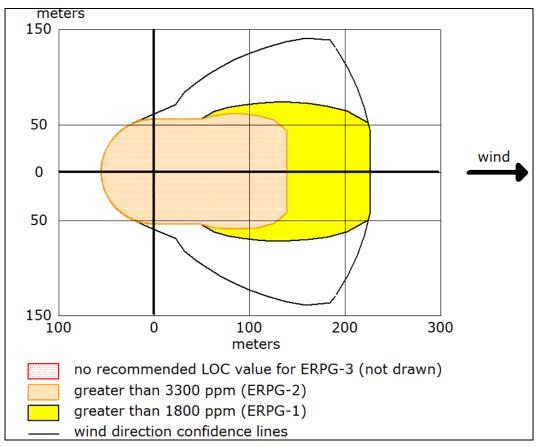
Total Amount Released: 20,376 kilograms

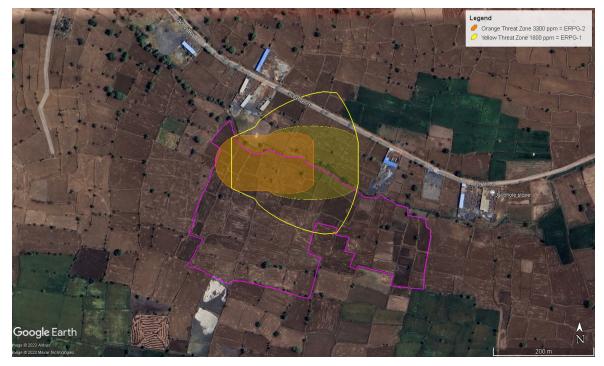
Note: The chemical escaped as a liquid and formed an evaporating puddle.

The puddle spread to a diameter of 147 meters.

When, flammable chemical escaping from tank chemical is NOT on fire Choose Hazard to


#### Analyze: Toxic Area of Vapour Cloud


#### THREAT ZONE:


Model Run: Heavy Gas

Red: no recommended LOC value --- (N/A = ERPG-3)

Orange: 140 meters --- (3300 ppm = ERPG-2)



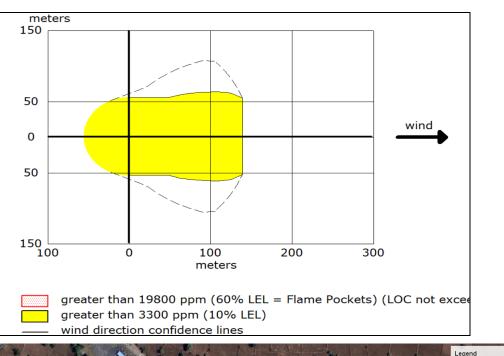




When, Flammable chemical escaping from tank chemical is NOT on fire Choose Hazard to Analyze:

#### Flammable Area of Vapour Cloud

Local areas of flame can occur even though the average concentration is below the LEL. Model finds the flammable area by using 60% of LEL.


#### THREAT ZONE:

Threat Modeled: Flammable Area of Vapor Cloud

Model Run: Heavy Gas

Red: LOC was never exceeded --- (19800 ppm = 60% LEL = Flame Pockets)

Yellow: 140 meters --- (3300 ppm = 10% LEL)





When, flammable chemical escaping from tank chemical is **NOT** on fire Choose Hazard to Analyze: **Blast Area of Vapour Cloud Explosion** 

#### THREAT ZONE:

Threat Modeled: Overpressure (blast force) from vapor cloud explosion Type of Ignition: ignited by spark or flame Level of Congestion: congested Model Run: Heavy Gas

No explosion: no part of the cloud is above the LEL at any time

#### SCENARIO 2: LEAKING TANK, CHEMICAL IS BURNING AND FORMS A POOL FIRE

Potential hazards from chemical which is burning as it leaks from tank:

- Thermal radiation from pool fire
- BLEVE (if heat rises the internal tank temperature and causes the tank to fail)
- Downwind toxic effects of fire byproducts

#### **SOURCE STRENGTH:**

Leak from hole in vertical cylindrical tank

Flammable chemical is burning as it escapes from tank

Tank Diameter: 15 meters

Tank Length: 15.5 meters

Tank Volume: 2,739 cubic meters

Tank contains liquid

Internal Temperature: 29° C

Chemical Mass in Tank: 2,035,668 kilograms

Tank is 95% full

Circular Opening Diameter: 10 centimeters

Opening is 3.88 meters from tank bottom

Max Puddle Diameter: Unknown

Max Flame Length: 13 meters

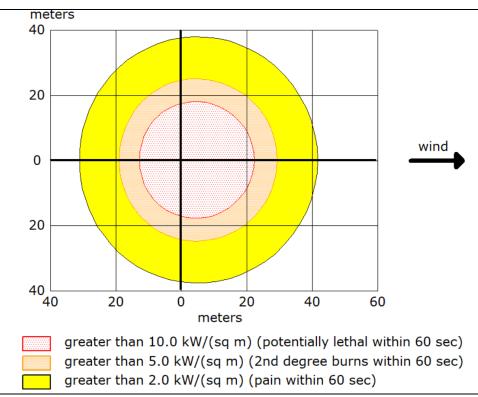
Burn Duration: ALOHA limited the duration to 1 hour

Max Burn Rate: 362 kilograms/min

Total Amount Burned: 20,921 kilograms

Note: The chemical escaped as a liquid and formed a burning puddle.

The puddle spread to a diameter of 16.7 meters.


#### THREAT ZONE:

Threat Modeled: Thermal radiation from pool fire

Red: 22 meters --- (10.0 kW/(sq m) = potentially lethal within 60 sec)

Orange: 29 meters --- (5.0 kW/(sq m) = 2nd degree burns within 60 sec)

Yellow: 42 meters --- (2.0 kW/(sq m) = pain within 60 sec)





**SCENARIO 3: BLEVE, TANK EXPLODES AND CHEMICAL BURNS IN A FIREBALL** Potential hazards from BLEVE:

- Thermal radiation from fireball and pool fire
- Hazards fragments and blast force from explosion
- Downwind toxic effects of fire by-products

BLEVE/Fire ball Scenario: The higher the internal tank pressure/temperature at the time of tank failure, the larger the fire ball. Any liquid not consumed by the fire ball will form a pool fire.

#### **SOURCE STRENGTH:**

BLEVE of flammable liquid in vertical cylindrical tank

Tank Diameter: 15 meters

Tank Length: 15.5 meters

Tank Volume: 2,739 cubic meters

Tank contains liquid

Internal Storage Temperature: 29° C

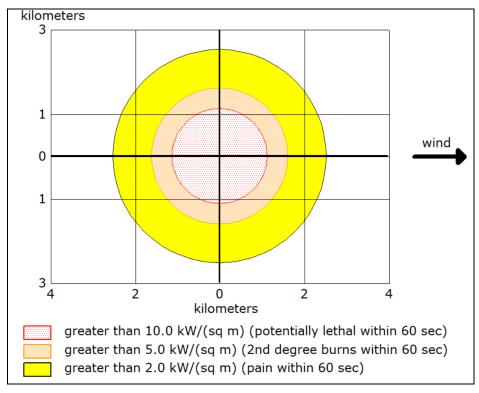
Chemical Mass in Tank: 2,035,668 kilograms

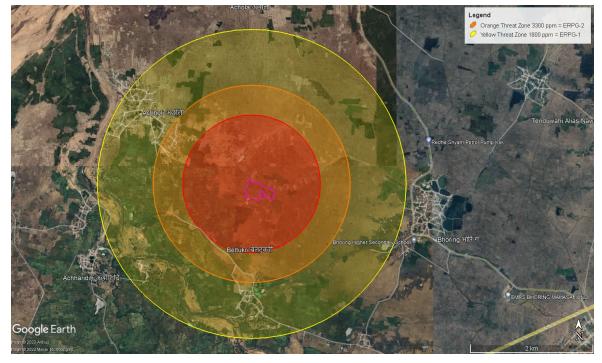
Tank is 95% full

Percentage of Tank Mass in Fireball: 100%

Fireball Diameter: 735 meters

Burn Duration: 34 seconds


#### THREAT ZONE:


Threat Modeled: Thermal radiation from fireball

Red: 1.1 kilometers --- (10.0 kW/(sq m) = potentially lethal within 60 sec)

Orange: 1.6 kilometers --- (5.0 kW/(sq m) = 2nd degree burns within 60 sec)

Yellow: 2.5 kilometers --- (2.0 kW/(sq m) = pain within 60 sec)





#### Conclusions

#### Scenario 1

When ethanol is leaking from tank and is NOT burning, forms an evaporating puddle; the threat zone for the Ethanol tank does not recommend the LOC value as per the Emergency Response Planning Guidelines ERPG-3. Hence the Red colored level of concern is not recommended. No villages are falling within this area.

#### Scenario –2

When ethanol is leaking from tank and is burning forms a pool fire; the thermal radiation for the Ethanol tank confined to the maximum at 22 meters only for which the thermal radiation intensity of 10 kW/m2 is potentially lethal within 60 seconds. Similarly, the other threat zone of 5.0 kW/m2 causes 2<sup>nd</sup> degree burns within 60 seconds at 29 m and the rest is 2.0 kW/m2 at 42 m which causes pain within 60 seconds. Hence, all Red, Orange & Yellow colored level of concerns are almost within plant premises only which will not affect any nearby villages.

#### Scenario-3

When tank explodes and ethanol is in a fireball due to BLEVE; the thermal radiation for the Ethanol tank is confined to the maximum at 1.1 Km for which the thermal radiation intensity of 10 kW/m2 is potentially lethal within 60 seconds. Two stone mills is falling within 1.1 km which is likely to be affected. Similarly, the other threat zone of 5.0 kW/m2 causes 2nd degree burns within 60 seconds at 1.6 km and the rest is 2.0 kW/m2 subjected at 2.8 km within the study area, which causes pain within 60 seconds. Villages Achholi, Beltukri and some small habitats are likely to be slightly affected in orange and yellow level of concern.

#### 7.3.4 Onsite emergency plan/disaster management plan

#### Definition

A major on site emergency in an operational plant is one which has the potential to cause serious injury or loss of life. It has the ability to cause great loss of life and property as well as economical losses.

#### Objective

The overall objectives of the emergency plan will be:

- To prevent the emergency situation within plant premises boundary only so that it does not harm life and property outside the zone
- > To best possible minimize the effects of the accident on people and property.

Elimination will require immediate and prompt action by operations and work emergency staff, for example, fire-fighting equipment, water sprays etc.

Minimizing the effects may include rescue, first aid, evacuation and giving information promptly to people living nearby.

#### 7.3.4.1 Disaster Control Management System

Disaster Management group plays an important role in combating emergency in a systematic manner. Details of Emergency Control Management system with key personnel and their responsibilities and duties are listed below.

| 1. | Site Main Controller<br>(SMC)                          | Location Head / Factory Manager                                                   |
|----|--------------------------------------------------------|-----------------------------------------------------------------------------------|
| 2. | Operation Coordinator<br>/ Incident Controller<br>(IC) | Area In charge (Sr. V. P/V.P/AVP/Sr.GM/GM/ DGM/AGM/Sr. Manager/Manager)           |
| 3. | Fire Fighting<br>/Rescue Coordinator                   | Security Sr. Manager/Safety Sr. Manager/Safety Officer / Security officer         |
| 4. | Service Coordinator                                    | Engineering Head/GM/DGM/AGM/Sr. Manager/Dy. Manager/Asst.<br>Manager              |
| 5. | Medical Coordinator                                    | Administrative Manager/ Factory Medical Officer/ Authorized First Aider           |
| 6. | Assembly Point<br>Coordinator                          | HR & Personnel Manager/Dy. Manager/Asst. Manager/Time office<br>Asst./Contractors |

#### Key personnel of the Emergency Organization

#### PERSONS AUTHORIZED TO RAISE THE MCP (Manual Call Points)

(In priority order)

- 1. Concerned department head
- 2. Shift In-charges of concerned department
- 3. Section Chemist / Operator / security in-charge
- 4. Any person noticing the incident.

| Key personnel            | Responsibilities and duties                                                       |
|--------------------------|-----------------------------------------------------------------------------------|
| Site Main Controller     | • Immediately after hearing about emergency, he will go to emergency control      |
| (SMC)                    | center & relieve the incident controller of the responsibilities for overall      |
|                          | main control.                                                                     |
|                          | • Assess scale of emergency; decide if intimation of off-site emergency plan is   |
|                          | required. If it is so, take necessary action.                                     |
|                          | • Decide about the nature of help required such as evacuation, traffic control,   |
|                          | warning to the public, vehicles requirement etc.                                  |
|                          | • Consult head of department & decide about the operation of the factory.         |
|                          | Decide safe shutdown & evacuation of plant personnel.                             |
|                          | • If necessary, arrange of evacuation of neighboring population.                  |
|                          | • Arrange for chronological record of emergency to be maintained.                 |
|                          | • Appraise the works managers of the neighboring industries about the             |
|                          | situation for additional help, if needed.                                         |
|                          | • Ensure that the causality (If any), are given medical attention and that the    |
|                          | relatives are informed, if necessary.                                             |
|                          | • Authorize the termination of emergency by sounding of "All clear" Siren         |
|                          | which will be a continuous long siren for three minutes.                          |
|                          | • Issue an authorized statement in the news media.                                |
| Operation Coordinator /  | • To assess scale of emergency. Give the message to main Control Room.            |
| Incident Controller (IC) | • If major emergency exists, immediate informed to SMC                            |
|                          | • Formulate the strategies & advise to SMC.                                       |
|                          | • Maintain the direct communication with the member of emergency team.            |
|                          | • Ensure about information to nearby factory & alert them. (if required.)         |
|                          | • Ensure that outside agencies have been called in.                               |
|                          | • Decide safe route of entry for external help.                                   |
|                          | • Brief the site main controller & keep them informed of the developments.        |
|                          | • Check casualty & injured person & help during head count of workers of          |
|                          | plant.                                                                            |
|                          | • Co-ordinate with external agencies after arrival of site main controller.       |
|                          | • Preserve all evidence for use in the subsequent enquiry.                        |
| Fire Fighting            | • Be over all in charge of the firefighting & provide support in rescue           |
| /Rescue Coordinator      | operation                                                                         |
|                          | • Inform the Site main controller if external fire tender /firefighting equipment |
|                          | is required.                                                                      |

|                     | • Maintaining adequate supplies for firefighting equipment well as personal      |  |  |
|---------------------|----------------------------------------------------------------------------------|--|--|
|                     | protective equipment.                                                            |  |  |
|                     | • Ensure that the firefighting team members in danger their lives during         |  |  |
|                     | firefighting due to anxiety.                                                     |  |  |
|                     | • Reply to the questions raised by the external fire bridge and guide them       |  |  |
|                     | their necessary support.                                                         |  |  |
|                     | Maintain the necessary advice by Incident controller                             |  |  |
|                     | Give the final combat message to Site main Controller                            |  |  |
| Security Team       | • On hearing the siren locate the place of emergency.                            |  |  |
|                     | • Keep the main gate open till getting all clear siren                           |  |  |
|                     | • Stop visitor to come inside the factory premises                               |  |  |
|                     | • Allow only essential vehicles like fire tender / foam tender, Ambulance, First |  |  |
|                     | Aid vehicle to come inside the plant.                                            |  |  |
|                     | • Deputy Security guard to control traffic on internal road                      |  |  |
|                     | • Lead the external agencies to reach the incident site.                         |  |  |
| UTILITY &           | • Ensure un–interrupted electric supply to hydrant pumps.                        |  |  |
| ENGINEERING         | • On hearing siren ensure that fire water pumps are running.                     |  |  |
| TEAM (Service - Co- | <ul> <li>Monitor the fire water level &amp; maintain it.</li> </ul>              |  |  |
| Ordinator)          | • Arrange to remove or isolate the restriction on the channels as required und   |  |  |
|                     | the situations.                                                                  |  |  |
|                     | • The team will help the operation team in isolating the plants/ equipment/      |  |  |
|                     | storage tanks/ and putting the blinds in pipelines.                              |  |  |
|                     | • Maintenance team will also get necessary equipment's like cranes, dozers,      |  |  |
|                     | trucks, welding and cutting set etc. as needed for tackling the emergency and    |  |  |
|                     | make available required personnel to operate above facilities.                   |  |  |
| FIRST AIDERS        | • On hearing the Siren / Message departmental First Aiders will rush to the      |  |  |
|                     | incident site/ location with first aid kit and report to incident controller.    |  |  |
|                     | • He will assess the type of injury and number of victims and call for           |  |  |
|                     | Ambulance and inform the occupational Health center                              |  |  |
|                     | • Other departmental first aiders will rush to the incident site / location with |  |  |
|                     | first aid kit (after informing his departmental head and closing his             |  |  |
|                     | departmental critical activities) and report to incident controller.             |  |  |
| Medical & Assembly  | • Personnel department shall be able to reconcile head count of that area        |  |  |
| Co-Ordinator        | immediately                                                                      |  |  |
|                     | • Co-ordinate with OHC for injured persons and attendance of O.K Persons         |  |  |
|                     |                                                                                  |  |  |

|                          | from that area                                                                       |  |
|--------------------------|--------------------------------------------------------------------------------------|--|
|                          | • Ask OHC doctor / Pharmacist about help from hospital / Nursing home and            |  |
|                          | arrange for items required urgently by the pharmacist and doctor for first aid       |  |
|                          | purpose                                                                              |  |
|                          | • Arrange for refreshment / water etc. engaged in emergency handling                 |  |
|                          | • Get ready with additional transport arrangement if required                        |  |
|                          | • Inform relative of victim in case something serious is observed as well as         |  |
|                          | inform contractor's supervisor in case of contractual labor.                         |  |
| COMMUNICATION            | • Ensure that telephone operator has conveyed message to key personnel.              |  |
| OFFICER (EPBAX /         | • Maintain communication with the incident officer.                                  |  |
| Telephone Operator)      | • From information received, advise factory manager to give order for                |  |
|                          | evacuation of the staff.                                                             |  |
|                          | • Identify suitable staff to act as runner in case of failure of telephone           |  |
|                          | (Internal)                                                                           |  |
|                          | • After receiving names of persons not reached to the assembly point inform          |  |
|                          | incident officer about the same.                                                     |  |
| Shift Incharges of       | Follow your specific duty if you are leader of an essential team. But ensure         |  |
| Other Plants             | following points.                                                                    |  |
|                          | • Try to identify plant under emergency & type of emergency.                         |  |
|                          | • If your plant is affected due to emergency you can stop the plant partially or     |  |
|                          | fully.                                                                               |  |
|                          | • Suspend all hot work / vessel entry jobs. Ask persons inside the vessel to         |  |
|                          | come outside immediately.                                                            |  |
|                          | • Instruct contractor's labor to stop work safely & go to assembly point.            |  |
|                          | • Relieve firefighting core group members immediately.                               |  |
|                          | • Ask plant employees to carry out DCP extinguishers on main road                    |  |
| All workers including co | intract workers who have not been assigned any duty, will rush to the assembly point |  |

All workers, including contract workers who have not been assigned any duty, will rush to the assembly point and remain there and wait for instructions from the Assembly Point coordinator and should render help if required and as per instructions..

# 7.3.4.2 NFPA Rating of Hazardous Chemicals

Toxicological data for hazardous chemicals is given below:

| Hazardous                | Degree of purity NFPA hazard classification                                                                                                                                                                                           |                    | tion                                              |                         |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------------------|-------------------------|
| chemicals                |                                                                                                                                                                                                                                       | Toxicity           | Flammability                                      | Reactivity              |
| Rectified Spirit         | 95%                                                                                                                                                                                                                                   | 2                  | 3                                                 | 0                       |
| Ethanol                  | 99.7%                                                                                                                                                                                                                                 | 2                  | 3                                                 | 0                       |
| Hazard<br>Classification |                                                                                                                                                                                                                                       | De                 | efinition                                         |                         |
| Health Hazard (          | Classification                                                                                                                                                                                                                        |                    |                                                   |                         |
| 4                        | Materials which on even<br>through prompt medical                                                                                                                                                                                     | •                  | could cause death or majo<br>ven                  | or residual injury ever |
| 3                        | Materials which on sho<br>through prompt medical                                                                                                                                                                                      | *                  | cause serious temporary o<br>ven.                 | or residual injury ever |
| 2                        | Materials which on inte<br>possible residual injury                                                                                                                                                                                   |                    | xposure could cause tempoical treatment is given. | orary incapacitation of |
| 1                        | Materials which on exp<br>on treatment is given.                                                                                                                                                                                      | osure could cause  | irritation but only, minor                        | residual injury even i  |
| 0                        | Material beyond that of                                                                                                                                                                                                               | ordinary combustil | ole material.                                     |                         |
| Flammability cla         | assification                                                                                                                                                                                                                          |                    |                                                   |                         |
| 4                        |                                                                                                                                                                                                                                       | · · ·              | ly vaporize at atmospheric                        |                         |
| 3                        | Liquid and solids that can be ignited under almost all ambient temperature conditions.                                                                                                                                                |                    |                                                   |                         |
| 2                        | Material that must be moderately heated or exposed to relatively high ambient temperature before ignition can occur                                                                                                                   |                    |                                                   |                         |
| 1                        | Material that must be preheated before ignition can occur.                                                                                                                                                                            |                    |                                                   |                         |
| 0                        | Materials that will not b                                                                                                                                                                                                             | urn.               |                                                   |                         |
| Reactivity classi        | fication                                                                                                                                                                                                                              |                    |                                                   |                         |
| 4                        | Materials which in themselves are readily capable of detonation or of explosive decomposition or reaction at normal temperature and pressure                                                                                          |                    |                                                   |                         |
| 3                        | Materials which in themselves are capable of detonation or explosive reaction but require a strong initiating source or which must be heated under confinement before initiation or which react explosively with water                |                    |                                                   |                         |
| 2                        | Materials which in themselves are normally unstable and readily undergo violent chemicals change but do not detonate. Also materials which may react violently with water or which may from potentially explosive mixture with water. |                    |                                                   |                         |
| 1                        | Materials which in themselves are normally stable, but which can become unstable at elevated temperature and pressure or which may react with water with some release of energy but not violently.                                    |                    |                                                   |                         |
|                          | energy out not violently                                                                                                                                                                                                              | •                  |                                                   |                         |

# NFPA Rating of Hazardous Chemicals

#### 7.3.4.3 Communication

- (a) On declaration of an emergency, the Emergency control Centre that is to be used M/s Piccadily Agro Industries Ltd., will be provided with adequate telephones that can be used for internal and external communication. In the event that telephones fail, external communications will be maintained through the police wireless system. In fact, the police wireless system is most reliable communication network. Short distance communication within the vulnerable zone or outside may also be done using walkie talkies.
- (b) Telephone Numbers: Important telephone numbers need to be made available and displayed at all vulnerable points.
- (c) Transport: In the initial phases of the emergency, use of transport vehicles will be minimal. As the emergency progresses, M/s Piccadily Agro Industries Ltd. and police vehicles, ambulances and other government and private vehicles will be pressed into service. State transport buses may also requisition, if necessary.
- (d) Evacuation: Evacuation procedures in the vulnerable zone should be initiated within 10 minute declaring emergency. They will follow all instructions already mentioned in onsite emergency plan in previous chapter. Evacuees should leave all belongings, lock their homes or shops, and shut all doors and windows to prevent vapour entrainment and proceed to the nearest roadblock point or temporary shelter, in a direction perpendicular to wind flow. From the roadblock points, the police transport all evacuees may to the closest temporary shelter camp.
- e) Warning alarm and security system: Plant has electric alarm to sound emergency at plant and has following patterns to indicate emergency. For efficient security of the plant adequate security guards and supervisors with adequate training for firefighting undertake security round the clock.

| S. No. | SIRENS                                                      | INDICATES                              | AUTHORITY                                                         |
|--------|-------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------|
| 1.     | 10-Second-long<br>Weep 2 Second<br>Small Weep<br>(Two min.) | ON SITE<br>EMERGENCY<br>(ALERT)        | INCIDENT<br>CONTROLLER/Sr. Safety<br>Manager/Sr. Security Manager |
| 2.     | 02 Minutes<br>Continuous weep                               | EMERGENCY<br>CONTROLLED (ALL<br>CLEAR) | SITE CONTROLLER                                                   |

f) Protective Equipment (PPE): The list of Personal Protective Equipment provided at the Piccadily Agro Industries Plant facility and their locations shall be available in ECC. Personal protective equipment play a vital role in overcoming major disastrous situation saving life during onsite emergency.

| Objective                                                                                   | Workplace Hazards                                                                        | Suggested PPE                                                                                                                                                              |
|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Eye and face<br>protection                                                                  | Flying particles, molten metal,<br>liquid chemicals, gases or<br>vapors, light radiation | Safety glasses with side-shields, protective shades, etc.                                                                                                                  |
| Head<br>protection                                                                          | Falling objects, inadequate<br>height clearance, and overhead<br>power cords             | Plastic helmets with top and side impact protection                                                                                                                        |
| Hearing<br>protection                                                                       | Noise, ultra-sound                                                                       | Hearing protectors (ear plugs or ear muffs)                                                                                                                                |
| Foot protection                                                                             | Falling or rolling objects,<br>points objects. Corrosive<br>or hot liquids               | Safety shoes and boots for protection against<br>moving and falling objects, liquids and<br>chemicals                                                                      |
| Hand protection                                                                             | Hazardous materials, cuts<br>or lacerations, vibrations,<br>extreme temperatures         | Gloves made of rubber or synthetic material (Neoprene), leather, steel, insulation materials, etc.                                                                         |
| Respiratory<br>protection                                                                   | Dust, fogs, fumes, mists,<br>gases, smokes, vapors                                       | Facemasks with appropriate filters for dust<br>removal and air purification (chemical, mists,<br>vapors and gases). Single or multi-gas<br>personal monitors, if available |
|                                                                                             | Oxygen deficiency                                                                        | Portable or supplied air (fixed lines).<br>Onsite rescue equipment                                                                                                         |
| Body / leg Extreme temperatures,<br>protection biological agents, cutting and<br>laceration |                                                                                          | Insulating clothing, body suits, aprons etc. of appropriate materials                                                                                                      |
| Contact with<br>HSD                                                                         | Fuel oil storage and fuel<br>Handling                                                    | Canister type gas mask. PVC or Rubber.<br>Goggles giving complete protection to eyes.<br>Eye wash fountain with safety                                                     |
| Fly Ash                                                                                     | Fly ash handling and storage                                                             | Wear dust-proof goggles and rubber or PVC gloves.                                                                                                                          |

 Table 7.2

 Summary of recommended personal protective equipment according to hazard onsite

#### **ASSEMBLY POINTS**

In case of an EMERGENCY the employees should assemble near the defined Assembly Points, as indicated below: -

Assembly Point-01

Assembly point-02

Assembly Point-03

Assembly Point-04

Wind direction to be determined by the windsocks installed on top of the tank. The employees should run perpendicular to the wind direction and not against / along the wind direction.

#### TRAINING AND EDUCATION:

Experience with on site –emergency planning has proved the need of training and rehearsal. Major emergency procedure should be laid down clearly and convincingly to everyone on site particularly Key Personnel and Essential workers.

It is obvious that in house or outdoor training is essential. The duties and responsibilities of each person and the emergency procedure to be followed by him should be very clear.

Seminar/refresher guidance On Site Emergency Plan Seminar: Seminar is conducted in house/. Site controller will explain the plan to all associated concerned employees.

Expert from outside explain the plan to all associated concerned employees. Expert from also may be invited to impart training.

#### **MOCK REHEARSAL:**

Inform all the employees about mock drill. Fix the date for mock drill.

Observers will not be involved in the exercise. They will monitor the Mock drill. Emergency Siren / alarm will be raised.

After hearing the Siren / alarm, Emergency procedure will be followed as mentioned in the OEP. Observer will note down the activities with respect to the time.

#### 7.3.4.4 Emergency Action Plan

# ANYONE NOTICING EMERGENCY SITUATION LIKE FIRE, EXPLOSION, TOXIC GAS LEAKAGE ETC.

#### MUST DO's

Attract the nearby person/employee by shouting "FIRE – FIRE – FIRE." Raise the nearby Manual Call point.

Seek help from the persons working nearby.

Try to control the incident at its initial stage with available means/sources quickly. Inform Shift In-charge / Duty Officer (In Night Shift) about the Incident.

#### **DON'Ts**

Do not be panicky.

Do not run – Walk fast.

#### An INCIDENT CONTROLLER MUST

#### DO's

#### A. IF FIRE / OTHER INCIDENTS ARE CONTROLLABLE

Approach the emergency site immediately taking note of wind direction. Assess the situation.

Inform Control Room-444, Tell - NAME, TYPE OF INCIDENT, ACTION TAKEN, HELP

NEEDED and Order Security Officer/Guard to inform all KEY persons.

Take lead in controlling emergency until such time concerned Section Manager takes over the charge.

## **DON'TS**

Do not be panicky.

Do not lose temperament.

# **B** IF FIRE/OTHR INCIDENTS ARE NOT CONTROLLABLE

#### In Addition to Above (A)

Approach the emergency site immediately taking note of wind direction.

Assess the situation.

Inform Control Room Tell – NAME, TYPE OF INCIDENT, ACTION TAKEN, HELP NEEDED and Order Security Officer/Guard to inform all KEY persons.

Take lead in controlling emergency until such time concerned Section Manager takes over the charge. Order to blow emergency 'ALERT' Siren as per identification of siren

Organize Firefighting / rescue team members to control the Incident.

Take stock of situation if required shut down the plant / process in affected area. Call Fire Brigade if situation demands.

Evacuate affected area. Organize head count of the plant.

Act as INCIDENT CONTROLLER till such time senior person takes charges as indicated in Emergency organization

NOTE:

1. Messenger will wait until such time Security Officer arrives.

2. Also inform Telephone Operator.

# SECURITY OFFICER / SAFETY OFFICER / SECURITY GUARD/FIRE MAN (Control Room)

DO's

Do not allow any vehicle to come inside the factory.

Do not entertain any outside call except for emergency purpose. Do not allow visitors to move around.

Inform all key persons about location and type of emergency.

Follow this sequence – Inform concerned HOD/Section Head, Main Site Controller, Main Incident Controller & Safety Officer, and other KEY persons.

Inform Main Site Controller about Government visitors, if any.

# DON'Ts

Do not entertain any outside call except for emergency purpose. Do not allow visitor to move around, from reception.

# SECURITY GUARD/FIRE MAN

# DO's

Immediately report at Security Gate in shortest possible time.

Follow instructions of Officer In-charge. Assist in controlling emergency.

Assist in controlling contractors, vehicle movement and mob. Assist in cordoning off the area.

Take note of wind direction while approaching emergency site. Render all possible help for controlling overall situation.

# DON'Ts

Do not leave the site unless asked to do so.

# **EMERGENCY VEHICLE DRIVER (AMBULANCE, FOAM TENDER)**

#### DO's

Immediately start vehicle and reach rescue squad assembly point (near security gate). Rescue squad members to emergency site.

Take vehicle near to emergency site as directed. Take note of wind direction.

Reverse the emergency vehicle for quick transports of injured, if any. Keep vehicle engine running.

Always be on Driver's seat of the vehicle. Take the injured to the hospital as directed.

# DON'Ts

Do not leave the vehicle.

Do not take the vehicle very near to the site

After getting satisfied with the situation, give instruction to blow ALL CLEAR Siren.

# DON'Ts

Do not instruct to blow ALL CLEAR siren unless the situation is fully under control. Don't evacuate the entire plant unless the situation demands.

# FIRE FIGHTING & RESCUE SQUAD ON HEARING SIREN DO's

Inform fellow employees/Officers. Report to Fire Squad Assembly point. Find out emergency location.

Approach emergency site immediately.

Take quick action as per the instructions from Incident controller. Bring emergency under control as early as possible.

Get in touch with security about location and type of emergency.

Approach emergency site quickly with Breathing Apparatus set and First Aid box. Get in touch with incident controller.

Follow instructions of Incident controller.

Render first aid to the injured, hospitalize, if required. Accompany him to hospital and assist

Doctor / Nurse. Search for missing person in that area, if required.

Help in head count.

#### **DON'Ts**

Do not leave process/equipment in UNSAFE CONDITION. Do not leave emergency site unless

ALL CLEAR siren blown. Do not use improper fire extinguisher.

Do not be panicky.

# ALL GENERAL EMPLOYEES EXCEPT THOSE WHO ARE IN EMERGENCY ORGANIZATION ON HEARING SIREN

#### DO's

Be alert and be available if required. Wait for further instructions.

Bring down the process/plant/equipment in SAFE CONDITION in case of DISASTER siren as per instructions from Incident Controller.

Approach respective safe assembling points route as taking note of wind direction. Help in taking roll call.

After hearing ALL CLEAR, go back to the departments.

Start the work again after setting instruction from Incident controller.

## DON'Ts

Do not be panicky. Do not run.

Do not approach emergency site unless asked for.

Do not engage telephone except for emergency purpose. Keep lines free.

# **TECHNICAL TEAM: ENGINEERING DEPARTMENT (Electrical, Mechanical, Civil, Instrumentation, Technical Contractor)**

## DO's

Be available in Engineering Department at respective location for any help.

Approach emergency site with required with tools and equipment and should work on instructions of Incident controller.

Help Incident Controller to provide technical assistance.

Isolate lines, process equipment, if required by Incident Controller.

Provide emergency equipment like Fire Extinguisher, Hoses, etc., if asked by Incident Controller.

Provide stop gap arrangements as per the requirement of Incident Controller. Carry out electrical isolation of area as per instructions from Incident Controller.

## **GENERAL INTRUCTIONS**

#### DO'S

Stop work at height. / Stop all hot works. Stop all vessel entry.

Take note of wind direction.

On hearing Emergency Siren evacuates as per evacuation route without running and panicky and assembles at respective safe Assembly Points.

#### DON'Ts

Do not use telephone except for emergency purpose.

Do not start work at height, vessel entry, hot work unless permit conditions are verified. Do not allow unauthorized person to approach emergency site.

#### 7.3.5 Off-Site Emergency Planning

Off site emergency plan is based on those accidents/mishaps identified by the works management, which could affect people and the environment outside the project site. The roles of the various parties that may be involved in the implementation of an off-site plan are described below. The responsibility for the off-site plan will be likely to rest either with the management of industry or with the local Government authority. Table below shows communication nos. during offsite emergency.

| S. No. | Name of Govt. Agency                        | Phone Nos.          |
|--------|---------------------------------------------|---------------------|
| 1      | District collector/ Magistrate              | +91 7723222540      |
| 2      | Upper Collector                             | 07723-223307        |
| 3      | Deputy Collector                            | 9425564594          |
| 4      | Nagar Palika, Mahasamund                    | 07723-222090        |
| 5      | Superintendent of Police                    | 9479192300          |
| 6      | CEO Zila Panchayat                          | 07723223834         |
| 7      | SDM Mahasamund                              | +91 9630819999      |
| 8      | Police helpline                             | 112                 |
| 9      | Fire helpline                               | 101                 |
| 10     | Ambulance helpline                          | 102                 |
| 11     | Chief Medical and Health Office, Mahasamund | 07723-222232/224885 |
| 12     | District Disaster Control Room              | 07723-223305        |

 Table 7.3

 Local Statutory Government bodies

Consideration of evacuation in case of emergency may include the following factors:

- If fire hazard occurs but without explosion risk (e.g. an oil storage tank), only houses close to the fire area need evacuation
- > In case fire is escalating very fast it is necessary to evacuate people nearby
- In case of acute emergency people are advised to stay indoors and shield themselves from the fire.

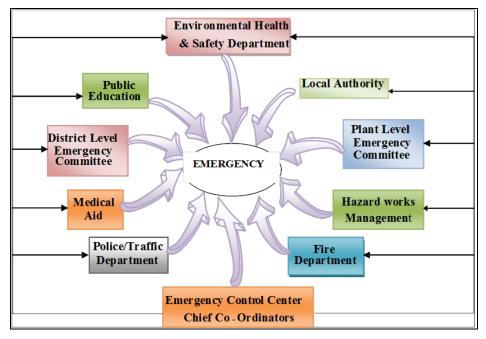



Figure 7.1: Various organizations involved during emergency

# Organization

The organizations which may be involved, predefined warning systems, defined implementation procedures, emergency control centers include name and appointments of all personnel having prior responsibilities.

# Communications

Identification of personnel involved during emergency situations, communication center, call signs, network, list of telephone numbers.

# Special Emergency Equipment in case of offsite emergency

Details of availability and location of special emergency equipment like heavy lifting gear, specified fire-fighting equipment, fireboats etc.

#### **Voluntary Organizations**

Chief authorities shall have telephone numbers, contact numbers of all organizations concerned in case of emergency.

#### Non-governmental organizations (NGO)

NGO's shall be involved to provide valuable source of expertise in specific fields and information to support emergency response efforts. NGOs shall be performing tasks required during emergency.

- Evacuation of personnel from the affected area
- Arrangements at rallying posts and parking yards
- Rehabilitation of evacuated places

#### **Chemical information**

All the Material Safety Data Sheet of hazardous chemicals shall be made available in case of handling chemical disaster.

#### **Meteorological information**

Arrangements shall be made for obtaining details of weather conditions prevailing at or before the time of accident and weather forecast updates.

#### **Humanitarian Arrangements**

Transport, evacuation centers, emergency feeding, treatment of injured, first aid, ambulances, temporary mortuaries.

#### **Public Information**

- > Persons shall be allotted responsibility to deal with the media-press office
- > Information shall be conveyed to relatives etc.

#### Assessment

- > Analyzing the accident scenario and collecting information on the causes of the emergency
- > Updating and reviewing the efficiency and effectiveness of all aspects of the emergency plan.

#### **Role of local authority**

Local Authorities like Panchayat, Sabha, Samiti, municipalities can help in combating emergency situation after assessing the impact scenario in rescue phase.

#### **Role of police**

Police force will assist in controlling situation at the accident site, organizing evacuation and removing of any seriously injured people to hospitals. It will also co-ordinate with the transport authorities, civil defense and home guards if required, co-ordination with army, navy, air force and state fire services if accident is major, Establish communication centre with easy contact with ECC.

#### **Role of Fire Brigade**

The fire brigade is to be organized to put out fires and provide assistance as required during emergency.

#### Media

The media will be made available with ready and continuous access to designated officials with relevant information, as well as to other sources in order to provide essential and accurate information to public throughout the emergency and to avoid confusion.

#### Role of health care authorities

- Hospitals and doctors must be ready to treat all type of injuries to causalities during emergency.
- Co-ordination with Primary Health Centers and medical centers for easy availability of medicines near plant site.

- > Temporary mortuary and identification of dead bodies.
- Receiving information for no. of casualties and emergency cases to act accordingly.

#### 7.4 OCCUPATIONAL HEALTH & SAFETY HAZARDS AND THEIR MANAGEMENT

#### Occupational health and safety will be categorised broadly into two categories:

- 1. Protection of Health
- 2. Promotion of Health

#### **Protection of Health**

In an industry, the most important factor for proper running of it is the health of employees which has to be taken care of by following some measures like:

- Proper regular checkup of employees
- Regular training of employees
- > 24 hrs First aid and medical availability
- Records maintenance

#### **Promotion of Health**

- > Training regarding importance of health
- Programs related to health education
- Records maintenance
- Organizing health campaigns

#### **Occupational health centre**

The industrial premises will be having one occupational health centre for regular check-up of employees and to deal in case of emergency. Qualified doctors and staff are available. One ambulance will be also available at the factory. The medical action team consists of Medical Officer, first aiders at factory and medical staff. In case the condition of the affected person goes or seems beyond control the victim will be shifted to outside hospital for further necessary medical facilities under the supervision of Factory Medical Officer.

#### 7.4.1 Plan and Fund allocation for Occupational and Safety Hazards

Piccadily Agro Industries Ltd. will be allocating a fund of Rs 50 lakhs/annum for occupational and safety measures inside the plant premises.

| S. No. | Description                             | Amount (Rs. In lakhs per annum) |
|--------|-----------------------------------------|---------------------------------|
| 1.     | Doctor's Retainer Fee (including staff) | 15                              |
| 2.     | Medicine Expenses                       | 10                              |
| 3.     | Health Checkup Exp.                     | 13                              |
| 4.     | Ambulance Expenditure                   | 12                              |
|        | Total Amount in (Rs.)                   | 50                              |

#### 7.4.2 Details of Occupational hazards and their mitigation

The plant has following hazardous chemicals that are used in process and can prove harmful if not handled properly. The medical health checkup will be carried out regularly to find out any previous symptoms related to any disorder or disease. The industry will provide proper training to employees pertaining to medical emergencies and situations. The exposure levels of hazardous chemicals will never be surpassed and in case of leakage or sudden emergency, proper measures will be taken to avoid emergency situations.

| S.<br>No. | Hazards          | Threshold limit                                                            | Impacts                                                                                                                                                                                                                | Mitigation measures                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------|------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.        | Sodium hydroxide | 2 mg/m <sup>3</sup><br>Acute toxicity of the<br>vapor (LC50): 320<br>mg/m3 | Caustic soda can cause burns.                                                                                                                                                                                          | <ul> <li>Proper PPEs to be provided to workers.</li> <li>Handling in accordance with good industrial hygiene and safety practice</li> <li>Avoid contact with water. Direct contact with water may cause an exothermic reaction.</li> </ul>                                                                                                                                                                                                          |
| 2.        | Carbon di-oxide  | 5000 ppm                                                                   | Headaches, dizziness,<br>restlessness, a tingling or pins or<br>needles feeling, difficulty<br>breathing, sweating, tiredness,<br>increased heart rate, elevated<br>blood pressure, coma, asphyxia,<br>and convulsions | • Proper monitoring and maintenance of fermentation equipment.                                                                                                                                                                                                                                                                                                                                                                                      |
| 3.        | Ethyl alcohol    | 1000 ppm                                                                   | Alcohol storage tank bursting or<br>leakage can cause fire or<br>explosion hazards                                                                                                                                     | <ul> <li>Proper flow meter to check the flow of alcohol in storage tanks.</li> <li>Proper training to employees to act in case of alcohol leakage.</li> <li>Proper fire extinguishers adequate for the fire that can happen in distillery i.e. foam type.</li> <li>Proper fire hydrant network will be spread in all the areas prone to fire hazard.</li> <li>Fire sensors and alarms.</li> <li>PESO guidelines to be strictly followed.</li> </ul> |

#### Occupational Hazards & Their Mitigation Measures during Distillery Operations

Proposed 210 KLPD Grain based Distillery along with 6.25 MW Co-generation Power Plant At Village Beltukri, Tehsil & District Mahasamund, Chhattisgarh

Chapter-VII of Draft EIA / EMP Report

| S.<br>No. | Hazards        | Threshold limit                                                 | Impacts                                                                                                                                                                                                                                                                                 | Mitigation measures                                                                                                                                                                                                                                                                                                  |
|-----------|----------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.        | Dust exposure  | -                                                               | Sudden dust cloud can affect the<br>respiratory tract and interfere with<br>breathing.<br>Cause pneumoconiosis<br>Some particles dissolve in the<br>bloodstream. The blood then<br>carries the substance around the<br>body where it may affect the<br>brain, kidneys and other organs. | <ul> <li>Proper dust mask for persons handling biomass.</li> <li>Regular water sprinkling to avoid dust dispersion.</li> <li>Storage of biomass in covered sheds and continuous water sprinkling.</li> <li>Proper greenbelt will be developed in all the areas having the probability of dust explosions.</li> </ul> |
| 6.        | Noise exposure | 75 dB(A) during day<br>time<br>And 70dB(A) during<br>night time | Elevated workplace or<br>environmental noise can cause<br>hearing impairment,<br>hypertension, ischemic heart<br>disease, annoyance, and sleep<br>disturbance.                                                                                                                          | <ul> <li>Proper PPEs to be provided like ear muffs and ear plugs</li> <li>Alternation of duties.</li> <li>Regular audiometry check-up.</li> <li>Proper maintenance, oiling &amp; greasing of machines to detect any loosened nuts, bolts.</li> </ul>                                                                 |
| 7.        | Heat exposure  | -                                                               | Prolonged or intense exposure to<br>hot temperatures can cause heat-<br>related illnesses such<br>as heat exhaustion, heat cramps,<br>and heat stroke                                                                                                                                   | <ul><li>Alternation of duties.</li><li>Proper PPEs to the workers.</li></ul>                                                                                                                                                                                                                                         |
| 8.        | Electrocution  | -                                                               | Electric shock, brain damage                                                                                                                                                                                                                                                            | <ul> <li>Proper earthing.</li> <li>Doubly insulated instruments/machineries.</li> <li>Proper PPEs like rubber gum boots to be provided.</li> </ul>                                                                                                                                                                   |
| 9.        | Physical       | -                                                               | Fall, slip trip, physical injuries.                                                                                                                                                                                                                                                     | <ul> <li>Proper PPEs for workers operating at heights like safety helmets, fall protection etc.</li> <li>Proper first aid facilities at all danger prone areas.</li> </ul>                                                                                                                                           |

*Source:* National Institute of Occupational Safety and Health document

# 7.4.3 Occupational health surveillance

In distillery & malt spirit plant, the occupational health surveillance of the employee will be done on a regular basis periodically and record of the health check-ups will be maintained as per the Factories Act.

# Pre placement and periodical health check-up tests to be undertaken

The check-ups will be dependent on age, sex, duration of exposure and department wise. Following tests will be done regularly:

| S. No. | Name of the test                                                            |
|--------|-----------------------------------------------------------------------------|
| 1.     | Physical Fitness Certificate                                                |
| 2.     | Pulse Rate                                                                  |
| 3.     | Blood Pressure                                                              |
| 4.     | Complete Blood Examination Haemoglobin % (Hb%), WBC, RBC, etc.              |
| 5.     | Vision                                                                      |
| 6.     | Central Nervous System (CNS)                                                |
| 7.     | Respiratory System-Lung Function (RS)                                       |
| 8.     | Cardio Vascular System (CVS)                                                |
| 9.     | Electro Cardio Gram (ECG)                                                   |
| 10.    | Chest X-ray                                                                 |
| 11.    | Total Leucocyte Count (TC)                                                  |
| 12.    | Differential Leucocyte Count (DLC)                                          |
| 13.    | Absolute Eosinophil Count (AEC)                                             |
| 14.    | Complete Urine Examination [Physical / Chemical /Albumin, Sugar & Bile Salt |
| 15.    | Random blood Sugar (RBS)                                                    |

#### **Frequency of Medical Examination**

> Once in a year

#### Personal Protective Devices and Measures

- Full body Safety harness
- Goggles
- Safety Shoes & Rubber Gumboots
- Ear muffs and Ear Plugs
- Industrial Safety helmets, Crash helmets
- Leather hand gloves, Heat Resistive hand gloves, Chemical hand gloves and Cut resistance hand gloves
- Aprons
- Safety belt / line man's safety belt

#### Implementation of OHS standards as per OHSAS/USEPA

Occupational Health and safety are the most important aspect in an industry which envisages the proper analysis of hazards with respect to workers and human population present inside and around plant premises and the measures which has to be taken in order to run operations smoothly and on ethical back grounds. An industry needs its workers, in turn the industry should make such arrangements so that not even a single life is wasted with the perspective of implementation of every security details and very stringent rules. Following measures will be adopted for implementation of OHS standards.

- > Well-equipped Occupational Health Centre with adequate paramedical staff
- > Routine & periodic investigation related to operations pertaining to occupational hazards
- > Health surveillance and maintenance of annual health record
- Proper implementation of Health and Safety policy
- Round the clock ambulance facility
- Sufficient number of first aid boxes
- ➢ Formulation of OHS implementation team/ cell
- Implementation of OHS management program
- Proper visual aids which display the health & safety policy along with specific instructions depending on area covered.
- Training and placards visualizing safe operational procedure (SOP) in case of disaster at all danger prone areas
- Investigation of fatal, serious accidents
- > Investigation of reports of occupational diseases
- Corrective and preventive action plan for any kind of small or big disaster if occurred and brain storming for avoiding such situations in the near future
- Regular & periodic conduction of safety training, seminars, workshops to handle disastrous situation.
- Proper training for accidental measures outside plant premises and knowledge of driving mishaps with implementation of strict driving rules.
- Ensure proper use of PPEs according to the work zone like helmet, safety shoes, goggle, dust mask, ear plug and hand gloves etc.
- Establishment of Occupational Health Centre for pre and periodic medical examination of workers and staff to detect any onset of occupational disease and corrective measures
- Display Material Safety Data Sheet (MSDS) at proper locations for use of every hazardous substance
- Implement the recommendations of HAZOP (Hazard and operability study) for examination of problems in existing process / operation that may represent risks to personnel or equipment

# 7.5 CONCLUSION

It is concluded from the above study that there will be no major risk involved due to proposed project. For risk management, proper precautionary measures will be taken to minimize risks. Personal Protective Equipment (PPEs) will help to minimize the health hazards and accidental casualties.



# CHAPTER – VIII PROJECT BENEFITS

#### 8.1 INTRODUCTION

This chapter is focused on those points which become beneficial to the surrounding area or community in terms of infrastructural development, social development, employment generation and other tangible benefits due to upcoming project activities.

#### 8.2 **PROJECT BENEFITS**

The Company will provide various benefits across the nearby areas which are attributed below:

- 1. Environment
- 2. Employment
- 3. Economic
- 4. Social
- 1. Environmental Benefits

#### a. Greenbelt Development

2.97 ha (7.34 acres), i.e. 33% of the project area equivalent to 9.0 ha (22.24 acres) has been earmarked and will be developed under greenbelt & plantation. The width of plantation along the plant periphery will be 10 m. The greenbelt/ plantation around the industries will actas a positive effective barrier between the plant and the surroundings. Strengthening/ development of Greenbelt/ plantation within the area will help in better harnessing of the run-off thereby would be helpful in potential recharging of the groundwater and help in reducing the soil erosion. The development of greenbelt/ plantation within the project area will be helpful in capturing the fugitive emissions, attenuate the noise generated thereby maintaining the air quality and noise levels and will also improve the aesthetic beauty of the surrounding. Horticulture specialist will be deployed for planting trees, their maintenance and protection based on the geology, soil condition and topography of the area.

#### b. Rain water Harvesting

Construction of rain water harvesting pits / surface storage tanks with cemented floor within plant premises in order to avoid contamination of ground water will be done. The water will be collected and harvested in the tanks and will be utilized in several plant activities.

#### c. Employment Benefits (Direct & Indirect)

The proposed project is capable of generating both direct & indirect employment. Total manpower required for operation of plant is around 150 employees (100 permanent & 50 temporary) which will be provided to the local people and will be employed as per their skills and abilities. Apart from direct employment, various indirect employment opportunities are envisaged by the way of transportation, workshops, petty contractors and shopkeepers, network of retailers throughout the state and in its marketing regions.

#### d. Economic Benefits

For proposed installation of Grain based Distillery, contribution in Ethanol Blending Program driven by Government of India is one of the main targets of the company. To reach the Centre's ambitious target of 20 per cent in blending by 2025, a back of the envelope calculation with India's current fuel consumption shows that there is the requirement of around 800-900 crore litres of ethanol in a year. But India's current ethanol production capacity is only around 684 crore litres. India is one of the largest importers of crude oil. The indigenous production of ethanol for blending in petrol will substitute this imported crude oil. Special emphasis on financial and social benefits will be given to the local people. Development of social amenities will be in the form of medical facilities, education to underprivileged and creation fself-help groups. Availability of large arable land, rising production of food grains and sugarcane leading to surpluses, availability of technology to produce ethanol from plant based sources, and feasibility of making vehicles compliant to ethanol blended petrol make E20 not only a national imperative, but also an important strategic requirement. The target of 20% blending of petrol in the country by 2025 thus appears feasible and within reach and the proposed project will contribute for the same. In addition to this, blending locally produced ethanol with petrol will help India strengthen its energy security, enable local enterprises and farmers to participate in the energy economy and reduce vehicular emissions. Thereby it will provide a boost to agriculture sector. Ethanol has medical applications as an antiseptic and disinfectant and also used as a chemical solvent and in the synthesis of organic compounds, apart from being an alternative fuel source thus will fulfill the nation's requirement for the same as well. Also, this will reduce the nation's dependence on imported fossil fuels and is a good alternative to non- renewable fuels like fossil fuels and crude oil. Thus, the project will prove to have an overall economic growth of the area and of the nation.

#### 2. Social Benefits

The beneficial aspects of the projects on the socio-economic environment of the area involve employment opportunities, services, promotion of trade and commerce, public utility, literacy, social awareness, health care facilities, recreation etc. The company will contribute substantially to the overall economy and social development of the area through various activities. The operation zone of the developmental activities for the proposed project will be extended to the nearby villages of project site. Environmental awareness will be created among people by organizing awareness camps. Developmental activities will be carried out keeping sustainable development in mind. Based on the needs assessment and public hearing issues, the developmental program and budgethas been customized for implementation while partnering with Government Agencies, NGOs and Local Panchayats for implementation.

# 8.3 PROPOSED ACTION PLAN-SOCIO ECONOMIC DEVELOPMENTAL ACTIVITIES

As per OM dated 30th September, 2020 and 20th Oct., 2020, company will propose a detailed action plan along with budgetary allocation after conduction of Public Hearing considering the issues raised during public hearing. The funds allocated will be spent for various socio-economic development activities proposed to be undertaken in the study area with a priority to villages falling in the impact zone, which may be further extended to other villages depending upon the budget and requirement.

# 8.4 CONCLUSION

Due to the proposed project, there will be improvement in the standard of living such as better education facilities, good health and proper sanitation facilities housing and skill development in farmers and youths. This is envisaged as a major positive benefit which will ultimately lead to the sustainable development of the region.



#### **CHAPTER-IX**

#### ENVIRONMENTAL COST BENEFIT ANALYSIS

#### 9.1 ENVIRONMENTAL COST BENEFIT ANALYSIS

As per the EIA Notification 2006 & its subsequent amendments, this chapter on the 'Environmental Cost Benefit Analysis' is applicable only if it is recommended at the Scoping stage.

However, as per the ToR points issued by MoEFCC, New Delhi vide letter no. IA-J-11011/277/2023-IA-II(I) dated 31<sup>st</sup> July 2023, Environmental Cost Benefit analysis is not desired for the proposed project and hence has not been prepared.



## CHAPTER-X

#### ENVIRONMENTAL MANAGEMENT PLAN

#### **10.1 INTRODUCTION**

Environmental Management Plan consists of the set of management, mitigation, & monitoring measures to be undertaken during construction and operation of a plant to eliminate adverse environmental impacts or reduce them to prescribed limits. The present environmental management plan addresses the components of environment affected during the different activities forming part of the processes of proposed plant.

Based on the identification and evaluation of impacts and baseline conditions, an Environmental Management Plan (EMP) has been prepared to mitigate the adverse impacts on environment of the area due to the proposed installation of Grain based distillery. The EMP is herein outlined in view of the various acts, rules and regulations/ standards concerned with the environmental management.

Environmental Management Plan is detailed under the following heads to meet the regulatory compliances:

- Air Quality Management
- Noise Management
- Waste Water Management
- Solid & Hazardous Waste Management
- Energy Conservation
- Greenbelt Development & Plantation Programme
- > Occupational Health & Safety Measures.

#### **Purpose of EMP:**

- To control emission, waste minimization and proper disposal of waste to meet statutory requirement of appropriate technology.
- > To support & implement best technology to achieve environmental standards.
- Judicious use of natural resources such as water and other material during the construction and operational phase of proposed activity/ project.
- > To ensure good working condition for safety, welfare and good health of the work force.
- Ensure effective implementation of all control measures.
- ▶ Vigilance towards probable hazard/disasters and accidents.
- Monitoring of cumulative and long-term impacts.
- ➢ To reduce accident hazards.
- Allocation of funds for environment management supplies.
- To promote greenbelt development to create effective barrier between the plant site and surrounding environment.

#### **Elements of EMP:**

EMP includes four major elements: -

- 1. **Planning:** This includes identification of environmental impacts, legal requirement, commitments, and policies, setting environmental objectives and environment, health & safety and social compliance requirements;
- 2. Implementation: This comprises of resources available for the project, accountability of employees, contractors and documentation of measures to be taken;
- 3. Checking (Measurement & Evaluation): This includes regular inspection, audits, monitoring corrective actions and record keeping;
- 4. **Management Review:** Actions are taken to continually improve the environment, health, safety, and social performance of the organization.

#### **10.2 ADMINISTRATIVE MANAGEMENT AND POLICIES**

Environmental management plan can be implemented effectively if the company has certain employees dedicated towards environment and certain policies depicting the various goals towards sustainable environment. Piccadily Agro Industries Ltd. has been indulged as a group towards the same purpose and the policies as well as people are defined, strictly demarcating their roles towards environment and growing with the same motto. The responsibility of Environment Management Cell (EMC) and the policies implemented in Piccadily Agro Industries Ltd. are given below:

#### **10.2.1** Environmental management cell (EMC)

In order to maintain the environmental quality within the standards, regular monitoring of various environmental components is necessary. Project will have a full-fledged Environmental Management Cell (EMC) for environmental monitoring and management. The EMC team will take care of pollution monitoring aspects and implementation of control measures.

A group of qualified and efficient engineers with technicians will be deputed for maintenance, up keeping and monitoring of the pollution control equipment, to keep them in working at the best of their efficiencies.

#### **Responsibilities of EMC**

- > Environmental monitoring of the surrounding area.
- > Proper & timely commissioning of pollution control equipment and facilities.
- Enlist Specification and applicable regulation of maintenance schedules for pollution control equipment.
- Ensuring that standards are maintained.
- Developing the greenbelt.
- Ensuring optimum water usage.

- > Implementation of the Environmental Management Plan.
- > Managing meetings of the Environment committee and reporting to the management.
- Regular submission of six-monthly compliance reports and conducting audits at proper intervals to know any deviations from prescribed standards.
- Implementation of proper check measures in case of any diversions from prescribed standards of environmental laws.
- Coordination with the concerned authorities/consultants for all statutory requirements to obtain EC.

#### **10.2.2** Corporate Environment Policy

Corporate Environment Policy is an important part of the company's motives and goals. The Company will set goals and objectives laid by its board of Directors. CEP presents standard operating process/ procedures to bring into focus any infringement/ deviation/ violation of the environmental or forest norms/ conditions. It also shows the hierarchical system or Administrative order of the company to deal with the environmental issues and for ensuring compliance with the environmental clearance conditions. The company will have system of reporting of non-compliances/ violations of environmental norms of the Board of Directors of the company and/ or shareholders or stakeholders at large. Corporate Environment Policy showing EMC hierarchy and responsibilities of Company towards Environment is shown below.

#### Corporate Environment Policy

Piccadily Agro Industries Limited (PAIL) is committed to Environmental leadership in all of its business activities.PAIL continuously strives to provide a safe and healthy workplace, pursue protection of the environment, conservation of energy and natural resources. With this Corporate Environment Policy in place we aspire at PAIL, a safe environment:

Integrate the consideration of environmental concerns into the entire decision making, activities and its implementation.

Thrust on continual improvement in operation and technologies to reduce wastes as well as pollution, and it's appropriate disposal that would ensure minimum of health and safety risk.

Establish procedures for periodic review of environmental compliance with all applicable laws and regulations. To report all noncompliance issues promptly, evaluate root cause of noncompliance, and implement corrective actions.

To Provide a safe and healthy work environment and also to ensure that personnel are adequately trained with the appropriate safety and emergency equipment.

To immediately correct any practice or condition not in compliance with this policy

Natural resources conservation by adopting appropriate measures.

#### Environment, Health & Safety (EHS) Policy

Piccadily Agro Industries Limited (PAIL) has set a high degree of values to:

- Protect the health and safety of the employees, contactors, customers and nearby residents
- Environment Protection

 In addition to compliance with laws and regulatory requirements, the company will pursue the following objectives:

- To provide adequate information, appropriate instruction and befitting training that could enable employees in meeting their roles and responsibilities in order to contribute significantly towards compliance with the policy
- To create safe and healthy work places

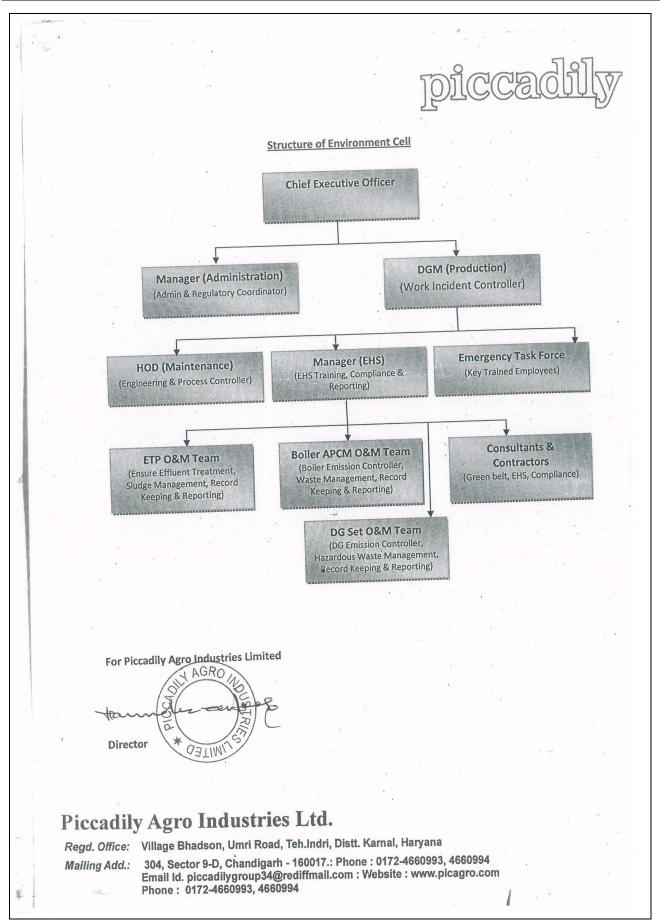


Piccadily Agro Industries Ltd.

Regd. Office: Village Bhadson, Umri Road, Teh.Indri, Distt. Karnal, Haryana

Mailing Add.: 304, Sector 9-D, Chandigarh - 160017.: Phone : 0172-4660993, 4660994 Email Id. piccadilygroup34@rediffmail.com : Website : www.picagro.com Phone : 0172-4660993, 4660994

- Set measurable objectives and targets to ensure continual improvements in EHS
- To create awareness on EHS requirements amongst all contractors and associates of the
- To protect the environment by preventing or minimizing the environmental impact due to our activities and products through appropriate design, manufacturing, distribution and by promoting responsible use and disposal practices.


# To inculcate Sustainable Development Practices, such as; Reduce, Reuse, Recycle, **Recover and Rethink**



# Piccadily Agro Industries Ltd.

Regd. Office: Village Bhadson, Umri Road, Teh.Indri, Distt. Karnal, Haryana

Mailing Add.: 304, Sector 9-D, Chandigarh - 160017.: Phone : 0172-4660993, 4660994 Email Id. piccadilygroup34@rediffmail.com : Website : www.picagro.com Phone: 0172-4660993, 4660994



# **10.3 ENVIRONMENTAL MANAGEMENT PLAN**

A detailed study for the identification & prediction of anticipated environmental impacts of the project was carried out and the outcomes of the study are described in Chapter-IV. The major impacts which require proper administrative management to protect the environment are further considered for formulation of Environmental Management Plan (EMP).

# 10.3.1 Air quality management

## A) Stack emissions

- Online stack monitoring system will be provided to keep a check on emissions and the data shall be transmitted to CPCB and SPCB servers.
- Regular cleaning, inspection and maintenance of air pollution control equipment will be carried out.
- > DG sets emissions will be maintained within prescribed standards of CPCB guidelines.
- Workers will be provided with personal protective equipment and trained regarding emergency actions to be taken during equipment failure.
- The whole unit will be provided with facility of inter locking so that any failure of equipment or APCE will result in instant shut down of the complete process.

# **B)** Fugitive emissions

- Regular monitoring of alcohol storage areas will be carried out to check for any kind of VOCs emissions.
- Monitoring will be conducted in work zone areas where dispersion of dust is maximum like storage area, working area, etc.
- Flow meters will be installed to keep a check on filling of alcohol storage tanks so that over flow condition does not occur.
- The locations of ambient air quality monitoring stations shall be decided in consultation with the SPCB and it shall be ensured that stations should be installed in the upwind and downwind direction including all the places where maximum predicted ground level concentrations can be found. Regular monitoring of ambient air quality will be carried out.
- Proper rules will be demarcated for usage of PPEs and strict actions will be taken in case of carelessness.

# 10.3.2 Noise management

- Workers will be provided with trainings regarding importance of PPEs and fines will be imposed on workers not following the rules.
- Periodic monitoring of noise levels as per post-project monitoring plan shall be done on regular basis.

- Workers close to high noise generating areas will be regularly subjected to audiometry check-up.
- Alternation of duties will be preferred to avoid long term and continuous exposure of noise on any individual.
- Ambient noise levels in and around the plant area shall be kept within the standards of EPA, 1986 rules, 1989 viz. 75 dB(A) (Daytime) and 70 dB(A) (Night time).

# 10.3.3 Water quality management

Following measures will be implemented:

- Online continuous monitoring of effluent will be carried out by installing web camera with night vision capability and flow meters in the channels carrying effluent within the premises and connected to SPCB and CPCB online servers.
- > Proper maintenance of state-of-the-art CPU/ETP will be carried out.
- Proper ETP lab will be constructed with all the useful equipment/measurement devices to monitor effluent quality daily.
- Regular monitoring and maintenance of equipment/machineries will be done and records maintained.
- > Record of ground water being extracted will be kept with installation of flow meters.
- > Proper record of chemicals used will also be maintained.
- The piezometer to be installed (observation well) shall be present at a minimum distance of 15 m from the bore well/production well. The piezometer shall be located suitably to ensure that zone of aquifer tapped in the piezometer is the same as that of the pumping well. A permanent display board should be installed at Piezometer/ Tube well site for providing the location, piezometer/ tube well number, depth and zone tapped of piezometer/tube well for standard referencing and identification.
- > Water level data shall be submitted to the concerned authority.
- The Company will construct storage ponds for collection of roof top water to be used in plant activities.
- > Recycled water will be used for greenbelt development.
- > Regular monitoring of ground water quality shall be done once in a year.

# 10.3.3.1 Action plan to control ground water pollution

The proposed distillery will be based on "Zero Effluent Discharge". The following measures will be adopted to prevent groundwater pollution-

- Slops from grain-based operation will be concentrated in MEE and dried in DWGS dryer to finally obtain animal feed supplement (DDGS) which can be ideally used as cattle feed due to high nutrient content.
- Latest water efficient technologies shall be installed to reduce dependency on ground water requirement.

- Storage areas shall be made of pucca platform (preferably concrete/clay compacted) and provided with garland drains and sedimentation pit to avoid seepage and contamination of ground water.
- Maximum recycling and reuse of wastewater after treatment.
- > The spent wash holding tank will be made up of RCC & steel.
- Two piezometers will be installed to keep a proper check on ground water quality and levels.
- > Spillage of chemicals/ oils/ alcohol etc. will be avoided as best possible.
- Treatment of secondary streams like spent lees, condensates, blow downs, etc. shall be in closed loop & any discharge outside the distillery shall not be done.
- > Process effluent/any waste water shall not be allowed to mix with storm water.
- > The storm water will be discharged through separate conveyance system.

# 10.3.3.2 Water conservation

The following measures will be adopted to minimize use of ground water-

- > Complete recycling and reuse of wastewater after treatment.
- > Periodic preventive maintenance of water distribution system.
- Training and awareness on water conservation measures.
- Condensate water will be re-used & recycled.
- Rainwater harvesting will be practised.
- > Spillage and unnecessary usage of water will be avoided in domestic areas.
- > Use of high-pressure hoses for equipment clearing to reduce wastewater generation.

#### **10.3.3.3** Details of rainwater harvesting

The basic principle of Rainwater harvesting systems is to channelize rainwater from a catchment surface (roof or other raised solid surface), through a distribution system (gutters, downspouts and pipes) and then into storage tank. Rainwater harvesting potential/runoff calculation is based on the catchment area and its corresponding runoff coefficients. The formula is:

*Runoff* = *Monsoon rainfall* × *Area of catchment* × *Runoff coefficient* 

| S.<br>No. | Land use type  | Area (Sq.m.) | Average<br>Annual<br>Rainfall (m) | Runoff<br>Coefficient<br>(as per CPWD) | Quantity of<br>Rainfall Runoff<br>(Cum/annum) |
|-----------|----------------|--------------|-----------------------------------|----------------------------------------|-----------------------------------------------|
| 1.        | Roof-top       | 36800        | 1.24                              | 0.85                                   | 38787.2                                       |
| 2.        | Road and Paved | 18500        | 1.24                              | 0.65                                   | 14911                                         |
| 3.        | Open area      | 5000         | 1.24                              | 0.2                                    | 1240                                          |
| 4.        | Green Belt     | 29700        | 1.24                              | 0.15                                   | 5524.2                                        |
|           | Total          | 90000        |                                   |                                        | 60462.4                                       |

#### Summarization of Rainfall Run-off within Industrial Premises

| S.<br>No. | Land use type  | Area (Sq.m.) | Hourly<br>Rainfall (m) | Runoff Coefficient<br>(as per CGWB) | Quantity of Rainfall<br>Runoff (cum/hr) |
|-----------|----------------|--------------|------------------------|-------------------------------------|-----------------------------------------|
| 1.        | Roof-top       | 36800        | 0.037                  | 0.85                                | 1157.36                                 |
| 2.        | Road and Paved | 18500        | 0.037                  | 0.65                                | 444.925                                 |
| 3.        | Open area      | 5000         | 0.037                  | 0.2                                 | 37                                      |
| 4.        | Green Belt     | 29700        | 0.037                  | 0.15                                | 164.835                                 |
|           | Total          | 90000        |                        |                                     | 1804.12                                 |

| Hourly runoff [Source: www.imd.gov.in] |
|----------------------------------------|
|----------------------------------------|

The total catchment area for rooftop harvesting is 1157.36 cum/hr. The underground tank should be built up to 10% larger than required, i.e.,1273.096 cum/hr. A typical size of about 2 rectangular underground storage tanks will be constructed having dimensions of about  $16m \times 16m \times 2.5m$  (Length ×Width × Depth).

#### The following measures should be taken for the proper harvesting of rain water:

- Rooftops from where rainwater collected will be cleaned periodically every year before rainy season.
- Presence of mesh inside the pipe to filter the water before reaching the storage tanks.
- Periodic maintenance of the structures.

The water is collected through open area and roads along the slope and Rain water collected shall be diverted to the vertical down pipes and allowed to fall in the Proposed Settling Concrete Pond directly for harvesting of rain water. The total runoff generated from plant through roads, open area & greenbelt is 21675.2 cum/annum for rainwater harvesting. After 30% evaporation loss the total water available for harvesting is 15172.64 cum/annum. To accommodate this amount of water, 1 pond of 41m length and 42m width with 3m depth is proposed. The details of the proposed pond are given below. There will 3 seasons of filling and net water harvested will be 15498 cum/annum.

| S. No. | Particulars         | Values          |
|--------|---------------------|-----------------|
| 1.     | Length              | 41 m            |
| 2.     | Width               | 42 m            |
| 3.     | Depth               | 3 m             |
| 4.     | Storage Capacity    | 5166 cum        |
| 5.     | No. of Fillings     | 3               |
| 6.     | Net Water Harvested | 15498 cum/annum |

The Project site falls in District and Assessment unit Mahasamund which comes under *Safe* Category as per CGWB Categorization 2020. The net summarization of Rainwater Harvesting is given below:

# Summarization of Rainwater Harvesting

| S. No | Particulars                                     | Details                       |  |
|-------|-------------------------------------------------|-------------------------------|--|
| 1.    | Total Ground Water Requirement                  | 1102 KLD/385700 cum/annum     |  |
| 2.    | Net Rainwater Harvested inside the Project Site | 155.1 KLPD/ 54285.2 cum/annum |  |

# RECOMMENDATION

- The project proponent in consultation with Irrigation Department may provide artificial harvesting structure for better percolation of rain water.
- The design and construction will be done after detailed engineering in case of requirement of harvesting structure development in ponds.
- Methods to prevent or minimize the clogging effect by suspended matter can be classified into following broad groups which industry will have to adopt: Periodical desilting, removing of the mud cake and scrapping of the surface layer when dry. This will also kill the algal growth.
- > Periodic cleaning of the harvesting structures.
- > Cultivation of certain covers, notably certain kinds of grass
- > Reduction of high flow velocities by provisions of perennial vegetation.
- The industry will take up area specific plantation program to enhance the recharge measures.

### 10.3.4 Solid and hazardous waste management

- Maximum recycling and utilization of generated solid waste shall be carried out as per the guidelines.
- Unit will prepare Hazardous waste disposal plan, as per applicable statutory conditions under the Hazardous Wastes Management Rules, 2016 and same will be implemented.
- EMC will keep a record of quantity of solid and hazardous waste generated and their proper disposal.
- A separate storage area shall be provided with proper sign boards/labels for storage of hazardous waste.
- The concerned person will prepare a site manual on the total program and activities of solid/hazardous waste management.
- Regular training will be conducted for employees engaged in solid waste management works.

#### 10.3.5 Odour management

Odour management plan outlines the methods by which odorous emissions will systematically be assessed, reduced and prevented potentially from the distillery unit.

- A horticulturist will be employed to develop greenbelt according to CPCB guidelines and plantation of such trees that are known to prevent odours.
- The areas will be identified with preferably more dust and gaseous emissions and greenbelt tier will be made dense.
- 10 meter width will be maintained and regular inspection will be carried out to find any rare phenomena in flora so that pollutants levels can be monitored for the cause.

#### **10.3.6** Occupational and health safety management

- Training shall be imparted to all employees on safety and health aspects of chemical handling.
- > Pre employment and routine check-ups to be undertaken regularly.
- > Proper counselling sessions will be conducted to know well being of employees.
- > Proper safety signs and boards will be displayed.
- Records of accidents happened will be kept and discussed for the preventive measures to avoid the same.
- > Proper personal protective equipment will be provided in each area as per applicability.
- Proper assembly points and emergency gate will be defined and employees will be given training regularly for the same.

#### 10.3.7 Disaster Management plan

The Company has made provisions for on-site and off-site disaster management plan:

For On-site disaster management plan, following points will be taken into consideration:

- ➤ To identify, assess, foresee and work out various kinds of possible hazards, their places, potential and damaging capacity and area in case of above happenings.
- Review, revise, redesign, replace or reconstruct the process, plant, vessels and control measures if so assessed.
- Measures to protect persons and property of processing equipment in case of all kinds of accidents, emergencies and disasters.
- > To inform people and surroundings about emergency if it is likely to adversely affect them.
- For off-site disaster management plan, following points will be taken into consideration:
- The plan will identify an emergency coordinating officer who would take overall command of the off-site activities.
- Proper co-ordination will be there between the company and outside regulatory authorities.

Details are provided in Chapter VII of EIA/EMP Report.

# 10.4 CONCEPT OF WASTE MINIMIZATION, 3R'S (REUSE, RECYCLE & RECOVER TECHNIQUES), ENERGY AND NATURAL RESOURCE CONSERVATION MEASURES

The company has always considered environment as important element which can be impacted by the project activities. They believe in prevention than curing. They believe in concept of conservation & waste minimization.

#### 10.4.1 Waste Minimization – 3R's

#### (A) Reuse:

- Solid waste from the Grain based distillery operations generally comprises of fibers and proteins in the form of DDGS (88TPD), which will be ideally used as Cattle, poultry and fish feed ingredients.
- Boiler ash (116 TPD) generated during coal-based operations will be given to cement/brick manufactures & during biomass (62 TPD) based operations will be given to brick manufacturers in covered vehicles.
- Yeast sludge will be added to wet cake.
- CPU/ETP sludge will be dewatered using filter press and will be used as manure.
- In malt spirit plant, weak wort is collected back into one of the hot process water tanks and used as mashing water for the next batch.
- Steam condensate will be reused in the boiler as makeup water.

#### (B) Recycle:

- Process condensate, boiler Blowdown, DM plant reject & washing, CT blowdown will be treated in CPU/ETP of capacity 1200 KLPD and treated water will be reused in process activities.
- Domestic waste water will be treated in Sewage Treatment Plant of Capacity 30 KLPD.
- pent resin from DM plant (500 kg/annum) will be supplied to authorized recyclers.
- Used oil & grease (0.5 KL/annum) generated from plant machinery/gear boxes as hazardous waste will be given to the CPCB authorized recyclers or used as in-house lubricant.

#### **Recovery:**

- CO2 generated (154 TPD) during the fermentation process will be collected and sold to authorized vendors.
- Water conservation & recirculation system shall be installed for recovery of cooling water.

#### **10.4.2** Energy Conservation

The following measures will be adopted for reduction in specific energy consumption:

- > Installation of energy efficient lightings. Use of energy saving light fittings.
- ▶ Installation of LED lighting.
- > Use of energy efficient electric motors complying IEE3 Standards.
- ➢ Use of DCS controls
- > Use of highly efficient VFD, minimizing idle running of machines.
- > Optimizing loads and periodic preventive maintenance & lubrication
- > Prevention of leakages of compressed air
- > Optimized compressed air pressure.
- > Periodic energy audits.
- > Training, awareness, and motivational programmes.
- Layout is designed for gravitation flow.
- Plant is designed for very low steam and power consumption with the use of state of art technology.

#### 10.4.3 Natural resource conservation

- > Usage of biomass like rice husk as main fuel.
- Water will be conserved by practising rainwater harvesting and maximum recycling within plant premises.
- Use of solar power will be explored and maximum appliances will be installed at plant premises based on their feasibility.

#### 10.5 BUDGETARY PROVISION FOR ENVIRONMENT MANAGEMENT PLAN (EMP)

The budget for the proposed project and that for the environmental protection measures is given as below:

Capital cost for the proposed project: Rs. 250 Crores

#### > Cost for environmental protection measures:

- ✓ Capital cost: Rs. 20.0 Crores
- ✓ Recurring cost: Rs 2.0 Crores/annum

| S.<br>No. |                    | Description                                       |          | Recurring<br>Cost/annum |
|-----------|--------------------|---------------------------------------------------|----------|-------------------------|
| 1.00      |                    |                                                   | (Crores) | (Crores)                |
| 1         | Air Pollution      | Boiler stack + ESP + Online Monitoring            | 7.35     | 0.65                    |
|           | management         | System                                            |          |                         |
| 2         | Effluent Treatment | Spent wash treatment facilities, ZLD              | 9.8      | 1.1                     |
|           | Facilities         | Facilities System, Condensate polishing unit, ETP |          |                         |
|           | and STP            |                                                   |          |                         |
|           | Environment        | Lab instrument, Online monitoring                 | 0.7      | 0.1                     |
| 3         | monitoring         | System, Third party monitoring, audit             |          |                         |

**Proposed 210 KLPD Grain based Distillery along with 6.25 MW Co-generation Power Plant** At Village Beltukri, Tehsil & District Mahasamund, Chhattisgarh

Chapter-X of Draft EIA / EMP Report

| 4 | Solid waste                              | Ash handling & management | 1.3  | 0.1  |
|---|------------------------------------------|---------------------------|------|------|
|   | management                               | Others                    |      |      |
| 5 | Greenbelt &<br>plantation<br>development | Plantation for greenbelt  | 0.35 | 0.05 |
| 6 | Rain water<br>harvesting                 | Required infrastructure   | 0.5  | -    |
|   | Total                                    |                           | 20   | 2    |

#### 10.6 CONCLUSION

As discussed, it is safe to say that the proposed project is not likely to cause any significant impact on the ecology of the area, as adequate preventive measures will be adopted to maintain the various pollutants within permissible limits. Greenbelt development around the area would also be taken up as an effective pollution mitigation technique, as well as to control the pollutants released from the premises of the company.



# CHAPTER - XI SUMMARY AND CONCLUSION

#### 11.1 INTRODUCTION

M/s Piccadily Agro Industries Ltd. is proposing 210 KLPD Grain based distillery along with 6.25 MW Co-Generation Power Plantat Village Beltukri, Tehsil & District Mahasamund, Chhattisgarh. The proposed distillery plant will be designed for manufacturing Ethanol/Rectified Spirit /Extra Neutral Alcohol/Industrial Alcohol/Denatured Spirit/Specially Denatured Spirit along with Malt Spirit from broken grains (Maize, Broken Rice, Sorghum & Barley Malt).

As per EIA Notification dated 14<sup>th</sup>Sep, 2006 and as amended on 13thJune, 2019, the project falls under Category "A", Project or Activity '5(g)' Distilleries. [Non-Molasses based distilleries>200 KLPD] and will be appraised at Central level in MoEFCC, New Delhi.

Standard ToR has been issued by MoEFCC, New Delhi vide letter no. IA-J-11011/277/2023-IA-II(I) dated 31<sup>st</sup> July, 2023 for the preparation of EIA/EMP Report.

#### **11.2** JUSTIFICATION FOR THE PROJECT

Following points show the justification for implementation of the project:

- > The Land is completely under the possession of the company.
- > Geographical diversification of the Group as the existing plants are located at North India.
- Raw material availability & markets for both products & by-products within the state.
- Raw marterialto be used are MGrains such as damaged grain feed stock, broken rice, maize, bajra& sorghum unfit for human consumption. These products once thought to be waste will be utilized for production of alcohol.
- Nearness to NH 53 (~3.5 km in South Direction), NH 353 (~8.0 km in SW direction), SH 20 (~8.0 km in SW direction) makes it easier to transport raw materials & final product to market.
- The company will install its own co-generation power plant and use biomass like rice husk or coal as fuel.
- Incorporation of advanced technique i.e. Multi Effect Evaporator and DWGS dryer will enable substantial reduction of final effluent.
- ➤ 33% of the total project area will be developed under greenbelt & plantation.
- > The proposed project will generate employment for the local people.
- There will not be any kind of major pollution due to the project activity, as the project will be implemented with environment friendly technology.
- > Emissions will be maintained within the prescribed limits, as per guidelines.
- No National Parks, Wildlife Sanctuaries, Biosphere Reserves, Tiger/ Elephant Reserves, Wildlife Corridors etc. within 10 km radius.

Chapter-XI of Draft EIA / EMP Report

#### **11.3 DETAILS ABOUT THE PROJECT**

### **11.3.1** Brief description of the project

Brief description about the project is given in Table below.

| S.<br>No. | Particulars                                                                                                                                                                                      | Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| A.        | Nature & Size of the Project                                                                                                                                                                     | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Proposed Capacity           |
|           |                                                                                                                                                                                                  | Grain based Distillery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 210 KLPD                    |
|           |                                                                                                                                                                                                  | Co-generation power plant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.25 MW                     |
| В.        | Category of the Project                                                                                                                                                                          | As per EIA Notification dated 14 <sup>th</sup> Sep<br>13 <sup>th</sup> June, 2019, the project falls unde<br>Activity '5(g)' Distilleries [Non-Mola<br>KLD].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | r Category "A", Project or  |
| C.        | Location Details                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |
|           | Village                                                                                                                                                                                          | Beltukri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |
|           | Tehsil                                                                                                                                                                                           | Mahasamund                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |
|           | District                                                                                                                                                                                         | Mahasamund                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |
|           | State                                                                                                                                                                                            | Chhattisgarh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |
|           | Latitude                                                                                                                                                                                         | 21°13'8.83" N to 21°13'20.19" N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |
|           | Longitude                                                                                                                                                                                        | 82°4'41.10"E to 82°4'57.78"E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |
|           | Toposheet No.                                                                                                                                                                                    | 56H/7, 56H/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |
| D.        | Area Details                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |
|           | Total Plant Area                                                                                                                                                                                 | 9.0 ha (22.24 acres)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |
|           | Greenbelt & Plantation Area                                                                                                                                                                      | 2.97 ha (7.34 acres) i.e., 33% of the plas greenbelt & plantation area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | lant area will be developed |
| E.        | Environmental Setting Details (                                                                                                                                                                  | with approximate aerial distance & di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rection from plant site)    |
| 1.        | Nearest Town & City                                                                                                                                                                              | Mahasamund (~10.5 km in SSE direction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | on)                         |
| 2.        | Nearest National Highway /<br>State Highway                                                                                                                                                      | <ul> <li>NH 53(~3.5 km in South Direction</li> <li>NH 353 (~8.0 km in SW direction)</li> <li>SH 20 (~8.0 km in NW Direction)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |
| 3.        | Nearest Railway station                                                                                                                                                                          | Belsonda RS (~8.4 km in SW direction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | )                           |
| 4.        | Nearest Airport                                                                                                                                                                                  | Swami Vivekananda Airport, Raipu direction)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | r (~ 35.0 km in WSW         |
| 5.        | National Parks, Wildlife<br>Sanctuaries, Biosphere<br>Reserves, Reserved Forests<br>(RF)/ Protected Forests (PF),<br>Tiger/ Elephant Reserves,<br>Wildlife Corridors etc. within 10<br>km radius | <ul> <li>Tiger/ Elephant Reserves, Wildlife Corridors etc. within 10 km radius.</li> <li>Kukradih RF (5.0 km in NE direction), Tumgaon RF (5.5 km in 10 km i</li></ul> |                             |
| 6.        | Water Body (within 10 km radius)                                                                                                                                                                 | Kurar Nadi (1.5 km in SW direction), k<br>WSW direction), Mahanadi river (4 km                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | in NW direction)            |
| 7.        | Seismic Zone                                                                                                                                                                                     | Some nalas are present within 10 km ra<br>The project site falls in Seismic Zone<br>[based on the Vulnerability Atlas of Inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | – II Low damage risk zone   |

Proposed 210 KLPD Grain based Distillery along with 6.25 MW Co-generation Power Plant At Village Beltukri, Tehsil & District Mahasamund, Chhattisgarh

Chapter-XI of Draft EIA / EMP Report

| F. | Cost Details                                        |                                                                                                                                        |  |
|----|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|
|    | Total Cost of the Project                           | Rs. 182 Crores                                                                                                                         |  |
|    | Cost for Environment                                | Capital Cost- Rs. 20 Crores                                                                                                            |  |
|    | Management Plan                                     | Recurring Cost- Rs. 2.0 Crores/annum                                                                                                   |  |
| G. | Basic Requirements for the proj                     | ect                                                                                                                                    |  |
|    | Water Requirement                                   | 1102 KLPD                                                                                                                              |  |
|    | Source – Surface water                              |                                                                                                                                        |  |
|    | Power Requirement for distillery                    | 6.0 MW                                                                                                                                 |  |
|    | Source – Proposed 6.25 MW Co-generation power plant |                                                                                                                                        |  |
|    | Man Power Requirement                               | 150 persons (100 Permanent + 50 Temporary)                                                                                             |  |
|    | (Operation phase)                                   |                                                                                                                                        |  |
|    | Source: - Unskilled / Semi-Skilled                  | - Local Area; Skilled- Local & Outside                                                                                                 |  |
| H. | Product Mix                                         | Ethanol/ Rectified Spirit /Extra Neutral Alcohol/ Industrial<br>Alcohol/ Denatured Spirit/ Specially Denatured Spirit & Malt<br>Spirit |  |
| I. | By-products                                         | DDGS & CO2                                                                                                                             |  |
| J. | Working Days                                        | 350 days per annum                                                                                                                     |  |

#### **11.3.2** Requirements for the project

#### 11.3.2.1 Raw material requirement

Grains such as damaged grain feed stock, broken rice, maize, bajra & sorghum will be used as raw material which is easily available from the local market. Details regarding quantity of raw materials required their source along with mode of transportation for project are given in table below:

| S.<br>No. | Particulars                                    | Total<br>Requirement | Storage<br>facility   | Source & mode of<br>transportation |  |
|-----------|------------------------------------------------|----------------------|-----------------------|------------------------------------|--|
| 1.        | <b>Grains-</b> Maize, Broken Rice &<br>Sorghum | 464 TPD              | Steel Silo            | Near-by Markets via road           |  |
| 2.        | Barley Malt                                    | 20 TPD               | Steel Silo            | Near-by Markets via road           |  |
| 3.        |                                                | <b>Process Chem</b>  | licals                |                                    |  |
|           | Sodium Hydroxide<br>(Caustic soda)             | 2100 Kg/day          | Stores/Steel<br>Tanks | Near-by Markets via road           |  |
|           | Nutrients                                      | 420 Kg/day           | In Stores             |                                    |  |
|           | Enzymes (Alpha amylase,<br>Amyloglucosidase)   | 273 Kg/day           | In Stores             |                                    |  |
|           | Antifoam Agent                                 | 105 Kg/day           | In Stores             |                                    |  |
|           | Dry Yeast                                      | 105 Kg/day           | In Stores             |                                    |  |

Table - 11.1Raw Material and chemicals requirement

#### **Fuel Requirement**

The fuel required for proposed boiler to generate steam & power is biomass like rice husk or coal.

Details regarding fuel requirements are given below.

| Fuel Requirement        |                            |                                |                                    |  |  |
|-------------------------|----------------------------|--------------------------------|------------------------------------|--|--|
| Name of Raw<br>Material | Total Requirement<br>(TPD) | Storage facility &<br>capacity | Source & Mode of<br>Transportation |  |  |
| Biomass/Rice husk       | 412 TPD                    | Covered sheds                  | From local suppliers by road       |  |  |
|                         | Or                         |                                |                                    |  |  |
| Low sulphur Coal        | 288 TPD                    | Covered sheds                  | From local suppliers by road       |  |  |

**Table - 11.2** 

Source: Pre-feasibility Report

#### 11.3.2.2 Other Basic Requirements

Other basic requirements for the project are given in Table below.

| <b>Basic Requirements for the Project</b> |                    |                                               |                                                                    |  |  |
|-------------------------------------------|--------------------|-----------------------------------------------|--------------------------------------------------------------------|--|--|
| S.<br>No.                                 | Parameters         | Quantity Requirement                          | Source                                                             |  |  |
| 1.                                        | Fresh Water (KLPD) | 1102 KLPD                                     | Surface water                                                      |  |  |
| 2.                                        | Power (MW)         | 6.0                                           | 6.25 MW Co-generation Power<br>Plant                               |  |  |
| 3.                                        | Manpower (persons) | 150 persons (100 Permanent + 50<br>Temporary) | Unskilled / Semi-Skilled - Local<br>Areas; Skilled-Local & Outside |  |  |

Table - 11.3

Source: Pre-feasibility Report

#### 11.4 Manufacturing Process

The process of grain based distillery comprises of following stages:

- A. Grain storage silos, cleaning, handling and milling
- B. Liquefaction & Saccharification
- C. Fermentation
- D. CO<sub>2</sub>Recovery plant
- E. Multi Pressure Vacuum distillation
- F. Decantation
- G. Multi Effect Evaporation
- H. DWGS Dryer Section

The process of Malt Spirit Plant for Malt spirit production comprises of following stages:

- A. Malt Handling
- B. Milling
- C. Mashing
- D. Fermentation
- E. Pot Distillation

#### 11.5 DESCRIPTION OF ENVIRONMENT

#### 11.5.1 Presentation of Results (Air, Noise, Water and Soil)

Baseline study of the study area was conducted during Summer Season (March to May, 2023). Ambient Air Quality Monitoring reveals that the concentrations of  $PM_{10}$  and  $PM_{2.5}$  for all the 8 AAQM stations were found between 51.3 to 70.6 µg/m3 and 22.9 to 39 µg/m3 respectively. The concentrations of SO2 and NO2 were found to be in range of 12.9 to 5.2 µg/m3 and 13.7 to 23.9 µg/m3 respectively.

Ambient noise levels were measured at 8 locations within the 10 km radius area from the project site. Noise levels vary from 50.6 to 54 Leq dB (A) during day time and 40.2 to 43.9 Leq dB(A) during night time.

Groundwater was analyzed for 8 locations. The pH of the groundwater samples ranged from 7.21 to 7.97 which is within the permissible limit. The color and turbidity were below detection limit and odor and taste were agreeable. The total dissolved solids ranged from 294 to 429 mg/l. Physical quality of the groundwater samples was fair. This observation is supported by moderate to high values of total hardness 175.22 to 286.87 (mg/l) and alkalinity 158.05 to 255.97 (mg/l). Samples were less polluted as indicated by the values of chlorides 51.23 to 87.54 (mg/l) and sulphates 14.5 to 58.12 (mg/l). The Fluoride concentration is 0.55 to 0.97 (mg/l). Based on the moderate conductivity values (496 to 663  $\mu$ S/cm), the groundwater samples are rich in dissolved substances and minerals which are good for irrigation purpose. The sodium 22.3 to 43.6 (mg/l) and potassium 3.2 to 5.3 (mg/l) concentration are very low indicating absence of pollution of groundwater samples. Total suspended solids, Nickel, Mercury, Arsenic, Lead, Cadmium, Manganese, Copper, Zinc, Chromium, Anionic Detergents, Phenolic compounds, Boron, Aluminium and phosphates were BDL for all the villages.

Soil monitoring was carried out at 8 locations and the analysis results show that soil is slight acidic to basic in nature, pH ranged from 7.66 to 8.11 Water holding capacity (47.6 % to 61.9 %) is favorable for the crops but showed tendency towards water logging. However, the bulk density 1.23 to 1.32 (g/cc) was within the optimum level 1.0 to 1.8 (g/cc). Calcium ranges from 1409 to 2333.74 mg/kg, Sodium 134.45 to 245.47 mg/kg, Potassium 247.28 to 437.24 (kg/ha) was high, Available nitrogen 215.65 to 347.96 (kg/ha) was moderate and Available phosphorus 23.74 to 34.14 (kg/ha) is high. Chloride levels range from 149.54 to 299.2 mg/kg and SAR ranges from 0.80 to 1.36 of the soil samples. Nitrogen fertilizer addition may be necessary during plantation and green belt development. The average conductivity values are 0.34 to 0.52 (mS/cm) which is average in all locations.

#### 11.6 ENVIRONMENTAL MONITORING PROGRAMME

Details of the environmental monitoring schedule / frequency, which will be undertaken for various environmental components, as per conditions of EC/CTE/CTO are given in Table below.

| <b>a</b> |                                                                      |                                      |                                                                                                                                                                                     |
|----------|----------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| S.       | Description                                                          | Frequency of Monitoring              | Locations of monitoring                                                                                                                                                             |
| No.      |                                                                      |                                      |                                                                                                                                                                                     |
| 1        | Ambient Air Quality                                                  | As per EC/CTO condition              | Within and outside plant area at least<br>4 locations (1 within and 3 outside the<br>plant area at an angle of 120 <sup>0</sup> each)<br>covering upwind and downwind<br>directions |
| 2        | Stack Emission Monitoring                                            | Continuous monitoring<br>(Online)    | Plant Site (Boiler stacks)                                                                                                                                                          |
| 3        | Performance Guarantee (PG)<br>test of pollution control<br>equipment | Yearly                               | All pollution control devices                                                                                                                                                       |
| 4        | Fugitive emission                                                    | As per EC/CTO condition              | In the plant site                                                                                                                                                                   |
| 5        | Noise level monitoring                                               | As per EC/CTO condition              | Plant boundary & nearby areas                                                                                                                                                       |
| 6        | Ground water quality                                                 | Twice a year (Pre & Post<br>monsoon) | In & around the plant site                                                                                                                                                          |
| 7        | Effluent quality                                                     | Daily (In house laboratory)          | CPU or ETP/STP Outlet                                                                                                                                                               |
| 8        | Soil Quality                                                         | Yearly                               | In & around the plant site                                                                                                                                                          |
| 9        | Medical checkup of<br>employees                                      | Yearly                               | Nearby hospitals/dispensary/on-site                                                                                                                                                 |

# Table - 11.4Post Project Monitoring

#### 11.7 **PROJECT BENEFITS**

The distillery installation of Piccadily Agro Industries Ltd. will result in growth of the surrounding areas by increasing direct and indirect employment opportunities in the region including ancillary development and supporting infrastructure. Development of social amenities will be in the form of medical facilities, education to underprivileged and creation of self-help groups. Chhattisgarh will get revenues in terms of taxes and local people will get direct & indirect employment. Business opportunities for local community will be available. No adverse effect on environment is envisaged as proper mitigation measures will be taken up for the same. Projects will be implemented based on community needs and with significant local contributions. Important areas identified through socio-economic survey and public hearing will be considered for social welfare activities covered under EMP. This approach will strengthen the groups, empower the members.

#### 11.8 ENVIRONMENT MANAGEMENT PLAN

The environment management plan is as given below: -

| Particulars                 | Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Air quality<br>management   | <ul> <li>For proposed 60 TPH boiler, ESP as Air pollution control equipment will be installed with stack height of 60 m to control the particulate and gaseous emissions in accordance with CPCB guidelines.</li> <li>CO2 generated (154 TPD) during the fermentation process will be collected and sold to authorized vendors.</li> <li>DG Set (1 x 1500 KVA) will be provided with adequate stack height as per CPCB Guidelines.</li> <li>Adequate measures for control of fugitive dust emissions will be taken.</li> <li>All the internal roads will be asphalted and regular sweeping &amp; sprinkling of water in dust generating areas.</li> <li>Greenbelt development around the periphery &amp; within the premises of the plant will help in attenuating the pollutants emitted and maintaining air quality.</li> <li>Online Continuous Emission Monitoring System will be installed with the proposed stack and data will be transmitted to CPCB/SPCB servers.</li> </ul>                                                                                                                                                                                                                                                    |
|                             | • Regular monitoring will be done to ensure ambient air quality standards.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Water quality<br>management | <ul> <li>The Grain based distillery will be based on "Zero Effluent Discharge".</li> <li>For Grain based operation: Grain Slops (1163 TPD) will be taken through Centrifuge Decanters for separation of Suspended Solids separated as Wet Cake and which goes as cattle, poultry and fish feed as it contains high protein. (Also known as DWG – Distillers Wet Grains). Thin Slops from the Decanter Centrifuge will be partly recycled back to process and balance portions shall be taken to Thins Slops Evaporation Plant for concentration of remaining solids to form Syrup. This Syrup will be also mixed into the Wet Cake coming out of Centrifuge and forms part of Cattle, poultry and fish Feed. DWGS Drier: The Wet Cake (DWGS) and Syrup mixture will be dried in Steam Tube Bundle Dryer for producing DDGS with 8-10% moisture (max.). DDGS (88 TPD) will be utilized as Cattle, poultry and fish feed ingredients.</li> <li>During Malt Spirit Process: Malt Spirit Slops will be passed through centrifuge decanters for separation of suspended solids separated as Wet Cake (also known as DWG – Distillers Wet Grains).</li> <li>Process condensate, boiler Blowdown, DM plant reject &amp; washing, CT</li> </ul> |

|                   | blowdown will be treated in CPU/ETP of capacity 1200 KLPD and treated            |
|-------------------|----------------------------------------------------------------------------------|
|                   | water will be reused in process activities.                                      |
|                   | • Domestic waste water will be treated in Sewage Treatment Plant of Capacity     |
|                   | 30 KLPD.                                                                         |
|                   | • Regular monitoring of ground water quality will be carried out.                |
|                   |                                                                                  |
|                   |                                                                                  |
|                   |                                                                                  |
| Noise Management  | • Personal Protective Equipment like earplugs and earmuffs will be provided to   |
|                   | the workers exposed to high noise level.                                         |
|                   | • Proper maintenance, oiling and greasing of machines at regular intervals will  |
|                   | be done to reduce generation of noise.                                           |
|                   | • Greenbelt inside the plant premises and at the plant boundary will be          |
|                   | developed& maintained.                                                           |
|                   | *                                                                                |
|                   | • Regular monitoring of noise level will be carried out in and around plant      |
|                   | premises to find out any high noise level zones and measures will be             |
|                   | implemented accordingly.                                                         |
|                   | • Regular auditing of process area to find out any loosened nuts/bolts/joints to |
|                   | avoid unnecessary noise.                                                         |
| Solid & Hazardous | • Solid waste from the Grain based distillery operations generally comprises of  |
| Waste Management  | fibers and proteins in the form of DDGS (88TPD), which will be ideally used      |
|                   | as Cattle, poultry and fish feed ingredients.                                    |
|                   | • Boiler ash (116 TPD) generated during coal-based operations will be given to   |
|                   | cement/brick manufactures & during biomass (62 TPD) based operations will        |
|                   |                                                                                  |
|                   | be given to brick manufacturers in covered vehicles.                             |
|                   | • Spent resin from DM plant (500 kg/annum) will be supplied to authorized        |
|                   | recyclers.                                                                       |
|                   | • Used oil & grease (0.5 KL/annum) generated from plant machinery/gear boxes     |
|                   | as hazardous waste will be given to the CPCB authorized recyclers or used as     |
|                   | in-house lubricant.                                                              |
| Odour management  | • Boiler will be installed which is based on an eco-friendly and odourless       |
|                   | technology.                                                                      |
|                   |                                                                                  |
|                   |                                                                                  |
|                   | areas will be developed. Species like Azadirachta indica (Neem), Millingtonia    |

|                     | hortensis (Indian cork tree), Pongamia pinnata (karanj) will be given preference         |
|---------------------|------------------------------------------------------------------------------------------|
|                     | to minimize odour in every possible way.                                                 |
|                     | • Efficient CO2 collection to avoid carryover of alcohol vapours& other fumes.           |
|                     | • Regular steaming of all fermentation equipment.                                        |
|                     | • Longer storages of any product/by-products will be avoided & use of efficient          |
|                     | biocides to control bacterial contamination.                                             |
|                     | • Regular use of eco-friendly disinfectants in the drains to avoid generation of         |
|                     | putrefying micro-organisms.                                                              |
| Greenbelt           | • Out of the total Plant area of 9.0 ha (22.24 acres), 33% of project area will be       |
| development &       | developed under greenbelt & plantation i.e., 2.97 ha (7.34 acres).                       |
| plantation          | • Native/Indigenous wild plant species will be planted in consultation with local        |
|                     | DFO.                                                                                     |
|                     | • Greenbelt will be developed as per Central Pollution Control Board (CPCB) guidelines.  |
|                     | • Greenbelt & plantation development will begin simultaneously with the                  |
|                     | initiation of construction activities of the proposed unit.                              |
| Occupational health | • Occupational health surveillance program will be taken as a regular exercise for       |
| and safety          | all the employees and their records maintained.                                          |
|                     | • Proper storage and handling precautions will be taken. The storage areawill be         |
|                     | kept cool, dry and well-ventilated and away from the source of heat, flame or oxidizers. |
|                     | • Use of Personal Protective Equipment (PPEs) will be encouraged. Proper                 |
|                     | training program on use of PPEs, characteristics of the material handled and             |
|                     | safety precautions will be arranged.                                                     |
|                     | • Fire safety measures will be incorporated within the factory premises. All the         |
|                     | fire extinguishing media such as water, dry chemicals, CO2, sand, dolomite,              |
|                     | foam, etc. will be kept in vital locations.                                              |
|                     | • Mock drill will be arranged for the workers to test the effectiveness of the           |
|                     | training program time to time and the way to react in case of emergency,                 |
|                     | • Safety precautions will be displayed in the premises on the banners, boards, etc.      |

#### 11.9 CONCLUSION

The proposed project will be beneficial to the local people as more infrastructure development, improvement in education and health facilities, roads, availability of drinking water, etc. in nearby villages will be done. There will be no significant impact on the area, as adequate preventive measures will be adopted to maintain the various pollutants within permissible limits. Regular monitoring of all the components of environment will be done. Increased social welfare measures taken by the company that will bring development in the near-by villages. Greenbelt development around the area will be also taken up as an effective pollution mitigation technique, as well as to control the pollutants.



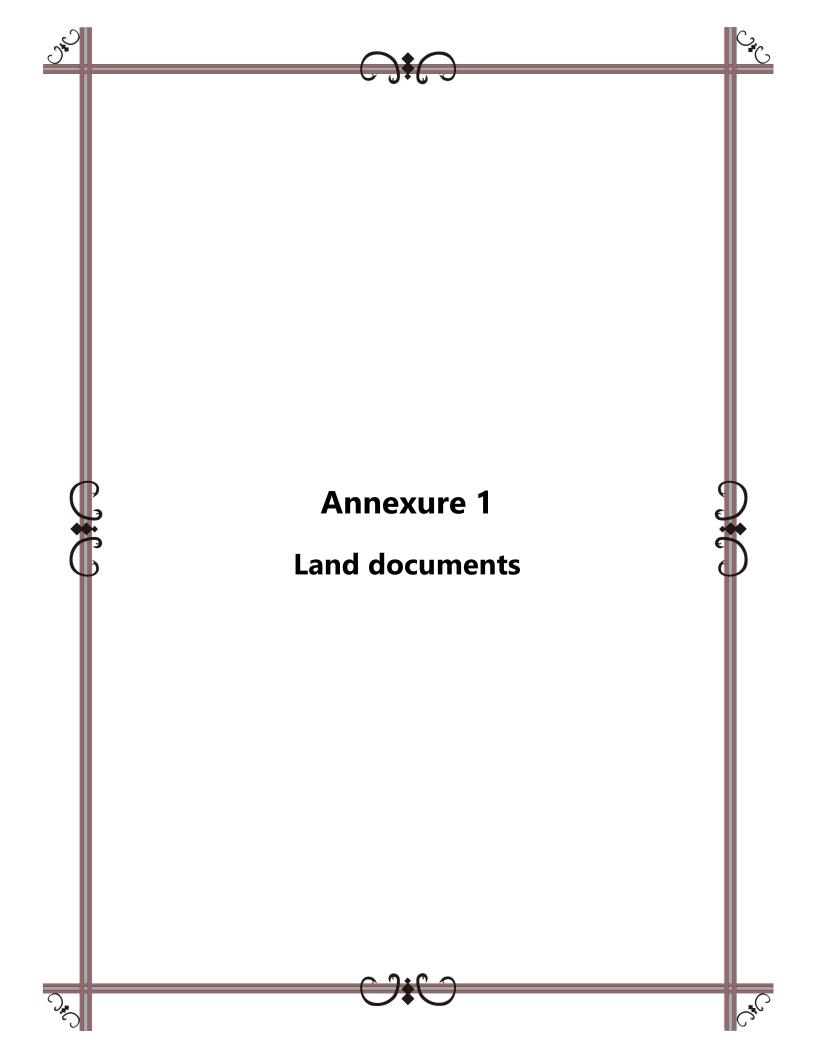
#### CHAPTER-XII DISCLOSURE OF CONSULTANTS ENGAGED

The consultant engaged with this project is **J.M. EnviroNet Pvt. Ltd. (JMEPL)**, established in the year 1993. JM—in the name of company—is Jharkhand Mahadev, derived from the name of 'Lord Shiva' temple located at Queens Road, Vaishali Nagar, Jaipur, Rajasthan.

The company's registered office is at 503, 5<sup>th</sup>Floor, Jaipur Centre, Jaipur, Rajasthan and corporate office is at Unit No. 1517, Tower B, Emaar Digital Greens, Golf Course Extension Road, Sector 61, Gurugram (Haryana).

The company is accredited by National Accreditation Board for Education and Training (NABET)-Quality Council of India. J.M. EnviroNet Pvt. Ltd. is listed at serial no. "113" of the List of Accredited EIA Consultant Organization displayed on MoEFCC website (http://eia.nabet.qci.org.in/Accredited\_EIA\_Consultant.aspx), updated as on 02<sup>nd</sup> August, 2023. NABET Certificate along with extension letter is enclosed as **Annexure 7**.

JMEPL is offering Environmental Consultancy Services in various sectors viz. Chemical Industries / Cement Plants/Thermal Power Plant/Mining Projects/Coal Washery Project/Real Estate Projects/Distilleries/Steel Plants/Chemical Fertilizers/Mineral Beneficiation etc. In the mining sector, JMEPL is covering mines of minerals viz. Limestone, Bauxite, Chromite, Coal, Zinc, Copper, Gypsum, Soapstone, Iron and Manganese ore, Clay, Silica Sand, Feldspar, Quartz etc.


JMEPL has a highly qualified team of Subject Experts. As senior executives/Heads of the EIA Division, we have Former General Managers of the Reputed Cement Companies, Ex-Head EIA Division of big Business Group, STP and ETP Designing Experts, Senior Mining and Geology Experts with vast experience in their respective fields.

The company's services are spread over 22 States viz.: Andhra Pradesh, Kerala, Gujarat, Maharashtra, Orissa, Tamil Nadu, Goa, Jammu and Kashmir, Himachal Pradesh, Punjab, Haryana, Delhi, Rajasthan, Uttar Pradesh, Madhya Pradesh, Chhattisgarh, Assam, West Bengal, Karnataka, Jharkhand, Bihar and Uttarakhand.

JMEPL outsources its laboratory services from J.M. EnviroLab Pvt. Ltd., an Environmental Laboratory at Gurgaon (Haryana) approved under EPA (Environment Protection Act) from the Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi and by the National Accreditation Board for Testing and Calibration Laboratories, Government of India (NABL). This MoEFCC and NABL approved Environmental Laboratory of JM Group is also providing Analytical Laboratory Services of various elements and environmental parameters.NABL Certificate is enclosed as **Annexure 8**.

Annual monitoring as per MoEFCC/CPCB/SPCB guidelines, Risk Assessment and Disaster Management Plan, consultancy for Rain Water Harvesting Plan, detailed Hydro-geological Study, preparation of Environmental Statement Reports (Environmental Clearance Compliance Conditions) etc. are amongst the various other consultancy services offered by the Company.

 $\circ \circ \bigcirc \circ \circ \circ$ 



कृषि वर्ष: 2022-2023

कैफियत

(10)

#### फॉर्म पी-॥ खसरा पांचसाला खण्ड-1 (भूमिस्वामी का विवरण)



क्रमांक

(1)

388/2

426

428

429

क्षेत्रफल

(और यदि

भूमि खातो

में सम्मिलित

न हो

तो उसका

वर्णन)

(2)

0.1900

0.1500

0.2700

0.0400

ग्राम : बेलद्करी हल्का : 00054

कब्जेदार का विवरण

पिता या पति का नाम

(4)

पिता कमला पति शुक्ला

खसरा नंबर - 388/2 के

अनुसार

अनुसार

खसरा नंबर - 388/2 के

अनुसार

खसरा नंबर - 388/2 के खसरा नंबर - 388/2 के

रा नि : तुमगाँव

भूमि का ब्यौरा हेक्टेयर में एवं करो का ब्यौरा रूपये पैसो में है |

जाति

(5)

ब्राहमण

के अनुसार

के अनुसार

के अनुसार

खसरा नंबर - 388/2 खसरा नंबर - 388/2

खसरा नंबर - 388/2 खसरा नंबर - 388/2

खसरा नंबर - 388/2 खसरा नंबर - 388/2

निवास स्थान

(6)

मोतीलाल नेहरू नगर

भिलाई दुर्ग

के अनुसार

के अनुसार

के अनुसार

तहसील : महासमुंद

प्रयोजन जिसके.

लिए भू-राजस्व

निर्धारण किया गया

है तथा नियत

भूराजस्व

पड़ती का क्षेत्रफल

(7)

कृषि

₹0.46

कृषि

₹0.36

कृषि

₹0.50

कृषि

₹0.10

20230812580100078

किसी भूमि स्वामी

या पट्टेदार या किसी

मौरुषी कास्तकार के

उपपट्टेदार का नाम,

पिता का नाम,लगान या पट्टे की रकम

और उप-पट्टे पर

दिया गया भाग का क्षेत्रफल

(9)

जिला : महासमुंद

अधिकार जिसके

अंतर्गत भूमि धारण

की गई हो

(8)

भूमिस्वामी - कृषि

भूमि

भूमिस्वामी - कृषि

भूमि

भूमिस्वामी - कृषि

भूमि

भूमिस्वामी - कृषि

भूमि

नाम

(3)

पिकाडली एग्रो इन्डस्ट्रिज

लिमिटेड अधिकृत

अधिकारी स्वतंत्र कुमार शुक्ला

खसरा नंबर - 388/2 के

अनुसार

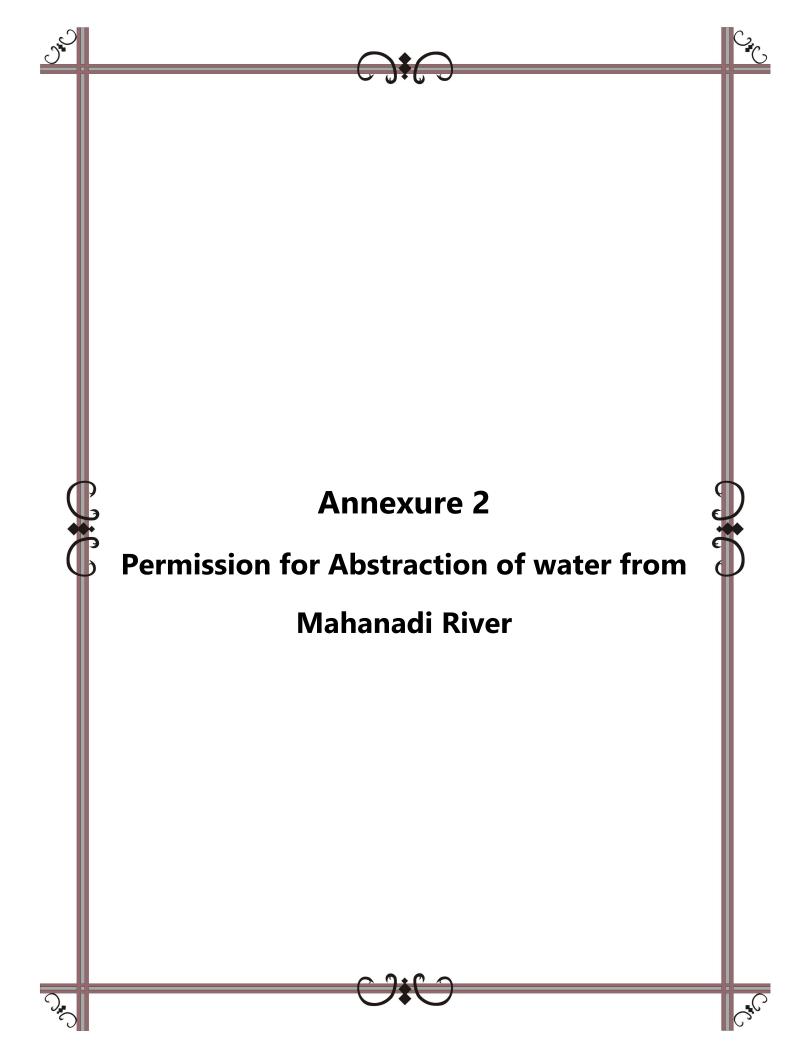
अनुसार

खसरा नंबर - 388/2 के

अनुसार

|         | फॉर्म पी-॥ खसरा पांचसाला खण्ड                                                   |                                |                                                                 |                                |                                | गमी का विवरण)                                                                   |                                               | कृषि वर्ष: 2022-2023                                                                                                                                                         |                   |  |  |  |  |  |
|---------|---------------------------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------|--------------------------------|--------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|--|--|--|--|
|         |                                                                                 | ग्राम : बेलद्                  | ्करी हल्का                                                      | : 00054 रानि                   | : तुमगाँव                      | तहसील : महासमुंद                                                                | जिला : म                                      | <b>गहासमुंद</b>                                                                                                                                                              | 20230812580100078 |  |  |  |  |  |
|         |                                                                                 |                                | भूमि का ब्यौरा हेक्टेयर में एवं करो का ब्यौरा रूपये पैसो में है |                                |                                |                                                                                 |                                               |                                                                                                                                                                              |                   |  |  |  |  |  |
| क्रमांक | क्षेत्रफल<br>(और यदि<br>भूमि खातो<br>में सम्मिललित<br>न हो<br>तो उसका<br>वर्णन) |                                | कब्जेदार का                                                     | विवरण                          |                                | प्रयोजन जिसके,<br>लिए भू-राजस्व<br>निर्धारण किया गया<br>है तथा नियत<br>भूराजस्व | अधिकार जिसके<br>अंतर्गत भूमि धारण<br>की गई हो | किसी भूमि स्वामी<br>या पट्टेदार या किसी<br>मौरुषी कास्तकार के<br>उपपट्टेदार का नाम,<br>पिता का नाम,लगान<br>या पट्टे की रकम<br>और उप-पट्टे पर<br>दिया गया भाग का<br>क्षेत्रफल | कैंफियत           |  |  |  |  |  |
|         |                                                                                 | नाम                            | पिता या पति का नाम                                              | जाति                           | निवास स्थान                    | पड़ती का क्षेत्रफल                                                              |                                               |                                                                                                                                                                              |                   |  |  |  |  |  |
| (1)     | (2)                                                                             | (3)                            | (4)                                                             | (5)                            | (6)                            | (7)                                                                             | (8)                                           | (9)                                                                                                                                                                          | (10)              |  |  |  |  |  |
| 430     | 0.0900                                                                          | खसरा नंबर - 388/2 के<br>अनुसार | खसरा नंबर - 388/2 के<br>अनुसार                                  | खसरा नंबर - 388/2<br>के अनुसार | खसरा नंबर - 388/2<br>के अनुसार | कृषि<br>₹ 0.21                                                                  | भूमिस्वामी - कृषि<br>भूमि                     |                                                                                                                                                                              |                   |  |  |  |  |  |
| 431     | 0.0600                                                                          | खसरा नंबर - 388/2 के<br>अनुसार | खसरा नंबर - 388/2 के<br>अनुसार                                  | खसरा नंबर - 388/2<br>के अनुसार | खसरा नंबर - 388/2<br>के अनुसार | कृषि<br>₹ 0.14                                                                  | भूमिस्वामी - कृषि<br>भूमि                     |                                                                                                                                                                              |                   |  |  |  |  |  |
| 432     | 0.1100                                                                          | खसरा नंबर - 388/2 के<br>अनुसार | खसरा नंबर - 388/2 के<br>अनुसार                                  | खसरा नंबर - 388/2<br>के अनुसार | खसरा नंबर - 388/2<br>के अनुसार | कृषि<br>₹ 0.26                                                                  | भूमिस्वामी - कृषि<br>भूमि                     |                                                                                                                                                                              |                   |  |  |  |  |  |
| 433     | 0.3600                                                                          | खसरा नंबर - 388/2 के<br>अनुसार | खसरा नंबर - 388/2 के<br>अनुसार                                  | खसरा नंबर - 388/2<br>के अनुसार | खसरा नंबर - 388/2<br>के अनुसार | कृषि<br>₹ 0.86                                                                  | भूमिस्वामी - कृषि<br>भूमि                     |                                                                                                                                                                              |                   |  |  |  |  |  |
| 434     | 0.2400                                                                          | खसरा नंबर - 388/2 के<br>अनुसार | खसरा नंबर - 388/2 के<br>अनुसार                                  | खसरा नंबर - 388/2<br>के अनुसार | खसरा नंबर - 388/2<br>के अनुसार | कृषि<br>₹ 0.57                                                                  | भूमिस्वामी - कृषि<br>भूमि                     |                                                                                                                                                                              |                   |  |  |  |  |  |

|         | Horrs ∎<br>Starts                                                              | फॉर्म पी-॥ खसरा पांचसाला खण्ड-1 (भूमिस्वामी का विवरण) |                                                                 |                                |                                |                                                                                 |                                               |                                                                                                                                                                              | कृषि वर्ष: 2022-2023 |  |  |  |  |  |
|---------|--------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|--------------------------------|--------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--|--|--|--|--|
|         |                                                                                | ग्राम : बेलद्                                         | करी हल्का                                                       | : 00054 रानि                   | : तुमगाँव                      | तहसील : महासमुंद                                                                | जिला : म                                      | ाहासमुंद                                                                                                                                                                     | 20230812580100078    |  |  |  |  |  |
|         |                                                                                |                                                       | भूमि का ब्यौरा हेक्टेयर में एवं करो का ब्यौरा रूपये पैसो में है |                                |                                |                                                                                 |                                               |                                                                                                                                                                              |                      |  |  |  |  |  |
| क्रमांक | क्षेत्रफल<br>(और यदि<br>भूमि खातो<br>में सम्मिलित<br>न हो<br>तो उसका<br>वर्णन) |                                                       | कब्जेदार का                                                     | विवरण                          |                                | प्रयोजन जिसके,<br>लिए भू-राजस्व<br>निर्धारण किया गया<br>है तथा नियत<br>भूराजस्व | अधिकार जिसके<br>अंतर्गत भूमि धारण<br>की गई हो | किसी भूमि स्वामी<br>या पट्टेदार या किसी<br>मौरुषी कास्तकार के<br>उपपट्टेदार का नाम,<br>पिता का नाम,लगान<br>या पट्टे की रकम<br>और उप-पट्टे पर<br>दिया गया भाग का<br>क्षेत्रफल |                      |  |  |  |  |  |
|         |                                                                                | नाम                                                   | पिता या पति का नाम                                              | जाति                           | निवास स्थान                    | पड़ती का क्षेत्रफल                                                              |                                               |                                                                                                                                                                              |                      |  |  |  |  |  |
| (1)     | (2)                                                                            | (3)                                                   | (4)                                                             | (5)                            | (6)                            | (7)                                                                             | (8)                                           | (9)                                                                                                                                                                          | (10)                 |  |  |  |  |  |
| 441     | 0.1700                                                                         | खसरा नंबर - 388/2 के<br>अनुसार                        | खसरा नंबर - 388/2 के<br>अनुसार                                  | खसरा नंबर - 388/2<br>के अनुसार | खसरा नंबर - 388/2<br>के अनुसार | कृषि<br>₹ 0.41                                                                  | भूमिस्वामी - कृषि<br>भूमि                     |                                                                                                                                                                              |                      |  |  |  |  |  |
| 467/1   | 0.1200                                                                         | खसरा नंबर - 388/2 के<br>अनुसार                        | खसरा नंबर - 388/2 के<br>अनुसार                                  | खसरा नंबर - 388/2<br>के अनुसार | खसरा नंबर - 388/2<br>के अनुसार | कृषि<br>₹ 0.25                                                                  | भूमिस्वामी - कृषि<br>भूमि                     |                                                                                                                                                                              |                      |  |  |  |  |  |
| 467/2   | 0.1000                                                                         | खसरा नंबर - 388/2 के<br>अनुसार                        | खसरा नंबर - 388/2 के<br>अनुसार                                  | खसरा नंबर - 388/2<br>के अनुसार | खसरा नंबर - 388/2<br>के अनुसार | कृषि<br>₹ 0.22                                                                  | भूमिस्वामी - कृषि<br>भूमि                     |                                                                                                                                                                              |                      |  |  |  |  |  |
| 468     | 0.1500                                                                         | खसरा नंबर - 388/2 के<br>अनुसार                        | खसरा नंबर - 388/2 के<br>अनुसार                                  | खसरा नंबर - 388/2<br>के अनुसार | खसरा नंबर - 388/2<br>के अनुसार | कृषि<br>₹ 0.33                                                                  | भूमिस्वामी - कृषि<br>भूमि                     |                                                                                                                                                                              |                      |  |  |  |  |  |
| 472     | 0.2200                                                                         | खसरा नंबर - 388/2 के<br>अनुसार                        | खसरा नंबर - 388/2 के<br>अनुसार                                  | खसरा नंबर - 388/2<br>के अनुसार | खसरा नंबर - 388/2<br>के अनुसार | कृषि<br>₹ 0.49                                                                  | भूमिस्वामी - कृषि<br>भूमि                     |                                                                                                                                                                              |                      |  |  |  |  |  |


|         | Horas⊡<br>Altar                                                                |                                | फॉर्म प                                                         | नी-॥ खसरा पांचसाल              |                                | कृषि वर्ष: 2022-2023                                                            |                                               |                                                                                                                                                                              |                                     |  |  |  |  |  |
|---------|--------------------------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------|--------------------------------|--------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--|--|--|--|--|
|         |                                                                                | ग्राम : बेलद्                  | करी हल्का                                                       | : 00054 रानि                   | : तुमगाँव                      | तहसील : महासमुंद                                                                | जिला : म                                      | <b>गहासमुंद</b>                                                                                                                                                              | 2023081258010007                    |  |  |  |  |  |
|         |                                                                                |                                | भूमि का ब्यौरा हेक्टेयर में एवं करो का ब्यौरा रूपये पैसो में है |                                |                                |                                                                                 |                                               |                                                                                                                                                                              |                                     |  |  |  |  |  |
| क्रमांक | क्षेत्रफल<br>(और यदि<br>भूमि खातो<br>में सम्मिलित<br>न हो<br>तो उसका<br>वर्णन) |                                | कब्जेदार का                                                     | विवरण                          |                                | प्रयोजन जिसके,<br>लिए भू-राजस्व<br>निर्धारण किया गया<br>है तथा नियत<br>भ्राजस्व | अधिकार जिसके<br>अंतर्गत भूमि धारण<br>की गई हो | किसी भूमि स्वामी<br>या पट्टेदार या किसी<br>मौरुषी कास्तकार के<br>उपपट्टेदार का नाम,<br>पिता का नाम,लगान<br>या पट्टे की रकम<br>और उप-पट्टे पर<br>दिया गया भाग का<br>क्षेत्रफल | कैफियत                              |  |  |  |  |  |
|         |                                                                                | नाम                            | पिता या पति का नाम                                              | जाति                           | निवास स्थान                    | पड़ती का क्षेत्रफल                                                              |                                               |                                                                                                                                                                              |                                     |  |  |  |  |  |
| (1)     | (2)                                                                            | (3)                            | (4)                                                             | (5)                            | (6)                            | (7)                                                                             | (8)                                           | (9)                                                                                                                                                                          | (10)                                |  |  |  |  |  |
| 474     | 0.0400                                                                         | खसरा नंबर - 388/2 के<br>अनुसार | खसरा नंबर - 388/2 के<br>अनुसार                                  | खसरा नंबर - 388/2<br>के अनुसार | खसरा नंबर - 388/2<br>के अनुसार | कृषि<br>₹ 0.09                                                                  | भूमिस्वामी - कृषि<br>भूमि                     |                                                                                                                                                                              |                                     |  |  |  |  |  |
| 476/2   | 0.4000                                                                         | खसरा नंबर - 388/2 के<br>अनुसार | खसरा नंबर - 388/2 के<br>अनुसार                                  | खसरा नंबर - 388/2<br>के अनुसार | खसरा नंबर - 388/2<br>के अनुसार | कृषि<br>₹ 0.25                                                                  | भूमिस्वामी - कृषि<br>भूमि                     |                                                                                                                                                                              |                                     |  |  |  |  |  |
| 477     | 0.2000                                                                         | खसरा नंबर - 388/2 के<br>अनुसार | खसरा नंबर - 388/2 के<br>अनुसार                                  | खसरा नंबर - 388/2<br>के अनुसार | खसरा नंबर - 388/2<br>के अनुसार | कृषि<br>₹ 0.38                                                                  | भूमिस्वामी - कृषि<br>भूमि                     |                                                                                                                                                                              |                                     |  |  |  |  |  |
| 478     | 0.1300                                                                         | खसरा नंबर - 388/2 के<br>अनुसार | खसरा नंबर - 388/2 के<br>अनुसार                                  | खसरा नंबर - 388/2<br>के अनुसार | खसरा नंबर - 388/2<br>के अनुसार | कृषि<br>₹ 0.30                                                                  | भूमिस्वामी - कृषि<br>भूमि                     |                                                                                                                                                                              |                                     |  |  |  |  |  |
| 479     | 0.0400                                                                         | खसरा नंबर - 388/2 के<br>अनुसार | खसरा नंबर - 388/2 के<br>अनुसार                                  | खसरा नंबर - 388/2<br>के अनुसार | खसरा नंबर - 388/2<br>के अनुसार | कृषि<br>₹ 0.04                                                                  | भूमिस्वामी - कृषि<br>भूमि                     |                                                                                                                                                                              | - खरीदी से ना.क्र. 02<br>दि18/10/11 |  |  |  |  |  |

|         | Herra ∎<br>Sister<br>Altra Sta                                                 |                                | फॉर्म प                                                         | फॉर्म पी-॥ खसरा पांचसाला खण्ड-1 (भूमिस्वामी का विवरण) |                                |                                                                                 |                                               |                                                                                                                                                                              |                   |  |  |  |  |  |
|---------|--------------------------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------|-------------------------------------------------------|--------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|--|--|--|--|
|         |                                                                                | ग्राम : बेलद्                  | करी हल्का                                                       | : 00054 रानि                                          | : तुमगाँव                      | तहसील : महासमुंद                                                                | मुंद जिला : महासमुंद                          |                                                                                                                                                                              | 20230812580100078 |  |  |  |  |  |
|         |                                                                                |                                | भूमि का ब्यौरा हेक्टेयर में एवं करो का ब्यौरा रूपये पैसो में है |                                                       |                                |                                                                                 |                                               |                                                                                                                                                                              |                   |  |  |  |  |  |
| क्रमांक | क्षेत्रफल<br>(और यदि<br>भूमि खातो<br>में सम्मिलित<br>न हो<br>तो उसका<br>वर्णन) |                                | कब्जेदार का                                                     | विवरण                                                 |                                | प्रयोजन जिसके,<br>लिए भू-राजस्व<br>निर्धारण किया गया<br>है तथा नियत<br>भूराजस्व | अधिकार जिसके<br>अंतर्गत भूमि धारण<br>की गई हो | किसी भूमि स्वामी<br>या पट्टेदार या किसी<br>मौरुषी कास्तकार के<br>उपपट्टेदार का नाम,<br>पिता का नाम,लगान<br>या पट्टे की रकम<br>और उप-पट्टे पर<br>दिया गया भाग का<br>क्षेत्रफल | कैफियत            |  |  |  |  |  |
|         |                                                                                | नाम                            | पिता या पति का नाम                                              | जाति                                                  | निवास स्थान                    | पड़ती का क्षेत्रफल                                                              |                                               |                                                                                                                                                                              |                   |  |  |  |  |  |
| (1)     | (2)                                                                            | (3)                            | (4)                                                             | (5)                                                   | (6)                            | (7)                                                                             | (8)                                           | (9)                                                                                                                                                                          | (10)              |  |  |  |  |  |
| 481     | 0.0800                                                                         | खसरा नंबर - 388/2 के<br>अनुसार | खसरा नंबर - 388/2 के<br>अनुसार                                  | खसरा नंबर - 388/2<br>के अनुसार                        | खसरा नंबर - 388/2<br>के अनुसार | कृषि<br>₹ 0.20                                                                  | भूमिस्वामी - कृषि<br>भूमि                     |                                                                                                                                                                              |                   |  |  |  |  |  |
| 482     | 0.1100                                                                         | खसरा नंबर - 388/2 के<br>अनुसार | खसरा नंबर - 388/2 के<br>अनुसार                                  | खसरा नंबर - 388/2<br>के अनुसार                        | खसरा नंबर - 388/2<br>के अनुसार | कृषि<br>₹ 0.25                                                                  | भूमिस्वामी - कृषि<br>भूमि                     |                                                                                                                                                                              |                   |  |  |  |  |  |
| 483     | 0.2400                                                                         | खसरा नंबर - 388/2 के<br>अनुसार | खसरा नंबर - 388/2 के<br>अनुसार                                  | खसरा नंबर - 388/2<br>के अनुसार                        | खसरा नंबर - 388/2<br>के अनुसार | कृषि<br>₹ 0.68                                                                  | भूमिस्वामी - कृषि<br>भूमि                     |                                                                                                                                                                              |                   |  |  |  |  |  |
| 484     | 0.0800                                                                         | खसरा नंबर - 388/2 के<br>अनुसार | खसरा नंबर - 388/2 के<br>अनुसार                                  | खसरा नंबर - 388/2<br>के अनुसार                        | खसरा नंबर - 388/2<br>के अनुसार | कृषि<br>₹ 0.23                                                                  | भूमिस्वामी - कृषि<br>भूमि                     |                                                                                                                                                                              |                   |  |  |  |  |  |
| 485     | 0.0400                                                                         | खसरा नंबर - 388/2 के<br>अनुसार | खसरा नंबर - 388/2 के<br>अनुसार                                  | खसरा नंबर - 388/2<br>के अनुसार                        | खसरा नंबर - 388/2<br>के अनुसार | कृषि<br>₹ 0.13                                                                  | भूमिस्वामी - कृषि<br>भूमि                     |                                                                                                                                                                              |                   |  |  |  |  |  |

|         | Herra ∎<br>Kali                                                                |                                | फॉर्म प                                                         | नी-॥ खसरा पांचसाल              | ग खण्ड-1 (भूमिस्व              | वामी का विवरण)                                                                  |                                               |                                                                                                                                                                              | कृषि वर्ष: 2022-2023 |  |  |  |  |  |
|---------|--------------------------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------|--------------------------------|--------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--|--|--|--|--|
|         |                                                                                | ग्राम : बेलद्                  | करी हल्का                                                       | : 00054 रानि                   | : तुमगाँव                      | तहसील : महासमुंद                                                                | ामुंद जिला : महासमुंद                         |                                                                                                                                                                              | 20230812580100078    |  |  |  |  |  |
|         |                                                                                |                                | भूमि का ब्यौरा हेक्टेयर में एवं करो का ब्यौरा रूपये पैसो में है |                                |                                |                                                                                 |                                               |                                                                                                                                                                              |                      |  |  |  |  |  |
| क्रमांक | क्षेत्रफल<br>(और यदि<br>भूमि खातो<br>में सम्मिलित<br>न हो<br>तो उसका<br>वर्णन) |                                | कब्जेदार का                                                     | विवरण                          |                                | प्रयोजन जिसके,<br>लिए भू-राजस्व<br>निर्धारण किया गया<br>है तथा नियत<br>भ्राजस्व | अधिकार जिसके<br>अंतर्गत भूमि धारण<br>की गई हो | किसी भूमि स्वामी<br>या पट्टेदार या किसी<br>मौरुषी कास्तकार के<br>उपपट्टेदार का नाम,<br>पिता का नाम,लगान<br>या पट्टे की रकम<br>और उप-पट्टे पर<br>दिया गया भाग का<br>क्षेत्रफल | कैफियत               |  |  |  |  |  |
|         |                                                                                | नाम                            | पिता या पति का नाम                                              | जाति                           | निवास स्थान                    | पड़ती का क्षेत्रफल                                                              |                                               |                                                                                                                                                                              |                      |  |  |  |  |  |
| (1)     | (2)                                                                            | (3)                            | (4)                                                             | (5)                            | (6)                            | (7)                                                                             | (8)                                           | (9)                                                                                                                                                                          | (10)                 |  |  |  |  |  |
| 487     | 0.1000                                                                         | खसरा नंबर - 388/2 के<br>अनुसार | खसरा नंबर - 388/2 के<br>अनुसार                                  | खसरा नंबर - 388/2<br>के अनुसार | खसरा नंबर - 388/2<br>के अनुसार | कृषि<br>₹ 0.35                                                                  | भूमिस्वामी - कृषि<br>भूमि                     |                                                                                                                                                                              |                      |  |  |  |  |  |
| 489     | 0.2200                                                                         | खसरा नंबर - 388/2 के<br>अनुसार | खसरा नंबर - 388/2 के<br>अनुसार                                  | खसरा नंबर - 388/2<br>के अनुसार | खसरा नंबर - 388/2<br>के अनुसार | कृषि<br>₹ 0.62                                                                  | भूमिस्वामी - कृषि<br>भूमि                     |                                                                                                                                                                              |                      |  |  |  |  |  |
| 490/1   | 0.4000                                                                         | खसरा नंबर - 388/2 के<br>अनुसार | खसरा नंबर - 388/2 के<br>अनुसार                                  | खसरा नंबर - 388/2<br>के अनुसार | खसरा नंबर - 388/2<br>के अनुसार | कृषि<br>₹ 1.13                                                                  | भूमिस्वामी - कृषि<br>भूमि                     |                                                                                                                                                                              |                      |  |  |  |  |  |
| 491     | 0.1100                                                                         | खसरा नंबर - 388/2 के<br>अनुसार | खसरा नंबर - 388/2 के<br>अनुसार                                  | खसरा नंबर - 388/2<br>के अनुसार | खसरा नंबर - 388/2<br>के अनुसार | कृषि<br>₹ 0.38                                                                  | भूमिस्वामी - कृषि<br>भूमि                     |                                                                                                                                                                              |                      |  |  |  |  |  |
| 492     | 0.1200                                                                         | खसरा नंबर - 388/2 के<br>अनुसार | खसरा नंबर - 388/2 के<br>अनुसार                                  | खसरा नंबर - 388/2<br>के अनुसार | खसरा नंबर - 388/2<br>के अनुसार | कृषि<br>₹ 0.25                                                                  | भूमिस्वामी - कृषि<br>भूमि                     |                                                                                                                                                                              |                      |  |  |  |  |  |

|                    | interrari⊡<br>Maria                                                                              |                                | फॉर्म प                        | गी-॥ खसरा पांचसाल              | ग खण्ड-1 (भूमिस्व              | गमी का विवरण)                                                                   |                                               |                                                                                                                                                                              | कृषि वर्ष: 2022-2023                                                                                |
|--------------------|--------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
|                    |                                                                                                  | ग्राम : बेलद्                  | <b>ाहासमुंद</b>                | 20230812580100078              |                                |                                                                                 |                                               |                                                                                                                                                                              |                                                                                                     |
| ज्रमांक<br>क्रमांक | करन्ञ्र अप्र ग<br>क्षेत्रफल<br>(और यदि<br>भूमि खातो<br>में सम्मिलित<br>न हो<br>तो उसका<br>वर्णन) |                                | कब्जेदार का                    | विवरण                          |                                | प्रयोजन जिसके,<br>लिए भू-राजस्व<br>निर्धारण किया गया<br>है तथा नियत<br>भूराजस्व | अधिकार जिसके<br>अंतर्गत भूमि धारण<br>की गई हो | किसी भूमि स्वामी<br>या पट्टेदार या किसी<br>मौरुषी कास्तकार के<br>उपपट्टेदार का नाम,<br>पिता का नाम,लगान<br>या पट्टे की रकम<br>और उप-पट्टे पर<br>दिया गया भाग का<br>क्षेत्रफल |                                                                                                     |
|                    |                                                                                                  | नाम                            | पिता या पति का नाम             | जाति                           | निवास स्थान                    | पड़ती का क्षेत्रफल                                                              |                                               |                                                                                                                                                                              |                                                                                                     |
| (1)                | (2)                                                                                              | (3)                            | (4)                            | (5)                            | (6)                            | (7)                                                                             | (8)                                           | (9)                                                                                                                                                                          | (10)                                                                                                |
| 493                | 0.1000                                                                                           | खसरा नंबर - 388/2 के<br>अनुसार | खसरा नंबर - 388/2 के<br>अनुसार | खसरा नंबर - 388/2<br>के अनुसार | खसरा नंबर - 388/2<br>के अनुसार | कृषि<br>₹ 0.35                                                                  | भूमिस्वामी - कृषि<br>भूमि                     |                                                                                                                                                                              |                                                                                                     |
| 496                | 0.0600                                                                                           | खसरा नंबर - 388/2 के<br>अनुसार | खसरा नंबर - 388/2 के<br>अनुसार | खसरा नंबर - 388/2<br>के अनुसार | खसरा नंबर - 388/2<br>के अनुसार | कृषि<br>₹ 0.05                                                                  | भूमिस्वामी - कृषि<br>भूमि                     |                                                                                                                                                                              |                                                                                                     |
| 1346               | 0.1600                                                                                           | खसरा नंबर - 388/2 के<br>अनुसार | खसरा नंबर - 388/2 के<br>अनुसार | खसरा नंबर - 388/2<br>के अनुसार | खसरा नंबर - 388/2<br>के अनुसार | कृषि<br>₹ 0.75                                                                  | भूमिस्वामी - कृषि<br>भूमि                     |                                                                                                                                                                              | 1346/488 उड़ान खसरे<br>को विपर्यय कर खसरा<br>नंबर 1346 दिनॉंक Dec 3<br>2019 11:18AM को<br>बनाया गया |
| 1349               | 0.2600                                                                                           | खसरा नंबर - 388/2 के<br>अनुसार | खसरा नंबर - 388/2 के<br>अनुसार | खसरा नंबर - 388/2<br>के अनुसार | खसरा नंबर - 388/2<br>के अनुसार | Date: 202                                                                       | 23.08.12 08:39:29                             |                                                                                                                                                                              | 1349/434 उड़ान खसरे<br>को विपर्यय कर खसरा<br>नंबर 1349 दिनॉक Dec 3<br>2019 11:15AM को<br>बनाया गया  |

Reason: Certified to be TRUE COPY of the digitally published ROR



Annexure 2 Permission for Abstraction of water from Ma

# छत्तीसगढ़ शासन वाज्य निवेश प्रोत्साहन बोर्ड

उद्योग भवन, भू--तल, रिंग रोड नं. 1, तेलीबांधा, रायपुर, छत्तीसगढ़ -- 492006 दूरभाष (0771)—4066351, 4066352, फैक्स— 4066315, ई—मेल sipb.cg@gov.in; sipbchhattisgarh@gmail.com

क्रमांक 1073 / एसआईपीबी / 2021 / प्रति,

रायपुर, दिनांक /05/2023

सचिव, छत्तीसगढ़ शासन, जल संसाधन विभाग. मंत्रालय, महानदी भवन, नया रायपुर (छत्तीसगढ़)

सेसर्स पिकाडली एग्रो इण्डस्ट्रीज लिमिटेड को सतही जल उपयोग की विषय :--अनुमति बाबत । संदर्म :--

इकाई का ऑनलाईन जल आबंटन आवेदन कमांक WA00435

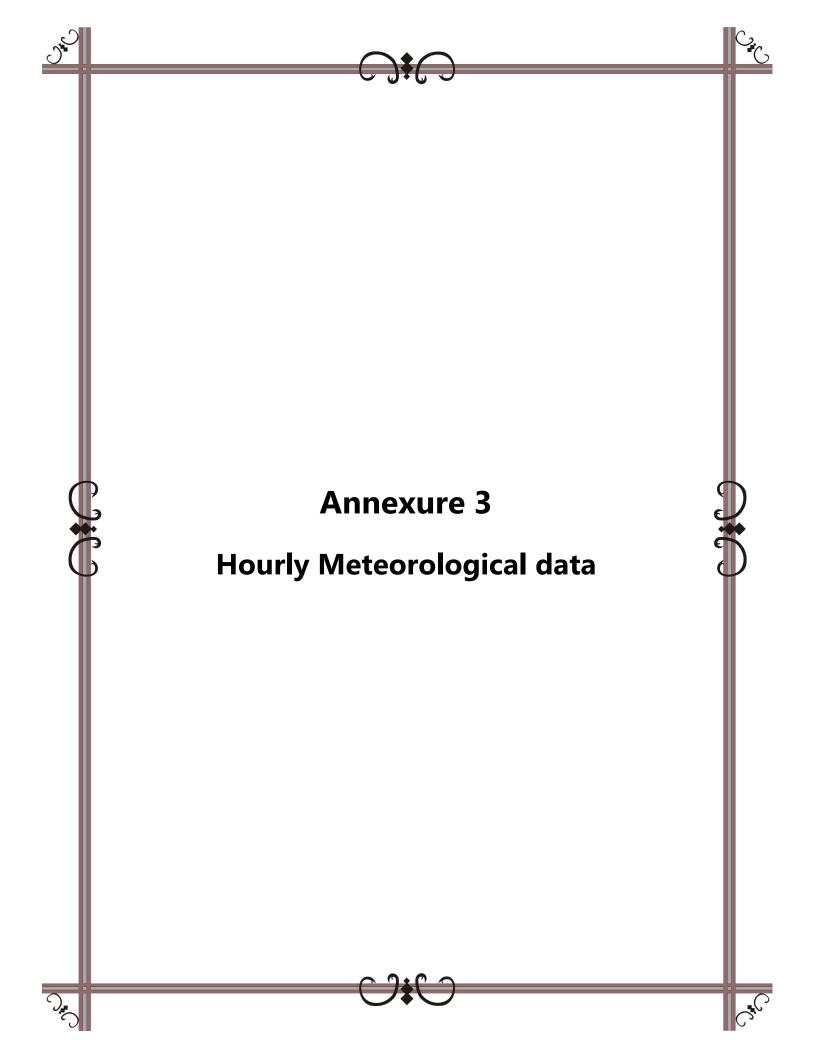
मेसर्स पिकाडली एग्रो इण्डस्ट्रीज लिमिटेड द्वारा ग्राम-बेलटुकरी, तहसील व जिला-महासमुन्द में प्रस्तावित एथेनाल संयंत्र की स्थापनार्थ महानदी (समोदा डेम) से 0.53363 एमसीएम वार्षिक सतही जल आबंटन का आवेदन प्रस्तुत किया गया है ।

उक्त संयंत्र के लिए निवेशक को 0.5544 एमसीएम वार्षिक पात्रता के विरूद्व कम मात्रा में जल आबंटन की मांग की गई है ।

अतएव इकाई की महानदी (समोदा डेम) से 0.53363 एमसीएम वार्षिक सतही जल आबंटन का आनलाईन आवेदन अनुमति / स्वीकृति दिये जाने बाबत अनुसंशा की जाती है ।

संलग्नः--- उपरोक्तानुसार (सचिव, सह संयोजक, राज्य निवेश प्रोत्साहन बोर्ड द्वारा अनुमोदित)

(आलोक त्रिवे


अपर संचालक रायपुर, दिनांक :/ 0 / 05 / 2023

पृ. क्रमांक / 1073 / एसआईपीबी / 2021 / 🦽 6 🔗 प्रतिलिपि :--

**प्रबंध संचालक, मे**० पिकांडली एग्रो इण्डस्ट्रीज लिमिटेड, ग्राम–भदसन, उमरी रोड, तर्हसील–इन्द्री, जिला–करनाल (हरियाणा)–132117 छत्तीसगढ़ शासन

04105123 संचालक

Sipbletter-2023(D)(63)



| Year | Month | Date | Hour | Relative     | Temperature | Wind Speed (m/s) | Wind          |
|------|-------|------|------|--------------|-------------|------------------|---------------|
| 2022 |       |      | 1    | Humidity (%) | (°C)        | 1.00             | Direction (°) |
| 2023 | 3     | 1    | 1    | 53.19        | 18.12       | 1.89             | 240           |
| 2023 | 3     | 1    | 2    | 51.06        | 18.19       | 1.94             | 240           |
| 2023 | 3     | 1    | 3    | 38.25        | 18.25       | 1.98             | 240           |
| 2023 | 3     | 1    | 4    | 27.56        | 18.29       | 1.99             | 240           |
| 2023 | 3     | 1    | 5    | 20.62        | 18.33       | 0.25             | 240           |
| 2023 | 3     | 1    | 6    | 18.44        | 20.26       | 1.73             | 240           |
| 2023 | 3     | 1    | 7    | 17.62        | 23.63       | 1.7              | 240           |
| 2023 | 3     | 1    | 8    | 17.12        | 28.17       | 1.54             | 240           |
| 2023 | 3     | 1    | 9    | 16.88        | 31.96       | 1.79             | 240           |
| 2023 | 3     | 1    | 10   | 17.12        | 33.69       | 1.67             | 240           |
| 2023 | 3     | 1    | 11   | 18.12        | 34.23       | 1.72             | 240           |
| 2023 | 3     | 1    | 12   | 31.25        | 34.63       | 1.89             | 240           |
| 2023 | 3     | 1    | 13   | 35.25        | 34.67       | 0.25             | 240           |
| 2023 | 3     | 1    | 14   | 37.06        | 34.26       | 0.25             | 240           |
| 2023 | 3     | 1    | 15   | 38.69        | 33.36       | 0.25             | 240           |
| 2023 | 3     | 1    | 16   | 40.12        | 30.58       | 1.67             | 260           |
| 2023 | 3     | 1    | 17   | 41.31        | 27.38       | 0.25             | 260           |
| 2023 | 3     | 1    | 18   | 42.25        | 25.79       | 0.25             | 260           |
| 2023 | 3     | 1    | 19   | 42.94        | 24.73       | 0.25             | 260           |
| 2023 | 3     | 1    | 20   | 43.94        | 23.84       | 0.25             | 260           |
| 2023 | 3     | 1    | 21   | 45           | 23.17       | 0.25             | 260           |
| 2023 | 3     | 1    | 22   | 45           | 22.62       | 0.25             | 260           |
| 2023 | 3     | 1    | 23   | 44.5         | 22.19       | 0.25             | 260           |
| 2023 | 3     | 1    | 24   | 43.44        | 21.69       | 0.25             | 260           |
| 2023 | 3     | 2    | 1    | 43.19        | 21.25       | 0.25             | 260           |
| 2023 | 3     | 2    | 2    | 47.19        | 21.23       | 0.25             | 260           |
| 2023 | 3     | 2    | 3    | 37.62        | 21.42       | 1.58             | 260           |
| 2023 | 3     | 2    | 4    | 30.88        | 21.36       | 0.77             | 260           |
| 2023 | 3     | 2    | 5    | 24.5         | 21.37       | 0.63             | 260           |
| 2023 | 3     | 2    | 6    | 21.75        | 21.62       | 1.37             | 260           |
| 2023 | 3     | 2    | 7    | 21.06        | 23.66       | 0.25             | 260           |
| 2023 | 3     | 2    | 8    | 21.19        | 26.53       | 2.88             | 260           |
| 2023 | 3     | 2    | 9    | 21.62        | 29.89       | 0.3              | 260           |
| 2023 | 3     | 2    | 10   | 22.5         | 32.01       | 3                | 260           |
| 2023 | 3     | 2    | 11   | 23.62        | 33.22       | 2.85             | 260           |
| 2023 | 3     | 2    | 12   | 33.5         | 33.93       | 2.78             | 260           |
| 2023 | 3     | 2    | 13   | 39.56        | 34.23       | 2.8              | 260           |
| 2023 | 3     | 2    | 14   | 40.12        | 33.94       | 2.68             | 260           |

| Year | Month | Date | Hour | Relative<br>Humidity (%) | Temperature<br>(°C) | Wind Speed (m/s) | Wind<br>Direction (°) |
|------|-------|------|------|--------------------------|---------------------|------------------|-----------------------|
| 2023 | 3     | 2    | 15   | 40.62                    | 33.21               | 2.46             | 260                   |
| 2023 | 3     | 2    | 16   | 41.25                    | 31.14               | 1.57             | 260                   |
| 2023 | 3     | 2    | 17   | 42.06                    | 28.23               | 1.71             | 260                   |
| 2023 | 3     | 2    | 18   | 42.25                    | 27.11               | 1.88             | 260                   |
| 2023 | 3     | 2    | 19   | 42.19                    | 26.3                | 2.05             | 260                   |
| 2023 | 3     | 2    | 20   | 41                       | 25.53               | 2.17             | 260                   |
| 2023 | 3     | 2    | 21   | 40.81                    | 24.9                | 2.17             | 260                   |
| 2023 | 3     | 2    | 22   | 42.44                    | 24.49               | 2.08             | 260                   |
| 2023 | 3     | 2    | 23   | 45.94                    | 24.3                | 1.84             | 260                   |
| 2023 | 3     | 2    | 24   | 51.06                    | 24.47               | 1.29             | 260                   |
| 2023 | 3     | 3    | 1    | 54.88                    | 24.4                | 0.47             | 260                   |
| 2023 | 3     | 3    | 2    | 50.81                    | 23.87               | 0.53             | 260                   |
| 2023 | 3     | 3    | 3    | 41                       | 22.29               | 1.43             | 260                   |
| 2023 | 3     | 3    | 4    | 31.5                     | 20.69               | 2.07             | 260                   |
| 2023 | 3     | 3    | 5    | 25.19                    | 19.42               | 2.42             | 260                   |
| 2023 | 3     | 3    | 6    | 22.69                    | 21.06               | 2.54             | 260                   |
| 2023 | 3     | 3    | 7    | 20.81                    | 23.68               | 2.88             | 260                   |
| 2023 | 3     | 3    | 8    | 19.38                    | 27.89               | 0.25             | 260                   |
| 2023 | 3     | 3    | 9    | 18.44                    | 31.65               | 0.25             | 260                   |
| 2023 | 3     | 3    | 10   | 17.94                    | 33.42               | 0.25             | 260                   |
| 2023 | 3     | 3    | 11   | 18.06                    | 34.62               | 0.25             | 260                   |
| 2023 | 3     | 3    | 12   | 25.56                    | 35.26               | 0.25             | 260                   |
| 2023 | 3     | 3    | 13   | 35.5                     | 35.36               | 0.25             | 260                   |
| 2023 | 3     | 3    | 14   | 36.94                    | 35.01               | 0.25             | 260                   |
| 2023 | 3     | 3    | 15   | 38.12                    | 34.08               | 0.25             | 260                   |
| 2023 | 3     | 3    | 16   | 38.94                    | 31.56               | 2.46             | 260                   |
| 2023 | 3     | 3    | 17   | 39.31                    | 27.08               | 2.68             | 260                   |
| 2023 | 3     | 3    | 18   | 39.12                    | 25.56               | 2.86             | 260                   |
| 2023 | 3     | 3    | 19   | 39                       | 24.64               | 2.91             | 260                   |
| 2023 | 3     | 3    | 20   | 38.69                    | 24.01               | 2.89             | 260                   |
| 2023 | 3     | 3    | 21   | 37.88                    | 23.5                | 2.79             | 260                   |
| 2023 | 3     | 3    | 22   | 37.88                    | 23.18               | 2.66             | 260                   |
| 2023 | 3     | 3    | 23   | 38.5                     | 22.89               | 2.49             | 260                   |
| 2023 | 3     | 3    | 24   | 39.94                    | 22.77               | 2.21             | 260                   |
| 2023 | 3     | 4    | 1    | 42.06                    | 22.75               | 1.77             | 260                   |
| 2023 | 3     | 4    | 2    | 42.56                    | 22.44               | 1.19             | 260                   |
| 2023 | 3     | 4    | 3    | 32.75                    | 21.77               | 0.75             | 260                   |
| 2023 | 3     | 4    | 4    | 24.44                    | 21.08               | 0.82             | 260                   |

| Year | Month | Date | Hour | Relative     | Temperature | Wind Speed (m/s) | Wind                 |
|------|-------|------|------|--------------|-------------|------------------|----------------------|
|      |       |      | -    | Humidity (%) | (°C)        |                  | <b>Direction</b> (°) |
| 2023 | 3     | 4    | 5    | 18.44        | 20.28       | 1.11             | 260                  |
| 2023 | 3     | 4    | 6    | 16.44        | 21.53       | 1.3              | 260                  |
| 2023 | 3     | 4    | 7    | 15.19        | 24.38       | 1.54             | 260                  |
| 2023 | 3     | 4    | 8    | 14.25        | 28.76       | 2.14             | 260                  |
| 2023 | 3     | 4    | 9    | 13.69        | 32.78       | 2.34             | 260                  |
| 2023 | 3     | 4    | 10   | 13.5         | 34.44       | 2.4              | 260                  |
| 2023 | 3     | 4    | 11   | 13.88        | 35.39       | 2.59             | 260                  |
| 2023 | 3     | 4    | 12   | 22.62        | 35.94       | 2.83             | 260                  |
| 2023 | 3     | 4    | 13   | 31.19        | 35.99       | 0.25             | 260                  |
| 2023 | 3     | 4    | 14   | 31.81        | 35.66       | 0.25             | 260                  |
| 2023 | 3     | 4    | 15   | 32.56        | 34.76       | 0.25             | 260                  |
| 2023 | 3     | 4    | 16   | 32.88        | 32.19       | 2.07             | 260                  |
| 2023 | 3     | 4    | 17   | 33.25        | 27.83       | 2.36             | 260                  |
| 2023 | 3     | 4    | 18   | 34.25        | 26.32       | 2.57             | 260                  |
| 2023 | 3     | 4    | 19   | 35.75        | 25.4        | 2.67             | 260                  |
| 2023 | 3     | 4    | 20   | 36.75        | 24.7        | 2.7              | 260                  |
| 2023 | 3     | 4    | 21   | 36.81        | 24.08       | 2.74             | 260                  |
| 2023 | 3     | 4    | 22   | 36.31        | 23.28       | 2.86             | 260                  |
| 2023 | 3     | 4    | 23   | 34.69        | 22.38       | 2.95             | 260                  |
| 2023 | 3     | 4    | 24   | 35.31        | 21.83       | 2.85             | 260                  |
| 2023 | 3     | 5    | 1    | 40.56        | 21.7        | 2.39             | 260                  |
| 2023 | 3     | 5    | 2    | 42.69        | 21.68       | 1.51             | 265                  |
| 2023 | 3     | 5    | 3    | 30.62        | 21.66       | 0.65             | 265                  |
| 2023 | 3     | 5    | 4    | 23           | 21.11       | 1.26             | 265                  |
| 2023 | 3     | 5    | 5    | 16.88        | 19.38       | 2.04             | 265                  |
| 2023 | 3     | 5    | 6    | 15.62        | 20.65       | 2.24             | 265                  |
| 2023 | 3     | 5    | 7    | 15.12        | 23.89       | 0.25             | 265                  |
| 2023 | 3     | 5    | 8    | 14.94        | 28.48       | 0.25             | 265                  |
| 2023 | 3     | 5    | 9    | 14.94        | 32.7        | 0.25             | 265                  |
| 2023 | 3     | 5    | 10   | 15.38        | 34.37       | 1.66             | 265                  |
| 2023 | 3     | 5    | 11   | 16.19        | 35.14       | 1.4              | 265                  |
| 2023 | 3     | 5    | 12   | 25.06        | 35.54       | 1.41             | 265                  |
| 2023 | 3     | 5    | 13   | 27.44        | 35.56       | 1.49             | 265                  |
| 2023 | 3     | 5    | 14   | 28           | 35.08       | 1.59             | 265                  |
| 2023 | 3     | 5    | 15   | 30.06        | 34.19       | 1.57             | 265                  |
| 2023 | 3     | 5    | 16   | 33.56        | 32.17       | 1.05             | 265                  |
| 2023 | 3     | 5    | 17   | 34.19        | 29.65       | 1.15             | 265                  |
| 2023 | 3     | 5    | 18   | 36.56        | 28.17       | 1.57             | 265                  |

| Year | Month | Date | Hour | Relative<br>Humidity (%) | Temperature<br>(°C) | Wind Speed (m/s) | Wind<br>Direction (°) |
|------|-------|------|------|--------------------------|---------------------|------------------|-----------------------|
| 2023 | 3     | 5    | 19   | 35.31                    | 26.8                | 2                | 265                   |
| 2023 | 3     | 5    | 20   | 34.88                    | 25.62               | 0.25             | 265                   |
| 2023 | 3     | 5    | 20   | 34.12                    | 24.69               | 0.25             | 265                   |
| 2023 | 3     | 5    | 22   | 37.06                    | 24.12               | 0.25             | 265                   |
| 2023 | 3     | 5    | 23   | 40.94                    | 24.09               | 1.81             | 265                   |
| 2023 | 3     | 5    | 23   | 44.69                    | 24.15               | 1.01             | 265                   |
| 2023 | 3     | 6    | 1    | 47.56                    | 23.82               | 0.25             | 265                   |
| 2023 | 3     | 6    | 2    | 47.38                    | 22.68               | 1.09             | 265                   |
| 2023 | 3     | 6    | 3    | 36.44                    | 21.23               | 1.64             | 265                   |
| 2023 | 3     | 6    | 4    | 28.25                    | 20.1                | 1.91             | 265                   |
| 2023 | 3     | 6    | 5    | 22.38                    | 19.36               | 1.95             | 265                   |
| 2023 | 3     | 6    | 6    | 20.56                    | 20.85               | 1.76             | 265                   |
| 2023 | 3     | 6    | 7    | 19.38                    | 23.58               | 1.73             | 265                   |
| 2023 | 3     | 6    | 8    | 18.56                    | 28.07               | 0.25             | 265                   |
| 2023 | 3     | 6    | 9    | 18.12                    | 31.76               | 0.25             | 265                   |
| 2023 | 3     | 6    | 10   | 17.94                    | 33.34               | 1.85             | 265                   |
| 2023 | 3     | 6    | 11   | 18.38                    | 34.37               | 1.45             | 265                   |
| 2023 | 3     | 6    | 12   | 25.06                    | 34.9                | 1.22             | 265                   |
| 2023 | 3     | 6    | 13   | 29.56                    | 34.96               | 1.16             | 265                   |
| 2023 | 3     | 6    | 14   | 29.62                    | 34.66               | 1.17             | 265                   |
| 2023 | 3     | 6    | 15   | 30.62                    | 33.89               | 1.09             | 265                   |
| 2023 | 3     | 6    | 16   | 33.75                    | 32.22               | 0.63             | 265                   |
| 2023 | 3     | 6    | 17   | 37.25                    | 29.77               | 0.57             | 265                   |
| 2023 | 3     | 6    | 18   | 38.44                    | 28.49               | 1.04             | 265                   |
| 2023 | 3     | 6    | 19   | 38.69                    | 27.3                | 1.57             | 265                   |
| 2023 | 3     | 6    | 20   | 37.69                    | 26.01               | 2                | 265                   |
| 2023 | 3     | 6    | 21   | 37.62                    | 24.82               | 0.25             | 265                   |
| 2023 | 3     | 6    | 22   | 37.75                    | 24.09               | 2.2              | 265                   |
| 2023 | 3     | 6    | 23   | 39.44                    | 23.83               | 1.96             | 265                   |
| 2023 | 3     | 6    | 24   | 42.12                    | 23.83               | 1.49             | 265                   |
| 2023 | 3     | 7    | 1    | 43.88                    | 23.64               | 0.88             | 265                   |
| 2023 | 3     | 7    | 2    | 44.19                    | 23.4                | 0.27             | 265                   |
| 2023 | 3     | 7    | 3    | 35.5                     | 22.76               | 0.32             | 265                   |
| 2023 | 3     | 7    | 4    | 26.81                    | 21.75               | 0.76             | 265                   |
| 2023 | 3     | 7    | 5    | 21.56                    | 20.86               | 0.97             | 265                   |
| 2023 | 3     | 7    | 6    | 19.56                    | 21.6                | 1.13             | 265                   |
| 2023 | 3     | 7    | 7    | 18.44                    | 24.11               | 1.18             | 265                   |
| 2023 | 3     | 7    | 8    | 17.94                    | 28.22               | 1.57             | 265                   |

| Year | Month | Date | Hour | Relative     | Temperature | Wind Speed (m/s) | Wind          |
|------|-------|------|------|--------------|-------------|------------------|---------------|
| 2022 | 2     | 7    | 0    | Humidity (%) | (°C)        | 1.70             | Direction (°) |
| 2023 | 3     | 7    | 9    | 18           | 31.35       | 1.78             | 265           |
| 2023 |       | 7    | 10   | 18.56        | 33.01       | 1.64             | 265           |
| 2023 | 3     | 7    | 11   | 19.56        | 34.09       | 1.37             | 265           |
| 2023 | 3     | 7    | 12   | 26.81        | 34.68       | 1.13             | 265           |
| 2023 | 3     | 7    | 13   | 31.38        | 34.7        | 0.89             | 265           |
| 2023 | 3     | 7    | 14   | 31.69        | 34.12       | 0.53             | 265           |
| 2023 | 3     | 7    | 15   | 32.88        | 33.19       | 0.57             | 265           |
| 2023 | 3     | 7    | 16   | 33.81        | 31.5        | 0.72             | 265           |
| 2023 | 3     | 7    | 17   | 36           | 29.15       | 1                | 265           |
| 2023 | 3     | 7    | 18   | 38.69        | 28.02       | 1.14             | 265           |
| 2023 | 3     | 7    | 19   | 41.94        | 27.08       | 1.33             | 265           |
| 2023 | 3     | 7    | 20   | 43.62        | 26.19       | 1.54             | 265           |
| 2023 | 3     | 7    | 21   | 44.5         | 25.12       | 1.81             | 265           |
| 2023 | 3     | 7    | 22   | 45           | 23.83       | 2.17             | 265           |
| 2023 | 3     | 7    | 23   | 46.31        | 22.5        | 2.51             | 265           |
| 2023 | 3     | 7    | 24   | 48.25        | 21.46       | 2.74             | 265           |
| 2023 | 3     | 8    | 1    | 49.44        | 20.59       | 2.83             | 265           |
| 2023 | 3     | 8    | 2    | 42.81        | 20.3        | 2.68             | 265           |
| 2023 | 3     | 8    | 3    | 35.06        | 19.89       | 2.47             | 265           |
| 2023 | 3     | 8    | 4    | 27.56        | 19.51       | 2.25             | 265           |
| 2023 | 3     | 8    | 5    | 22.44        | 19.37       | 2.06             | 265           |
| 2023 | 3     | 8    | 6    | 20.88        | 20.94       | 2.15             | 265           |
| 2023 | 3     | 8    | 7    | 20.12        | 22.77       | 1.97             | 265           |
| 2023 | 3     | 8    | 8    | 19.75        | 26.76       | 2.03             | 265           |
| 2023 | 3     | 8    | 9    | 19.5         | 30.08       | 1.97             | 265           |
| 2023 | 3     | 8    | 10   | 19.81        | 32.01       | 1.93             | 265           |
| 2023 | 3     | 8    | 11   | 20.69        | 33.19       | 1.96             | 265           |
| 2023 | 3     | 8    | 12   | 27.81        | 33.8        | 1.92             | 265           |
| 2023 | 3     | 8    | 13   | 32.12        | 33.99       | 1.91             | 265           |
| 2023 | 3     | 8    | 14   | 30.44        | 33.52       | 2.04             | 265           |
| 2023 | 3     | 8    | 15   | 30.94        | 32.63       | 2.06             | 265           |
| 2023 | 3     | 8    | 16   | 33.19        | 30.94       | 1.38             | 265           |
| 2023 | 3     | 8    | 17   | 33.88        | 28.52       | 0.85             | 265           |
| 2023 | 3     | 8    | 18   | 34.31        | 28.01       | 0.36             | 265           |
| 2023 | 3     | 8    | 19   | 33.5         | 27.3        | 0.56             | 265           |
| 2023 | 3     | 8    | 20   | 36.44        | 26.15       | 0.79             | 265           |
| 2023 | 3     | 8    | 21   | 40.62        | 25.58       | 0.73             | 265           |
| 2023 | 3     | 8    | 22   | 45.19        | 25.23       | 0.39             | 265           |

| Year | Month | Date | Hour | Relative<br>Humidity (%) | Temperature<br>(°C) | Wind Speed (m/s) | Wind<br>Direction (°) |
|------|-------|------|------|--------------------------|---------------------|------------------|-----------------------|
| 2023 | 3     | 8    | 23   | 47.62                    | 24.9                | 0.6              | 265                   |
| 2023 | 3     | 8    | 24   | 50.69                    | 23.52               | 1.38             | 265                   |
| 2023 | 3     | 9    | 1    | 53.94                    | 21.79               | 2.11             | 265                   |
| 2023 | 3     | 9    | 2    | 46.88                    | 20.22               | 2.47             | 265                   |
| 2023 | 3     | 9    | 3    | 39.06                    | 18.94               | 2.54             | 265                   |
| 2023 | 3     | 9    | 4    | 27.75                    | 17.94               | 2.53             | 265                   |
| 2023 | 3     | 9    | 5    | 20.06                    | 17.24               | 2.4              | 265                   |
| 2023 | 3     | 9    | 6    | 17.62                    | 19.25               | 2.65             | 265                   |
| 2023 | 3     | 9    | 7    | 16.5                     | 22.05               | 1.91             | 265                   |
| 2023 | 3     | 9    | 8    | 15.88                    | 27.37               | 2.36             | 330                   |
| 2023 | 3     | 9    | 9    | 15.69                    | 31.21               | 1.97             | 330                   |
| 2023 | 3     | 9    | 10   | 15.88                    | 33                  | 0.91             | 330                   |
| 2023 | 3     | 9    | 11   | 16.56                    | 33.92               | 0.65             | 330                   |
| 2023 | 3     | 9    | 12   | 23.75                    | 34.4                | 1.03             | 330                   |
| 2023 | 3     | 9    | 13   | 32.38                    | 34.42               | 1.26             | 330                   |
| 2023 | 3     | 9    | 14   | 33.12                    | 34.05               | 1.55             | 330                   |
| 2023 | 3     | 9    | 15   | 34.31                    | 33.19               | 1.76             | 330                   |
| 2023 | 3     | 9    | 16   | 35.5                     | 31.31               | 1.32             | 330                   |
| 2023 | 3     | 9    | 17   | 36.5                     | 28.1                | 1.61             | 330                   |
| 2023 | 3     | 9    | 18   | 37.25                    | 26.68               | 1.86             | 330                   |
| 2023 | 3     | 9    | 19   | 38.25                    | 25.65               | 2.15             | 330                   |
| 2023 | 3     | 9    | 20   | 39.62                    | 24.81               | 2.32             | 330                   |
| 2023 | 3     | 9    | 21   | 41.44                    | 24.22               | 2.38             | 270                   |
| 2023 | 3     | 9    | 22   | 43.56                    | 23.8                | 2.32             | 270                   |
| 2023 | 3     | 9    | 23   | 45.56                    | 23.33               | 2.24             | 270                   |
| 2023 | 3     | 9    | 24   | 47.19                    | 22.73               | 2.18             | 270                   |
| 2023 | 3     | 10   | 1    | 48.06                    | 21.99               | 2.13             | 270                   |
| 2023 | 3     | 10   | 2    | 47.12                    | 21.23               | 2.03             | 270                   |
| 2023 | 3     | 10   | 3    | 33.81                    | 20.62               | 1.89             | 270                   |
| 2023 | 3     | 10   | 4    | 22.56                    | 20.23               | 1.73             | 270                   |
| 2023 | 3     | 10   | 5    | 18.88                    | 20.23               | 1.5              | 270                   |
| 2023 | 3     | 10   | 6    | 17.25                    | 21.87               | 1.12             | 270                   |
| 2023 | 3     | 10   | 7    | 16.38                    | 25.18               | 0.92             | 270                   |
| 2023 | 3     | 10   | 8    | 15.75                    | 29.85               | 0.62             | 270                   |
| 2023 | 3     | 10   | 9    | 15.5                     | 32.35               | 0.19             | 270                   |
| 2023 | 3     | 10   | 10   | 15.5                     | 33.8                | 0.34             | 270                   |
| 2023 | 3     | 10   | 11   | 16.19                    | 34.69               | 0.58             | 270                   |
| 2023 | 3     | 10   | 12   | 22.81                    | 35.24               | 0.89             | 270                   |

| Year | Month | Date | Hour | Relative<br>Humidity (%) | Temperature<br>(°C) | Wind Speed (m/s) | Wind<br>Direction (°) |
|------|-------|------|------|--------------------------|---------------------|------------------|-----------------------|
| 2023 | 3     | 10   | 13   | 29.88                    | 35.3                | 1.09             | 270                   |
| 2023 | 3     | 10   | 14   | 34.19                    | 34.94               | 1.07             | 270                   |
| 2023 | 3     | 10   | 15   | 36.62                    | 34.08               | 0.82             | 270                   |
| 2023 | 3     | 10   | 16   | 38.69                    | 32.35               | 0.67             | 270                   |
| 2023 | 3     | 10   | 17   | 41.31                    | 29.23               | 1.49             | 270                   |
| 2023 | 3     | 10   | 18   | 43.75                    | 26.69               | 2.45             | 270                   |
| 2023 | 3     | 10   | 19   | 45.94                    | 25.18               | 0.25             | 270                   |
| 2023 | 3     | 10   | 20   | 48.25                    | 24.26               | 0.25             | 270                   |
| 2023 | 3     | 10   | 21   | 50.38                    | 23.44               | 0.25             | 270                   |
| 2023 | 3     | 10   | 22   | 51.81                    | 22.72               | 0.25             | 270                   |
| 2023 | 3     | 10   | 23   | 52.25                    | 22.05               | 0.25             | 270                   |
| 2023 | 3     | 10   | 24   | 52.44                    | 21.38               | 0.25             | 270                   |
| 2023 | 3     | 11   | 1    | 52.56                    | 20.8                | 2.66             | 270                   |
| 2023 | 3     | 11   | 2    | 50.25                    | 20.33               | 2.12             | 270                   |
| 2023 | 3     | 11   | 3    | 40.44                    | 20.11               | 1.59             | 270                   |
| 2023 | 3     | 11   | 4    | 30.38                    | 19.9                | 1.2              | 270                   |
| 2023 | 3     | 11   | 5    | 24.25                    | 19.71               | 0.94             | 270                   |
| 2023 | 3     | 11   | 6    | 20.25                    | 21.09               | 0.94             | 270                   |
| 2023 | 3     | 11   | 7    | 18.12                    | 23.77               | 0.95             | 270                   |
| 2023 | 3     | 11   | 8    | 17.06                    | 28.51               | 0.64             | 270                   |
| 2023 | 3     | 11   | 9    | 16.75                    | 31.53               | 0.1              | 270                   |
| 2023 | 3     | 11   | 10   | 16.75                    | 33.24               | 0.21             | 270                   |
| 2023 | 3     | 11   | 11   | 17.31                    | 34.3                | 0.49             | 270                   |
| 2023 | 3     | 11   | 12   | 22.25                    | 34.93               | 0.79             | 270                   |
| 2023 | 3     | 11   | 13   | 28                       | 35.05               | 1.04             | 270                   |
| 2023 | 3     | 11   | 14   | 27.56                    | 34.76               | 1.26             | 270                   |
| 2023 | 3     | 11   | 15   | 27.19                    | 33.87               | 1.32             | 270                   |
| 2023 | 3     | 11   | 16   | 28.38                    | 32.18               | 0.94             | 270                   |
| 2023 | 3     | 11   | 17   | 29.5                     | 29.82               | 0.63             | 270                   |
| 2023 | 3     | 11   | 18   | 31.25                    | 28.58               | 0.32             | 270                   |
| 2023 | 3     | 11   | 19   | 34.69                    | 28.17               | 0.46             | 270                   |
| 2023 | 3     | 11   | 20   | 37.5                     | 27.34               | 0.87             | 270                   |
| 2023 | 3     | 11   | 21   | 40.31                    | 26.19               | 1.24             | 270                   |
| 2023 | 3     | 11   | 22   | 42.75                    | 25.27               | 1.56             | 270                   |
| 2023 | 3     | 11   | 23   | 44.94                    | 24                  | 1.82             | 270                   |
| 2023 | 3     | 11   | 24   | 46.12                    | 22.74               | 1.98             | 270                   |
| 2023 | 3     | 12   | 1    | 47.31                    | 21.46               | 2.01             | 270                   |
| 2023 | 3     | 12   | 2    | 45.5                     | 20.51               | 1.86             | 270                   |

| Year         | Month | Date | Hour   | Relative              | Temperature            | Wind Speed (m/s) | Wind                        |
|--------------|-------|------|--------|-----------------------|------------------------|------------------|-----------------------------|
| 2023         | 3     | 12   | 3      | Humidity (%)<br>35.62 | (° <b>C</b> )<br>19.79 | 1.54             | <b>Direction</b> (°)<br>270 |
| 2023         | 3     | 12   | 4      | 24.56                 | 19.79                  | 1.14             | 270                         |
| 2023         | 3     | 12   | 5      | 24.30                 | 19.44                  | 0.74             | 270                         |
|              | 3     | 12   | 6      |                       | 20.95                  | 0.74             | 270                         |
| 2023<br>2023 | 3     | 12   | 7      | 18.38<br>17.44        | 20.93                  | 0.33             | 270                         |
| 2023         | 3     | 12   | 8      | 17.44                 | 23.98                  | 0.46             | 270                         |
| 2023         | 3     | 12   | 0<br>9 | 16.56                 | 31.9                   | 0.49             | 270                         |
| 2023         | 3     | 12   | 10     | 16.62                 | 33.72                  | 0.92             | 270                         |
| 2023         | 3     | 12   | 10     | 10.02                 | 34.75                  | 1.17             | 270                         |
| 2023         | 3     | 12   | 11     | 23.62                 | 35.32                  | 1.17             | 270                         |
| 2023         | 3     | 12   | 12     | 29.38                 | 35.44                  | 1.33             | 270                         |
| 2023         | 3     | 12   | 13     | 29.38                 | 35.1                   | 1.39             | 270                         |
| 2023         | 3     | 12   | 14     | 28.23                 | 34.28                  | 1.35             | 270                         |
| 2023         | 3     | 12   | 15     | 28.06                 | 32.44                  | 1.57             | 270                         |
| 2023         | 3     | 12   | 10     | 28.00                 | 29.83                  | 1.09             | 270                         |
| 2023         | 3     | 12   | 17     | 29.81                 | 29.35                  | 1.03             | 270                         |
| 2023         | 3     | 12   | 10     | 30.12                 | 27.9                   | 0.95             | 270                         |
| 2023         | 3     | 12   | 20     | 32.38                 | 27.21                  | 0.95             | 270                         |
| 2023         | 3     | 12   | 20     | 34.75                 | 26.54                  | 1.07             | 270                         |
| 2023         | 3     | 12   | 21     | 37.69                 | 25.96                  | 1.07             | 270                         |
| 2023         | 3     | 12   | 22     | 41.19                 | 25.29                  | 1.35             | 270                         |
| 2023         | 3     | 12   | 23     | 44.19                 | 24.54                  | 1.51             | 270                         |
| 2023         | 3     | 12   | 1      | 45.81                 | 23.4                   | 1.76             | 270                         |
| 2023         | 3     | 13   | 2      | 43.75                 | 22.08                  | 2                | 270                         |
| 2023         | 3     | 13   | 3      | 32.06                 | 20.9                   | 2.13             | 270                         |
| 2023         | 3     | 13   | 4      | 24.88                 | 20.04                  | 2.13             | 270                         |
| 2023         | 3     | 13   | 5      | 19.06                 | 19.59                  | 1.99             | 270                         |
| 2023         | 3     | 13   | 6      | 17.5                  | 21.72                  | 1.65             | 270                         |
| 2023         | 3     | 13   | 7      | 16.75                 | 24.55                  | 1.64             | 270                         |
| 2023         | 3     | 13   | 8      | 16.06                 | 28.55                  | 1.13             | 270                         |
| 2023         | 3     | 13   | 9      | 15.75                 | 32.55                  | 0.79             | 270                         |
| 2023         | 3     | 13   | 10     | 15.94                 | 34.25                  | 0.67             | 270                         |
| 2023         | 3     | 13   | 11     | 16.5                  | 35                     | 0.55             | 270                         |
| 2023         | 3     | 13   | 12     | 23.12                 | 35.51                  | 0.47             | 270                         |
| 2023         | 3     | 13   | 13     | 27.19                 | 35.52                  | 0.47             | 270                         |
| 2023         | 3     | 13   | 14     | 25.94                 | 35                     | 0.59             | 270                         |
| 2023         | 3     | 13   | 15     | 25.75                 | 34.09                  | 0.65             | 270                         |
| 2023         | 3     | 13   | 16     | 27.31                 | 32.58                  | 0.56             | 270                         |

| Year | Month | Date | Hour | Relative<br>Humidity (%) | Temperature<br>(°C) | Wind Speed (m/s) | Wind<br>Direction (°) |
|------|-------|------|------|--------------------------|---------------------|------------------|-----------------------|
| 2023 | 3     | 13   | 17   | 25.69                    | 30.67               | 0.7              | 270                   |
| 2023 | 3     | 13   | 18   | 26.44                    | 29.88               | 0.65             | 270                   |
| 2023 | 3     | 13   | 19   | 26.75                    | 29.37               | 0.53             | 270                   |
| 2023 | 3     | 13   | 20   | 29.75                    | 28.45               | 0.41             | 270                   |
| 2023 | 3     | 13   | 21   | 31.81                    | 28                  | 0.31             | 270                   |
| 2023 | 3     | 13   | 22   | 34.12                    | 27.39               | 0.16             | 270                   |
| 2023 | 3     | 13   | 23   | 35.62                    | 27.04               | 0.26             | 270                   |
| 2023 | 3     | 13   | 24   | 36.62                    | 25.93               | 0.36             | 270                   |
| 2023 | 3     | 14   | 1    | 38.88                    | 24.77               | 0.35             | 270                   |
| 2023 | 3     | 14   | 2    | 38.56                    | 23.43               | 0.61             | 270                   |
| 2023 | 3     | 14   | 3    | 29.75                    | 22.65               | 1.03             | 270                   |
| 2023 | 3     | 14   | 4    | 23.06                    | 22.24               | 1.3              | 270                   |
| 2023 | 3     | 14   | 5    | 18.25                    | 21.62               | 1.41             | 270                   |
| 2023 | 3     | 14   | 6    | 16.56                    | 22.71               | 1.68             | 270                   |
| 2023 | 3     | 14   | 7    | 15.94                    | 25.23               | 1.86             | 270                   |
| 2023 | 3     | 14   | 8    | 15.81                    | 29.21               | 1.93             | 270                   |
| 2023 | 3     | 14   | 9    | 15.81                    | 32.91               | 1.44             | 270                   |
| 2023 | 3     | 14   | 10   | 16                       | 34.58               | 1.35             | 270                   |
| 2023 | 3     | 14   | 11   | 16.62                    | 35.32               | 1.23             | 270                   |
| 2023 | 3     | 14   | 12   | 23.75                    | 35.56               | 1.21             | 270                   |
| 2023 | 3     | 14   | 13   | 26.12                    | 35.55               | 1.21             | 270                   |
| 2023 | 3     | 14   | 14   | 24.94                    | 35.21               | 1.4              | 270                   |
| 2023 | 3     | 14   | 15   | 24.94                    | 34.47               | 1.56             | 270                   |
| 2023 | 3     | 14   | 16   | 24.81                    | 32.71               | 1.13             | 270                   |
| 2023 | 3     | 14   | 17   | 27.25                    | 30.75               | 0.94             | 270                   |
| 2023 | 3     | 14   | 18   | 29.25                    | 30.02               | 0.57             | 280                   |
| 2023 | 3     | 14   | 19   | 30.69                    | 29.5                | 0.4              | 225                   |
| 2023 | 3     | 14   | 20   | 32.44                    | 28.74               | 0.75             | 200                   |
| 2023 | 3     | 14   | 21   | 33.81                    | 27.44               | 1.21             | 200                   |
| 2023 | 3     | 14   | 22   | 36.06                    | 26.29               | 1.53             | 200                   |
| 2023 | 3     | 14   | 23   | 38.44                    | 25.51               | 1.64             | 211                   |
| 2023 | 3     | 14   | 24   | 40.31                    | 24.76               | 1.64             | 227                   |
| 2023 | 3     | 15   | 1    | 40.75                    | 24.01               | 1.67             | 247                   |
| 2023 | 3     | 15   | 2    | 39.25                    | 23.06               | 1.79             | 277                   |
| 2023 | 3     | 15   | 3    | 29.88                    | 22.09               | 1.92             | 282                   |
| 2023 | 3     | 15   | 4    | 22.19                    | 21.44               | 1.83             | 230                   |
| 2023 | 3     | 15   | 5    | 17.88                    | 21.18               | 1.5              | 230                   |
| 2023 | 3     | 15   | 6    | 16.81                    | 22.9                | 1.04             | 230                   |

| Year | Month | Date | Hour | Relative     | Temperature | Wind Speed (m/s) | Wind          |
|------|-------|------|------|--------------|-------------|------------------|---------------|
| 2022 | 2     | 15   | 7    | Humidity (%) | (°C)        | 0.01             | Direction (°) |
| 2023 | 3     | 15   | 7    | 16.25        | 25.69       | 0.81             | 230           |
| 2023 | 3     | 15   | 8    | 15.75        | 30.45       | 0.86             | 230           |
| 2023 | 3     | 15   | 9    | 15.56        | 34.02       | 0.7              | 230           |
| 2023 | 3     | 15   | 10   | 15.75        | 35.33       | 0.57             | 230           |
| 2023 | 3     | 15   | 11   | 16.38        | 35.98       | 0.79             | 230           |
| 2023 | 3     | 15   | 12   | 22.19        | 36.33       | 0.92             | 230           |
| 2023 | 3     | 15   | 13   | 26.88        | 36.3        | 0.74             | 230           |
| 2023 | 3     | 15   | 14   | 26.56        | 35.67       | 0.8              | 230           |
| 2023 | 3     | 15   | 15   | 25.31        | 34.65       | 0.85             | 230           |
| 2023 | 3     | 15   | 16   | 26           | 33.04       | 0.73             | 230           |
| 2023 | 3     | 15   | 17   | 26.44        | 30.91       | 0.88             | 230           |
| 2023 | 3     | 15   | 18   | 26.56        | 30.01       | 0.85             | 230           |
| 2023 | 3     | 15   | 19   | 29.12        | 29.4        | 0.72             | 230           |
| 2023 | 3     | 15   | 20   | 31.56        | 28.82       | 0.41             | 230           |
| 2023 | 3     | 15   | 21   | 34.25        | 28.57       | 0.17             | 230           |
| 2023 | 3     | 15   | 22   | 34.19        | 27.94       | 0.65             | 230           |
| 2023 | 3     | 15   | 23   | 36           | 26.9        | 1.21             | 230           |
| 2023 | 3     | 15   | 24   | 38.5         | 25.94       | 1.6              | 230           |
| 2023 | 3     | 16   | 1    | 41.56        | 25.23       | 1.68             | 230           |
| 2023 | 3     | 16   | 2    | 39.06        | 24.87       | 1.61             | 230           |
| 2023 | 3     | 16   | 3    | 30.44        | 24.19       | 1.78             | 230           |
| 2023 | 3     | 16   | 4    | 24.94        | 23.21       | 2.15             | 230           |
| 2023 | 3     | 16   | 5    | 22.75        | 22.29       | 2.44             | 230           |
| 2023 | 3     | 16   | 6    | 21.94        | 23.97       | 2.55             | 230           |
| 2023 | 3     | 16   | 7    | 22           | 26.74       | 0.25             | 230           |
| 2023 | 3     | 16   | 8    | 22.75        | 29.87       | 4.5              | 230           |
| 2023 | 3     | 16   | 9    | 23.38        | 31.95       | 4.95             | 230           |
| 2023 | 3     | 16   | 10   | 23.69        | 33.24       | 0.2              | 230           |
| 2023 | 3     | 16   | 11   | 24.62        | 33.89       | 0.2              | 230           |
| 2023 | 3     | 16   | 12   | 27.5         | 33.74       | 4.9              | 230           |
| 2023 | 3     | 16   | 13   | 38.12        | 33.48       | 4.1              | 230           |
| 2023 | 3     | 16   | 14   | 40.38        | 33.31       | 0.25             | 230           |
| 2023 | 3     | 16   | 15   | 41.25        | 32.64       | 0.25             | 230           |
| 2023 | 3     | 16   | 16   | 42.38        | 31.21       | 0.25             | 230           |
| 2023 | 3     | 16   | 17   | 42.75        | 27.81       | 2.22             | 230           |
| 2023 | 3     | 16   | 18   | 45.25        | 26.5        | 2.21             | 230           |
| 2023 | 3     | 16   | 19   | 55.31        | 26.05       | 1.96             | 230           |
| 2023 | 3     | 16   | 20   | 65.44        | 25.65       | 1.98             | 230           |

| Year | Month | Date | Hour | Relative     | Temperature | Wind Speed (m/s) | Wind          |
|------|-------|------|------|--------------|-------------|------------------|---------------|
| 2022 | 3     | 16   | 21   | Humidity (%) | (°C)        | 2.43             | Direction (°) |
| 2023 | 3     | 16   | 21   | 71.62        | 25.23       |                  | 230           |
| 2023 |       | 16   | 22   | 73.81        | 24.83       | 4.27             | 230           |
| 2023 | 3     | 16   | 23   | 73.88        | 23.51       | 0.2              | 230           |
| 2023 | 3     | 16   | 24   | 74.56        | 22.23       | 0.2              | 230           |
| 2023 | 3     | 17   | 1    | 75.94        | 21.47       | 0.25             | 230           |
| 2023 | 3     | 17   | 2    | 74.81        | 21.15       | 2.27             | 260           |
| 2023 | 3     | 17   | 3    | 68.38        | 21.17       | 1.57             | 260           |
| 2023 | 3     | 17   | 4    | 55.94        | 21.15       | 1.19             | 230           |
| 2023 | 3     | 17   | 5    | 48.19        | 21.05       | 0.81             | 236           |
| 2023 | 3     | 17   | 6    | 44.25        | 21.23       | 0.9              | 230           |
| 2023 | 3     | 17   | 7    | 41.62        | 22.34       | 0.81             | 260           |
| 2023 | 3     | 17   | 8    | 39.88        | 24.73       | 0.74             | 180           |
| 2023 | 3     | 17   | 9    | 39.81        | 27.06       | 1.21             | 230           |
| 2023 | 3     | 17   | 10   | 41.19        | 28.58       | 1.78             | 233           |
| 2023 | 3     | 17   | 11   | 43           | 29.6        | 2.31             | 230           |
| 2023 | 3     | 17   | 12   | 47.81        | 30.19       | 2.74             | 230           |
| 2023 | 3     | 17   | 13   | 59.25        | 30.03       | 0.25             | 230           |
| 2023 | 3     | 17   | 14   | 62.5         | 29.38       | 0.25             | 230           |
| 2023 | 3     | 17   | 15   | 64.38        | 28.73       | 0.4              | 220           |
| 2023 | 3     | 17   | 16   | 66           | 27.63       | 2.88             | 220           |
| 2023 | 3     | 17   | 17   | 68.38        | 25.47       | 2.27             | 220           |
| 2023 | 3     | 17   | 18   | 71.19        | 24.48       | 2.66             | 220           |
| 2023 | 3     | 17   | 19   | 73.44        | 23.96       | 0.25             | 220           |
| 2023 | 3     | 17   | 20   | 76           | 23.52       | 0.4              | 220           |
| 2023 | 3     | 17   | 21   | 78.19        | 22.94       | 0.4              | 220           |
| 2023 | 3     | 17   | 22   | 80.75        | 22.24       | 0.4              | 220           |
| 2023 | 3     | 17   | 23   | 82.94        | 21.65       | 0.25             | 220           |
| 2023 | 3     | 17   | 24   | 84.62        | 21.12       | 0.25             | 220           |
| 2023 | 3     | 18   | 1    | 85.69        | 20.68       | 0.25             | 220           |
| 2023 | 3     | 18   | 2    | 78.62        | 20.22       | 0.25             | 220           |
| 2023 | 3     | 18   | 3    | 65.75        | 19.84       | 1.99             | 220           |
| 2023 | 3     | 18   | 4    | 54.19        | 19.58       | 1.82             | 220           |
| 2023 | 3     | 18   | 5    | 52.62        | 19.46       | 1.73             | 220           |
| 2023 | 3     | 18   | 6    | 52.56        | 20.93       | 0.25             | 220           |
| 2023 | 3     | 18   | 7    | 53.06        | 23.44       | 0.25             | 220           |
| 2023 | 3     | 18   | 8    | 53.19        | 25.54       | 0.25             | 220           |
| 2023 | 3     | 18   | 9    | 51.75        | 26          | 0.25             | 220           |
| 2023 | 3     | 18   | 10   | 50.19        | 26.12       | 0.25             | 220           |

| Year | Month | Date | Hour | Relative<br>Humidity (%) | Temperature<br>(°C) | Wind Speed (m/s) | Wind<br>Direction (°) |
|------|-------|------|------|--------------------------|---------------------|------------------|-----------------------|
| 2023 | 3     | 18   | 11   | 50.25                    | 26.08               | 0.25             | 220                   |
| 2023 | 3     | 18   | 12   | 52.88                    | 26.11               | 0.25             | 220                   |
| 2023 | 3     | 18   | 13   | 62.62                    | 26.57               | 0.25             | 220                   |
| 2023 | 3     | 18   | 14   | 66.94                    | 26.97               | 1.99             | 220                   |
| 2023 | 3     | 18   | 15   | 67.44                    | 26.75               | 1.79             | 220                   |
| 2023 | 3     | 18   | 16   | 68.25                    | 25.81               | 1.31             | 220                   |
| 2023 | 3     | 18   | 17   | 69                       | 24.29               | 0.24             | 220                   |
| 2023 | 3     | 18   | 18   | 69.56                    | 22.98               | 0.8              | 220                   |
| 2023 | 3     | 18   | 19   | 71.19                    | 22.51               | 1.21             | 220                   |
| 2023 | 3     | 18   | 20   | 72.81                    | 22.21               | 1.43             | 220                   |
| 2023 | 3     | 18   | 21   | 71.19                    | 21.77               | 1.6              | 220                   |
| 2023 | 3     | 18   | 22   | 71.62                    | 21.31               | 1.86             | 220                   |
| 2023 | 3     | 18   | 23   | 72.75                    | 20.55               | 0.25             | 220                   |
| 2023 | 3     | 18   | 24   | 75                       | 19.93               | 1.81             | 220                   |
| 2023 | 3     | 19   | 1    | 77.19                    | 20.75               | 0.76             | 220                   |
| 2023 | 3     | 19   | 2    | 73.94                    | 20.68               | 0.66             | 220                   |
| 2023 | 3     | 19   | 3    | 68.31                    | 20.44               | 0.71             | 220                   |
| 2023 | 3     | 19   | 4    | 59.94                    | 19.73               | 1.31             | 220                   |
| 2023 | 3     | 19   | 5    | 53.56                    | 19.41               | 1.45             | 220                   |
| 2023 | 3     | 19   | 6    | 49.12                    | 20.33               | 1.71             | 220                   |
| 2023 | 3     | 19   | 7    | 45.06                    | 21.69               | 0.25             | 220                   |
| 2023 | 3     | 19   | 8    | 39.25                    | 23.51               | 0.25             | 220                   |
| 2023 | 3     | 19   | 9    | 34.94                    | 24.8                | 0.25             | 220                   |
| 2023 | 3     | 19   | 10   | 33.31                    | 25.64               | 0.25             | 220                   |
| 2023 | 3     | 19   | 11   | 32.62                    | 26.47               | 0.25             | 220                   |
| 2023 | 3     | 19   | 12   | 34.44                    | 28.28               | 0.25             | 230                   |
| 2023 | 3     | 19   | 13   | 42.56                    | 29.5                | 0.25             | 230                   |
| 2023 | 3     | 19   | 14   | 44.75                    | 29.51               | 1.9              | 230                   |
| 2023 | 3     | 19   | 15   | 49.44                    | 29.31               | 1.65             | 230                   |
| 2023 | 3     | 19   | 16   | 52                       | 28.4                | 1.21             | 230                   |
| 2023 | 3     | 19   | 17   | 53.94                    | 26.78               | 0.54             | 230                   |
| 2023 | 3     | 19   | 18   | 56.12                    | 25.26               | 1.35             | 230                   |
| 2023 | 3     | 19   | 19   | 60.81                    | 23.98               | 1.87             | 230                   |
| 2023 | 3     | 19   | 20   | 66                       | 23.22               | 2.17             | 230                   |
| 2023 | 3     | 19   | 21   | 70.94                    | 22.63               | 2.45             | 230                   |
| 2023 | 3     | 19   | 22   | 75.62                    | 22.07               | 2.84             | 230                   |
| 2023 | 3     | 19   | 23   | 79.69                    | 21.23               | 0.25             | 230                   |
| 2023 | 3     | 19   | 24   | 83.19                    | 20.37               | 0.25             | 230                   |

| Year         | Month | Date     | Hour   | Relative       | Temperature    | Wind Speed (m/s) | Wind          |
|--------------|-------|----------|--------|----------------|----------------|------------------|---------------|
| 2022         | 3     | 20       | 1      | Humidity (%)   | (°C)           | 0.25             | Direction (°) |
| 2023         | 3     | 20<br>20 | 1 2    | 85.75<br>77.44 | 19.51<br>18.69 | 0.25             | 230<br>230    |
| 2023         | 3     |          | 3      |                |                |                  |               |
| 2023         | 3     | 20       |        | 59.38          | 17.98          | 2.75             | 220           |
| 2023         | 3     | 20       | 4 5    | 42.75          | 17.35          | 2.44             | 220<br>220    |
| 2023         | 3     | 20<br>20 |        | 36.62          | 16.98          | 2.33<br>2.95     | 220           |
| 2023<br>2023 | 3     | 20       | 6<br>7 | 32.81<br>30.12 | 18.78<br>22.87 | 2.93             | 220           |
| 2023         | 3     | 20       | 8      | 28.06          | 22.87          | 0.3              | 220           |
| 2023         | 3     | 20       | 0<br>9 | 26.81          | 27.32          | 0.3              | 220           |
|              | 3     |          |        |                |                | 0.3              |               |
| 2023         | 3     | 20       | 10     | 26.25          | 30.7           |                  | 220           |
| 2023         |       | 20       | 11     | 26.06          | 31.69          | 0.25             | 220           |
| 2023         | 3     | 20       | 12     | 27.25          | 32.32          | 0.25             | 220           |
| 2023         | 3     | 20       | 13     | 39.31          | 32.58          | 0.25             | 220           |
| 2023         | 3     | 20       | 14     | 43.25          | 32.49          | 0.25             | 220           |
| 2023         | 3     | 20       | 15     | 44.81          | 31.96          | 0.25             | 220           |
| 2023         | 3     | 20       | 16     | 46.69          | 30.8           | 0.25             | 220           |
| 2023         | 3     | 20       | 17     | 48.19          | 27.69          | 2.31             | 220           |
| 2023         | 3     | 20       | 18     | 50.44          | 26.55          | 2.32             | 220           |
| 2023         | 3     | 20       | 19     | 53.75          | 26.12          | 2.2              | 220           |
| 2023         | 3     | 20       | 20     | 57.88          | 25.74          | 2.12             | 220           |
| 2023         | 3     | 20       | 21     | 61.81          | 25.21          | 2.2              | 220           |
| 2023         | 3     | 20       | 22     | 65.88          | 24.48          | 2.31             | 220           |
| 2023         | 3     | 20       | 23     | 68.88          | 23.67          | 2.42             | 220           |
| 2023         | 3     | 20       | 24     | 72.69          | 23.06          | 2.42             | 220           |
| 2023         | 3     | 21       | 1      | 73.25          | 22.54          | 2.35             | 220           |
| 2023         | 3     | 21       | 2      | 68.94          | 21.91          | 1.96             | 220           |
| 2023         | 3     | 21       | 3      | 63.62          | 21.45          | 1.49             | 230           |
| 2023         | 3     | 21       | 4      | 55.19          | 20.75          | 1.34             | 230           |
| 2023         | 3     | 21       | 5      | 49.12          | 20.86          | 1.24             | 230           |
| 2023         | 3     | 21       | 6      | 45.19          | 22.1           | 1.92             | 230           |
| 2023         | 3     | 21       | 7      | 41.44          | 23.98          | 2.08             | 230           |
| 2023         | 3     | 21       | 8      | 38.94          | 26.56          | 2.42             | 230           |
| 2023         | 3     | 21       | 9      | 38.88          | 28.14          | 2.02             | 260           |
| 2023         | 3     | 21       | 10     | 40             | 29.02          | 1.48             | 260           |
| 2023         | 3     | 21       | 11     | 41.25          | 29.88          | 1.31             | 260           |
| 2023         | 3     | 21       | 12     | 45.44          | 30.37          | 1.4              | 260           |
| 2023         | 3     | 21       | 13     | 57.44          | 30.03          | 1.47             | 260           |
| 2023         | 3     | 21       | 14     | 59.12          | 29.49          | 1.3              | 260           |

| Year | Month | Date | Hour | Relative<br>Humidity (%) | Temperature<br>(°C) | Wind Speed (m/s) | Wind<br>Direction (°) |
|------|-------|------|------|--------------------------|---------------------|------------------|-----------------------|
| 2023 | 3     | 21   | 15   | 60.06                    | 28.98               | 1.03             | 260                   |
| 2023 | 3     | 21   | 16   | 61.81                    | 28.19               | 0.41             | 220                   |
| 2023 | 3     | 21   | 17   | 62.69                    | 26.79               | 0.64             | 230                   |
| 2023 | 3     | 21   | 18   | 63.19                    | 25.69               | 1.39             | 230                   |
| 2023 | 3     | 21   | 19   | 63.94                    | 24.98               | 1.88             | 230                   |
| 2023 | 3     | 21   | 20   | 64.69                    | 24.3                | 2.25             | 230                   |
| 2023 | 3     | 21   | 21   | 66                       | 23.61               | 2.54             | 230                   |
| 2023 | 3     | 21   | 22   | 67.31                    | 23.19               | 2.61             | 230                   |
| 2023 | 3     | 21   | 23   | 68.62                    | 22.86               | 2.51             | 230                   |
| 2023 | 3     | 21   | 24   | 70.19                    | 22.63               | 2.36             | 230                   |
| 2023 | 3     | 22   | 1    | 71.06                    | 22.31               | 2.23             | 230                   |
| 2023 | 3     | 22   | 2    | 64                       | 21.94               | 2.11             | 220                   |
| 2023 | 3     | 22   | 3    | 55.25                    | 21.54               | 2.03             | 220                   |
| 2023 | 3     | 22   | 4    | 50.19                    | 21.01               | 2.06             | 220                   |
| 2023 | 3     | 22   | 5    | 45.94                    | 20.76               | 2.04             | 220                   |
| 2023 | 3     | 22   | 6    | 41.56                    | 22.6                | 2.9              | 220                   |
| 2023 | 3     | 22   | 7    | 38.5                     | 25.67               | 2.07             | 220                   |
| 2023 | 3     | 22   | 8    | 36.5                     | 27.93               | 1.54             | 220                   |
| 2023 | 3     | 22   | 9    | 35.56                    | 29.37               | 1.89             | 220                   |
| 2023 | 3     | 22   | 10   | 35.88                    | 30.62               | 2.36             | 220                   |
| 2023 | 3     | 22   | 11   | 36.31                    | 31.27               | 2.82             | 220                   |
| 2023 | 3     | 22   | 12   | 38.44                    | 31.58               | 0.3              | 220                   |
| 2023 | 3     | 22   | 13   | 48                       | 31.53               | 0.3              | 220                   |
| 2023 | 3     | 22   | 14   | 48.94                    | 31.07               | 2.96             | 220                   |
| 2023 | 3     | 22   | 15   | 52.06                    | 30.73               | 2.34             | 220                   |
| 2023 | 3     | 22   | 16   | 54.06                    | 29.86               | 1.56             | 230                   |
| 2023 | 3     | 22   | 17   | 55.94                    | 28.22               | 0.8              | 230                   |
| 2023 | 3     | 22   | 18   | 57.81                    | 27.37               | 0.96             | 230                   |
| 2023 | 3     | 22   | 19   | 60                       | 26.68               | 1.11             | 230                   |
| 2023 | 3     | 22   | 20   | 61.88                    | 26.07               | 1.19             | 230                   |
| 2023 | 3     | 22   | 21   | 63.06                    | 25.26               | 1.32             | 230                   |
| 2023 | 3     | 22   | 22   | 63.69                    | 24.44               | 1.49             | 230                   |
| 2023 | 3     | 22   | 23   | 64.69                    | 23.73               | 1.62             | 230                   |
| 2023 | 3     | 22   | 24   | 66.62                    | 23.25               | 1.67             | 230                   |
| 2023 | 3     | 23   | 1    | 66.31                    | 22.93               | 1.66             | 230                   |
| 2023 | 3     | 23   | 2    | 57.69                    | 22.68               | 1.58             | 230                   |
| 2023 | 3     | 23   | 3    | 45                       | 22.36               | 1.42             | 230                   |
| 2023 | 3     | 23   | 4    | 34.94                    | 21.99               | 1.24             | 230                   |

| Year | Month | Date | Hour | Relative<br>Humidity (%) | Temperature<br>(°C) | Wind Speed (m/s) | Wind<br>Direction (°) |
|------|-------|------|------|--------------------------|---------------------|------------------|-----------------------|
| 2023 | 3     | 23   | 5    | 30.88                    | 21.66               | 1.09             | 230                   |
| 2023 | 3     | 23   | 6    | 28.31                    | 23.33               | 0.93             | 230                   |
| 2023 | 3     | 23   | 7    | 26.94                    | 26.18               | 0.55             | 230                   |
| 2023 | 3     | 23   | 8    | 25.88                    | 29.05               | 0.34             | 230                   |
| 2023 | 3     | 23   | 9    | 25.38                    | 31.07               | 0.96             | 230                   |
| 2023 | 3     | 23   | 10   | 25.31                    | 32.55               | 1.7              | 230                   |
| 2023 | 3     | 23   | 11   | 25.75                    | 33.24               | 2.27             | 230                   |
| 2023 | 3     | 23   | 12   | 27.38                    | 33.6                | 2.61             | 230                   |
| 2023 | 3     | 23   | 13   | 36.88                    | 33.69               | 2.56             | 230                   |
| 2023 | 3     | 23   | 14   | 37.94                    | 33.44               | 2.37             | 230                   |
| 2023 | 3     | 23   | 15   | 38.06                    | 32.88               | 2.07             | 230                   |
| 2023 | 3     | 23   | 16   | 39.62                    | 31.83               | 1.6              | 230                   |
| 2023 | 3     | 23   | 17   | 42.12                    | 29.96               | 0.89             | 230                   |
| 2023 | 3     | 23   | 18   | 44.44                    | 29.18               | 0.72             | 230                   |
| 2023 | 3     | 23   | 19   | 46.06                    | 28.72               | 0.93             | 230                   |
| 2023 | 3     | 23   | 20   | 48.31                    | 27.99               | 1.08             | 230                   |
| 2023 | 3     | 23   | 21   | 50.38                    | 27.15               | 1.25             | 230                   |
| 2023 | 3     | 23   | 22   | 52.88                    | 26.19               | 1.44             | 230                   |
| 2023 | 3     | 23   | 23   | 54.94                    | 25.41               | 1.56             | 230                   |
| 2023 | 3     | 23   | 24   | 56.69                    | 24.65               | 1.61             | 230                   |
| 2023 | 3     | 24   | 1    | 58.12                    | 24.12               | 1.59             | 230                   |
| 2023 | 3     | 24   | 2    | 50.31                    | 23.39               | 1.71             | 230                   |
| 2023 | 3     | 24   | 3    | 41.56                    | 22.77               | 1.93             | 230                   |
| 2023 | 3     | 24   | 4    | 32.81                    | 22.47               | 2.1              | 230                   |
| 2023 | 3     | 24   | 5    | 29.31                    | 22.37               | 2.18             | 230                   |
| 2023 | 3     | 24   | 6    | 27.19                    | 24.51               | 0.25             | 230                   |
| 2023 | 3     | 24   | 7    | 26                       | 27.44               | 2.85             | 230                   |
| 2023 | 3     | 24   | 8    | 25.06                    | 30.65               | 2.3              | 230                   |
| 2023 | 3     | 24   | 9    | 24.62                    | 32.5                | 1.7              | 230                   |
| 2023 | 3     | 24   | 10   | 24.69                    | 33.98               | 1.38             | 230                   |
| 2023 | 3     | 24   | 11   | 25.19                    | 34.81               | 1.39             | 230                   |
| 2023 | 3     | 24   | 12   | 26.88                    | 35.29               | 1.61             | 230                   |
| 2023 | 3     | 24   | 13   | 35.69                    | 35.37               | 1.62             | 230                   |
| 2023 | 3     | 24   | 14   | 37.5                     | 35.1                | 1.53             | 230                   |
| 2023 | 3     | 24   | 15   | 40.19                    | 34.48               | 1.42             | 230                   |
| 2023 | 3     | 24   | 16   | 43.06                    | 33.29               | 1.03             | 230                   |
| 2023 | 3     | 24   | 17   | 45.38                    | 31.44               | 0.15             | 230                   |
| 2023 | 3     | 24   | 18   | 46.75                    | 30.23               | 0.87             | 230                   |

| Year | Month | Date | Hour | Relative<br>Humidity (%) | Temperature<br>(°C) | Wind Speed (m/s) | Wind<br>Direction (°) |
|------|-------|------|------|--------------------------|---------------------|------------------|-----------------------|
| 2023 | 3     | 24   | 19   | 48                       | 28.76               | 1.7              | 230                   |
| 2023 | 3     | 24   | 20   | 49.31                    | 27.33               | 2.28             | 230                   |
| 2023 | 3     | 24   | 21   | 50.69                    | 26.26               | 2.71             | 230                   |
| 2023 | 3     | 24   | 22   | 52.62                    | 25.58               | 2.95             | 230                   |
| 2023 | 3     | 24   | 23   | 54.44                    | 24.9                | 2.97             | 230                   |
| 2023 | 3     | 24   | 24   | 56.62                    | 24.24               | 2.94             | 230                   |
| 2023 | 3     | 25   | 1    | 58.31                    | 23.59               | 2.91             | 230                   |
| 2023 | 3     | 25   | 2    | 49.69                    | 22.9                | 2.85             | 230                   |
| 2023 | 3     | 25   | 3    | 39.75                    | 22.37               | 2.78             | 230                   |
| 2023 | 3     | 25   | 4    | 30.31                    | 21.83               | 2.72             | 230                   |
| 2023 | 3     | 25   | 5    | 26.25                    | 21.6                | 2.58             | 230                   |
| 2023 | 3     | 25   | 6    | 23.75                    | 24.58               | 0.25             | 230                   |
| 2023 | 3     | 25   | 7    | 22.12                    | 28.46               | 2.5              | 230                   |
| 2023 | 3     | 25   | 8    | 21                       | 32.64               | 1.98             | 230                   |
| 2023 | 3     | 25   | 9    | 20.38                    | 34.58               | 1.69             | 230                   |
| 2023 | 3     | 25   | 10   | 20.31                    | 35.84               | 1.57             | 230                   |
| 2023 | 3     | 25   | 11   | 20.75                    | 36.66               | 1.47             | 230                   |
| 2023 | 3     | 25   | 12   | 22.31                    | 37.1                | 1.34             | 230                   |
| 2023 | 3     | 25   | 13   | 31.62                    | 37.08               | 1.22             | 230                   |
| 2023 | 3     | 25   | 14   | 34.06                    | 36.65               | 1.19             | 230                   |
| 2023 | 3     | 25   | 15   | 35.88                    | 35.84               | 1.11             | 230                   |
| 2023 | 3     | 25   | 16   | 36.69                    | 34.51               | 0.82             | 230                   |
| 2023 | 3     | 25   | 17   | 37.19                    | 31.9                | 0.56             | 230                   |
| 2023 | 3     | 25   | 18   | 38.5                     | 30.35               | 0.75             | 230                   |
| 2023 | 3     | 25   | 19   | 41                       | 29.28               | 1.17             | 230                   |
| 2023 | 3     | 25   | 20   | 43.44                    | 28.43               | 1.53             | 230                   |
| 2023 | 3     | 25   | 21   | 45.75                    | 27.8                | 1.8              | 230                   |
| 2023 | 3     | 25   | 22   | 46.94                    | 26.99               | 2.03             | 230                   |
| 2023 | 3     | 25   | 23   | 48.5                     | 26.1                | 2.2              | 230                   |
| 2023 | 3     | 25   | 24   | 51                       | 25.16               | 2.36             | 230                   |
| 2023 | 3     | 26   | 1    | 54.06                    | 24.44               | 2.51             | 230                   |
| 2023 | 3     | 26   | 2    | 51.88                    | 24.22               | 2.53             | 230                   |
| 2023 | 3     | 26   | 3    | 47.94                    | 24.05               | 2.45             | 230                   |
| 2023 | 3     | 26   | 4    | 41.62                    | 23.87               | 2.43             | 230                   |
| 2023 | 3     | 26   | 5    | 35.94                    | 23.85               | 2.52             | 230                   |
| 2023 | 3     | 26   | 6    | 31.81                    | 25.64               | 0.25             | 233                   |
| 2023 | 3     | 26   | 7    | 28.94                    | 28.8                | 4.95             | 230                   |
| 2023 | 3     | 26   | 8    | 27.19                    | 31.42               | 0.2              | 260                   |

| Year | Month | Date | Hour | Relative     | Temperature | Wind Speed (m/s) | Wind                 |
|------|-------|------|------|--------------|-------------|------------------|----------------------|
|      |       |      |      | Humidity (%) | (°C)        |                  | <b>Direction</b> (°) |
| 2023 | 3     | 26   | 9    | 26.19        | 33.19       | 0.3              | 260                  |
| 2023 | 3     | 26   | 10   | 25.75        | 34.46       | 4.07             | 230                  |
| 2023 | 3     | 26   | 11   | 26           | 35.37       | 0.25             | 260                  |
| 2023 | 3     | 26   | 12   | 27.5         | 35.94       | 0.25             | 260                  |
| 2023 | 3     | 26   | 13   | 38.38        | 36.09       | 2.85             | 260                  |
| 2023 | 3     | 26   | 14   | 41.31        | 35.92       | 2.81             | 260                  |
| 2023 | 3     | 26   | 15   | 42.62        | 35.3        | 2.91             | 260                  |
| 2023 | 3     | 26   | 16   | 44.38        | 34.12       | 2.91             | 230                  |
| 2023 | 3     | 26   | 17   | 46.5         | 30.99       | 1.96             | 230                  |
| 2023 | 3     | 26   | 18   | 48.81        | 29.43       | 2.04             | 230                  |
| 2023 | 3     | 26   | 19   | 50.75        | 28.68       | 2.12             | 230                  |
| 2023 | 3     | 26   | 20   | 52.69        | 27.86       | 2.29             | 230                  |
| 2023 | 3     | 26   | 21   | 55           | 26.98       | 2.5              | 230                  |
| 2023 | 3     | 26   | 22   | 56.88        | 26.2        | 2.67             | 230                  |
| 2023 | 3     | 26   | 23   | 58.5         | 25.73       | 2.67             | 230                  |
| 2023 | 3     | 26   | 24   | 60.31        | 25.37       | 2.48             | 230                  |
| 2023 | 3     | 27   | 1    | 62.56        | 24.86       | 2.23             | 230                  |
| 2023 | 3     | 27   | 2    | 54.94        | 24.48       | 1.94             | 230                  |
| 2023 | 3     | 27   | 3    | 41.69        | 24.28       | 1.64             | 220                  |
| 2023 | 3     | 27   | 4    | 31.12        | 23.95       | 1.49             | 230                  |
| 2023 | 3     | 27   | 5    | 25           | 23.5        | 1.53             | 208                  |
| 2023 | 3     | 27   | 6    | 21.19        | 25.76       | 2.2              | 193                  |
| 2023 | 3     | 27   | 7    | 19.06        | 29.26       | 1.74             | 190                  |
| 2023 | 3     | 27   | 8    | 17.81        | 32.4        | 1.54             | 194                  |
| 2023 | 3     | 27   | 9    | 17.12        | 34.44       | 1.52             | 230                  |
| 2023 | 3     | 27   | 10   | 16.81        | 35.98       | 2.03             | 250                  |
| 2023 | 3     | 27   | 11   | 16.5         | 37.01       | 2.6              | 260                  |
| 2023 | 3     | 27   | 12   | 17.06        | 37.52       | 2.98             | 260                  |
| 2023 | 3     | 27   | 13   | 27.69        | 37.61       | 0.25             | 270                  |
| 2023 | 3     | 27   | 14   | 30.38        | 37.26       | 0.25             | 270                  |
| 2023 | 3     | 27   | 15   | 30.69        | 36.52       | 0.25             | 270                  |
| 2023 | 3     | 27   | 16   | 30.81        | 35.13       | 0.25             | 270                  |
| 2023 | 3     | 27   | 17   | 31           | 30.94       | 2.38             | 270                  |
| 2023 | 3     | 27   | 18   | 32           | 29.01       | 2.51             | 270                  |
| 2023 | 3     | 27   | 19   | 33.56        | 28.05       | 2.57             | 270                  |
| 2023 | 3     | 27   | 20   | 35.5         | 27.26       | 2.6              | 270                  |
| 2023 | 3     | 27   | 21   | 37.44        | 26.59       | 2.58             | 270                  |
| 2023 | 3     | 27   | 22   | 39.25        | 25.7        | 2.6              | 270                  |

| Year | Month | Date | Hour | Relative     | Temperature | Wind Speed (m/s) | Wind          |
|------|-------|------|------|--------------|-------------|------------------|---------------|
| 2022 | 2     | 27   | 22   | Humidity (%) | (°C)        | 2.65             | Direction (°) |
| 2023 | 3     | 27   | 23   | 40.38        | 24.63       | 2.65             | 270           |
| 2023 | 3     | 27   | 24   | 40.75        | 23.49       | 2.61             | 270           |
| 2023 | 3     | 28   | 1    | 40.56        | 22.49       | 2.47             | 270           |
| 2023 | 3     | 28   | 2    | 35.25        | 21.66       | 2.15             | 270           |
| 2023 | 3     | 28   | 3    | 28.25        | 21.15       | 1.74             | 270           |
| 2023 | 3     | 28   | 4    | 18.94        | 20.96       | 1.3              | 270           |
| 2023 | 3     | 28   | 5    | 15.69        | 21.1        | 0.74             | 270           |
| 2023 | 3     | 28   | 6    | 14.38        | 23.46       | 0.28             | 50            |
| 2023 | 3     | 28   | 7    | 13.56        | 26.76       | 0.63             | 50            |
| 2023 | 3     | 28   | 8    | 13.19        | 32.55       | 0.48             | 50            |
| 2023 | 3     | 28   | 9    | 13.19        | 35.26       | 0.84             | 260           |
| 2023 | 3     | 28   | 10   | 13.38        | 36.66       | 1.87             | 260           |
| 2023 | 3     | 28   | 11   | 13.88        | 37.63       | 2.58             | 260           |
| 2023 | 3     | 28   | 12   | 15.19        | 38.08       | 0.25             | 270           |
| 2023 | 3     | 28   | 13   | 23.75        | 38.1        | 0.25             | 274           |
| 2023 | 3     | 28   | 14   | 22.62        | 37.72       | 0.25             | 277           |
| 2023 | 3     | 28   | 15   | 23.12        | 36.92       | 2.71             | 278           |
| 2023 | 3     | 28   | 16   | 24.5         | 35.5        | 2.05             | 260           |
| 2023 | 3     | 28   | 17   | 24.44        | 32.62       | 0.98             | 50            |
| 2023 | 3     | 28   | 18   | 27.94        | 31.69       | 0.62             | 180           |
| 2023 | 3     | 28   | 19   | 32.56        | 30.69       | 0.77             | 50            |
| 2023 | 3     | 28   | 20   | 38.75        | 29.73       | 0.82             | 180           |
| 2023 | 3     | 28   | 21   | 45.44        | 29.24       | 0.83             | 50            |
| 2023 | 3     | 28   | 22   | 52.38        | 27.69       | 1.29             | 180           |
| 2023 | 3     | 28   | 23   | 57.12        | 25.84       | 1.95             | 180           |
| 2023 | 3     | 28   | 24   | 59.62        | 24.21       | 2.38             | 180           |
| 2023 | 3     | 29   | 1    | 60.75        | 23.22       | 2.5              | 180           |
| 2023 | 3     | 29   | 2    | 52.5         | 22.7        | 2.41             | 220           |
| 2023 | 3     | 29   | 3    | 42.5         | 22.4        | 2.22             | 230           |
| 2023 | 3     | 29   | 4    | 35.75        | 22.3        | 1.95             | 180           |
| 2023 | 3     | 29   | 5    | 30.94        | 22.4        | 1.65             | 50            |
| 2023 | 3     | 29   | 6    | 27.31        | 25.15       | 1.88             | 50            |
| 2023 | 3     | 29   | 7    | 24.94        | 29.55       | 2.61             | 50            |
| 2023 | 3     | 29   | 8    | 23.38        | 32.73       | 2.78             | 50            |
| 2023 | 3     | 29   | 9    | 22.69        | 34.74       | 2.63             | 50            |
| 2023 | 3     | 29   | 10   | 22.5         | 36.3        | 2.7              | 230           |
| 2023 | 3     | 29   | 11   | 22.94        | 37.38       | 2.95             | 230           |
| 2023 | 3     | 29   | 12   | 24.25        | 38.08       | 0.25             | 50            |

| Year | Month | Date | Hour | Relative     | Temperature | Wind Speed (m/s) | Wind          |
|------|-------|------|------|--------------|-------------|------------------|---------------|
| 2022 | 2     | 20   | 12   | Humidity (%) | (°C)        | 0.25             | Direction (°) |
| 2023 | 3     | 29   | 13   | 32.31        | 38.25       | 0.25             | 50            |
| 2023 | 3     | 29   | 14   | 36.88        | 37.98       | 0.25             | 50            |
| 2023 | 3     | 29   | 15   | 38.69        | 37.29       | 0.25             | 50            |
| 2023 | 3     | 29   | 16   | 40.44        | 36.09       | 0.25             | 50            |
| 2023 | 3     | 29   | 17   | 42.38        | 32.81       | 2.4              | 50            |
| 2023 | 3     | 29   | 18   | 44.31        | 30.83       | 2.52             | 50            |
| 2023 | 3     | 29   | 19   | 46.62        | 29.95       | 2.62             | 50            |
| 2023 | 3     | 29   | 20   | 49.06        | 29.28       | 2.64             | 230           |
| 2023 | 3     | 29   | 21   | 51.62        | 28.55       | 2.72             | 220           |
| 2023 | 3     | 29   | 22   | 54.62        | 27.9        | 2.87             | 180           |
| 2023 | 3     | 29   | 23   | 57.38        | 27.24       | 0.25             | 180           |
| 2023 | 3     | 29   | 24   | 60.31        | 26.69       | 0.25             | 180           |
| 2023 | 3     | 30   | 1    | 62.44        | 26.19       | 0.25             | 180           |
| 2023 | 3     | 30   | 2    | 56.06        | 25.57       | 0.25             | 180           |
| 2023 | 3     | 30   | 3    | 41.88        | 25.06       | 0.25             | 180           |
| 2023 | 3     | 30   | 4    | 31.56        | 24.55       | 0.25             | 180           |
| 2023 | 3     | 30   | 5    | 27.62        | 24.24       | 0.25             | 180           |
| 2023 | 3     | 30   | 6    | 25           | 26.31       | 0.25             | 180           |
| 2023 | 3     | 30   | 7    | 23.19        | 30.45       | 0.2              | 180           |
| 2023 | 3     | 30   | 8    | 21.88        | 33.73       | 4.66             | 180           |
| 2023 | 3     | 30   | 9    | 21.12        | 35.61       | 0.25             | 180           |
| 2023 | 3     | 30   | 10   | 21           | 37.11       | 2.92             | 180           |
| 2023 | 3     | 30   | 11   | 21.19        | 38.04       | 2.77             | 180           |
| 2023 | 3     | 30   | 12   | 22.12        | 38.64       | 2.83             | 180           |
| 2023 | 3     | 30   | 13   | 30.31        | 38.87       | 2.96             | 230           |
| 2023 | 3     | 30   | 14   | 33.69        | 38.56       | 0.25             | 230           |
| 2023 | 3     | 30   | 15   | 34.62        | 37.89       | 0.25             | 230           |
| 2023 | 3     | 30   | 16   | 35.5         | 36.65       | 0.25             | 180           |
| 2023 | 3     | 30   | 17   | 36.94        | 33.36       | 2.04             | 180           |
| 2023 | 3     | 30   | 18   | 39.25        | 31.87       | 2.09             | 180           |
| 2023 | 3     | 30   | 19   | 42.31        | 31.3        | 2.25             | 230           |
| 2023 | 3     | 30   | 20   | 45.69        | 30.6        | 2.54             | 220           |
| 2023 | 3     | 30   | 21   | 49.25        | 29.83       | 0.3              | 220           |
| 2023 | 3     | 30   | 22   | 52.75        | 29.1        | 0.3              | 220           |
| 2023 | 3     | 30   | 23   | 56.5         | 28.32       | 0.3              | 220           |
| 2023 | 3     | 30   | 24   | 60           | 27.42       | 0.3              | 220           |
| 2023 | 3     | 31   | 1    | 61.69        | 26.53       | 4.24             | 230           |
| 2023 | 3     | 31   | 2    | 56.19        | 25.73       | 0.25             | 230           |

| Year | Month | Date | Hour | Relative<br>Humidity (%) | Temperature<br>(°C) | Wind Speed (m/s) | Wind<br>Direction (°) |
|------|-------|------|------|--------------------------|---------------------|------------------|-----------------------|
| 2023 | 3     | 31   | 3    | 47.19                    | 24.96               | 0.3              | 220                   |
| 2023 | 3     | 31   | 4    | 39                       | 24.31               | 2.84             | 220                   |
| 2023 | 3     | 31   | 5    | 33.38                    | 24.15               | 2.87             | 230                   |
| 2023 | 3     | 31   | 6    | 28.75                    | 26.02               | 4.46             | 180                   |
| 2023 | 3     | 31   | 7    | 25.25                    | 29.12               | 0.2              | 180                   |
| 2023 | 3     | 31   | 8    | 23.12                    | 31.73               | 0.2              | 50                    |
| 2023 | 3     | 31   | 9    | 22.12                    | 33.63               | 0.2              | 230                   |
| 2023 | 3     | 31   | 10   | 21.94                    | 35.24               | 0.2              | 180                   |
| 2023 | 3     | 31   | 11   | 22.38                    | 36.52               | 0.2              | 180                   |
| 2023 | 3     | 31   | 12   | 23.75                    | 37.22               | 0.2              | 180                   |
| 2023 | 3     | 31   | 13   | 29.81                    | 37.49               | 0.25             | 230                   |
| 2023 | 3     | 31   | 14   | 34.25                    | 37.26               | 0.25             | 230                   |
| 2023 | 3     | 31   | 15   | 35.06                    | 36.65               | 0.25             | 230                   |
| 2023 | 3     | 31   | 16   | 35.75                    | 35.45               | 4                | 230                   |
| 2023 | 3     | 31   | 17   | 36.94                    | 32.54               | 2.7              | 220                   |
| 2023 | 3     | 31   | 18   | 38.44                    | 30.53               | 2.71             | 220                   |
| 2023 | 3     | 31   | 19   | 40.38                    | 30.08               | 2.86             | 220                   |
| 2023 | 3     | 31   | 20   | 43.19                    | 29.74               | 2.96             | 230                   |
| 2023 | 3     | 31   | 21   | 47.06                    | 29.26               | 2.86             | 180                   |
| 2023 | 3     | 31   | 22   | 50.94                    | 28.7                | 2.77             | 260                   |
| 2023 | 3     | 31   | 23   | 53.44                    | 27.94               | 0.25             | 180                   |
| 2023 | 3     | 31   | 24   | 55.12                    | 26.94               | 0.51             | 50                    |
| 2023 | 4     | 1    | 1    | 56.81                    | 25.89               | 0.25             | 180                   |
| 2023 | 4     | 1    | 2    | 50.75                    | 24.93               | 0.25             | 180                   |
| 2023 | 4     | 1    | 3    | 38.56                    | 24.43               | 0.5              | 40                    |
| 2023 | 4     | 1    | 4    | 31.5                     | 24.06               | 2.9              | 50                    |
| 2023 | 4     | 1    | 5    | 28                       | 23.62               | 2.22             | 50                    |
| 2023 | 4     | 1    | 6    | 26                       | 25.06               | 0.25             | 30                    |
| 2023 | 4     | 1    | 7    | 24.81                    | 28.06               | 0.3              | 40                    |
| 2023 | 4     | 1    | 8    | 24.31                    | 30.65               | 0.3              | 40                    |
| 2023 | 4     | 1    | 9    | 24.38                    | 32.55               | 0.3              | 40                    |
| 2023 | 4     | 1    | 10   | 24.44                    | 33.92               | 0.3              | 40                    |
| 2023 | 4     | 1    | 11   | 24.38                    | 34.85               | 2.94             | 40                    |
| 2023 | 4     | 1    | 12   | 25.12                    | 35.3                | 0.3              | 40                    |
| 2023 | 4     | 1    | 13   | 30.31                    | 35.22               | 0.25             | 270                   |
| 2023 | 4     | 1    | 14   | 34.56                    | 34.91               | 4.33             | 270                   |
| 2023 | 4     | 1    | 15   | 35.12                    | 34.4                | 4.27             | 270                   |
| 2023 | 4     | 1    | 16   | 35                       | 33.44               | 0.25             | 270                   |

| Year | Month | Date | Hour | Relative<br>Humidity (%) | Temperature<br>(°C) | Wind Speed (m/s) | Wind<br>Direction (°) |
|------|-------|------|------|--------------------------|---------------------|------------------|-----------------------|
| 2023 | 4     | 1    | 17   | 34.94                    | 31.21               | 2.2              | 270                   |
| 2023 | 4     | 1    | 18   | 35.88                    | 29.66               | 1.76             | 270                   |
| 2023 | 4     | 1    | 19   | 36.75                    | 29.18               | 1.54             | 40                    |
| 2023 | 4     | 1    | 20   | 37.5                     | 29.12               | 1.3              | 40                    |
| 2023 | 4     | 1    | 21   | 37.62                    | 28.98               | 1.07             | 40                    |
| 2023 | 4     | 1    | 22   | 39.88                    | 28.77               | 0.79             | 40                    |
| 2023 | 4     | 1    | 23   | 42.62                    | 28.39               | 0.56             | 40                    |
| 2023 | 4     | 1    | 24   | 45.19                    | 27.49               | 0.54             | 40                    |
| 2023 | 4     | 2    | 1    | 45.75                    | 26.4                | 0.77             | 40                    |
| 2023 | 4     | 2    | 2    | 37.81                    | 25.01               | 1.2              | 40                    |
| 2023 | 4     | 2    | 3    | 27.94                    | 23.64               | 1.65             | 40                    |
| 2023 | 4     | 2    | 4    | 22.31                    | 22.28               | 1.91             | 40                    |
| 2023 | 4     | 2    | 5    | 19.56                    | 21.63               | 1.83             | 40                    |
| 2023 | 4     | 2    | 6    | 17.88                    | 24.28               | 2.04             | 40                    |
| 2023 | 4     | 2    | 7    | 16.88                    | 28.44               | 2                | 40                    |
| 2023 | 4     | 2    | 8    | 16.25                    | 31.77               | 2.08             | 40                    |
| 2023 | 4     | 2    | 9    | 16.19                    | 33.76               | 2.11             | 40                    |
| 2023 | 4     | 2    | 10   | 16.38                    | 35.13               | 2.37             | 50                    |
| 2023 | 4     | 2    | 11   | 16.75                    | 36.11               | 2.74             | 50                    |
| 2023 | 4     | 2    | 12   | 17.69                    | 36.69               | 3.08             | 50                    |
| 2023 | 4     | 2    | 13   | 24.56                    | 36.82               | 3.26             | 50                    |
| 2023 | 4     | 2    | 14   | 27                       | 36.53               | 3.4              | 50                    |
| 2023 | 4     | 2    | 15   | 27.69                    | 35.9                | 3.35             | 50                    |
| 2023 | 4     | 2    | 16   | 28.56                    | 34.74               | 3.11             | 50                    |
| 2023 | 4     | 2    | 17   | 29.06                    | 31.68               | 1.92             | 280                   |
| 2023 | 4     | 2    | 18   | 30.06                    | 30.1                | 1.84             | 270                   |
| 2023 | 4     | 2    | 19   | 31.81                    | 29.23               | 1.84             | 270                   |
| 2023 | 4     | 2    | 20   | 33.38                    | 28.3                | 1.78             | 270                   |
| 2023 | 4     | 2    | 21   | 34.81                    | 27.58               | 1.72             | 270                   |
| 2023 | 4     | 2    | 22   | 36                       | 26.66               | 1.87             | 270                   |
| 2023 | 4     | 2    | 23   | 37.12                    | 25.34               | 2.08             | 270                   |
| 2023 | 4     | 2    | 24   | 38.06                    | 24.22               | 2.24             | 270                   |
| 2023 | 4     | 3    | 1    | 38.25                    | 23.26               | 2.4              | 50                    |
| 2023 | 4     | 3    | 2    | 30.81                    | 22.57               | 2.49             | 40                    |
| 2023 | 4     | 3    | 3    | 23.75                    | 22.04               | 2.55             | 40                    |
| 2023 | 4     | 3    | 4    | 19.38                    | 21.65               | 2.6              | 40                    |
| 2023 | 4     | 3    | 5    | 17.81                    | 21.74               | 2.58             | 40                    |
| 2023 | 4     | 3    | 6    | 16.81                    | 25.32               | 3.3              | 40                    |

| Year | Month | Date | Hour | Relative     | Temperature | Wind Speed (m/s) | Wind          |
|------|-------|------|------|--------------|-------------|------------------|---------------|
| 2022 | 4     | 2    |      | Humidity (%) | (°C)        | 2.2              | Direction (°) |
| 2023 | 4     | 3    | 7    | 16.19        | 29.56       | 3.3              | 40            |
| 2023 | 4     | 3    | 8    | 15.94        | 33.13       | 2.71             | 40            |
| 2023 | 4     | 3    | 9    | 15.88        | 34.96       | 1.53             | 40            |
| 2023 | 4     | 3    | 10   | 16.25        | 36.31       | 0.85             | 40            |
| 2023 | 4     | 3    | 11   | 17           | 37.26       | 1.05             | 40            |
| 2023 | 4     | 3    | 12   | 18.38        | 37.83       | 1.52             | 40            |
| 2023 | 4     | 3    | 13   | 25.19        | 38.01       | 2                | 40            |
| 2023 | 4     | 3    | 14   | 27.25        | 37.65       | 2.33             | 40            |
| 2023 | 4     | 3    | 15   | 27.56        | 36.91       | 2.44             | 40            |
| 2023 | 4     | 3    | 16   | 28.56        | 35.65       | 2.31             | 40            |
| 2023 | 4     | 3    | 17   | 31.38        | 33.02       | 1.38             | 40            |
| 2023 | 4     | 3    | 18   | 34.25        | 31.79       | 1.06             | 40            |
| 2023 | 4     | 3    | 19   | 37.31        | 31.39       | 0.88             | 40            |
| 2023 | 4     | 3    | 20   | 40.75        | 30.83       | 1.06             | 40            |
| 2023 | 4     | 3    | 21   | 44.31        | 29.9        | 1.47             | 40            |
| 2023 | 4     | 3    | 22   | 47.31        | 28.83       | 1.91             | 40            |
| 2023 | 4     | 3    | 23   | 50.19        | 27.79       | 2.22             | 40            |
| 2023 | 4     | 3    | 24   | 52.75        | 26.92       | 2.4              | 40            |
| 2023 | 4     | 4    | 1    | 53.69        | 26.19       | 2.53             | 40            |
| 2023 | 4     | 4    | 2    | 47.06        | 25.62       | 2.67             | 40            |
| 2023 | 4     | 4    | 3    | 36.12        | 25.08       | 2.78             | 40            |
| 2023 | 4     | 4    | 4    | 30           | 24.68       | 2.85             | 40            |
| 2023 | 4     | 4    | 5    | 27           | 24.78       | 3.12             | 40            |
| 2023 | 4     | 4    | 6    | 24.81        | 27.33       | 0.25             | 40            |
| 2023 | 4     | 4    | 7    | 23.19        | 31.5        | 0.2              | 40            |
| 2023 | 4     | 4    | 8    | 22.06        | 34.33       | 0.2              | 40            |
| 2023 | 4     | 4    | 9    | 21.38        | 36.05       | 0.2              | 40            |
| 2023 | 4     | 4    | 10   | 20.88        | 37.4        | 0.2              | 40            |
| 2023 | 4     | 4    | 11   | 20.56        | 38.4        | 0.2              | 40            |
| 2023 | 4     | 4    | 12   | 20.5         | 38.99       | 0.2              | 40            |
| 2023 | 4     | 4    | 13   | 24.19        | 39.07       | 0.2              | 40            |
| 2023 | 4     | 4    | 14   | 27.31        | 38.73       | 0.2              | 40            |
| 2023 | 4     | 4    | 15   | 28           | 37.92       | 0.2              | 40            |
| 2023 | 4     | 4    | 16   | 28.44        | 36.73       | 3.5              | 40            |
| 2023 | 4     | 4    | 17   | 29.12        | 33.69       | 2.9              | 40            |
| 2023 | 4     | 4    | 18   | 30           | 31.34       | 2.77             | 40            |
| 2023 | 4     | 4    | 19   | 30.88        | 30.22       | 2.86             | 40            |
| 2023 | 4     | 4    | 20   | 32.06        | 29.3        | 2.89             | 40            |

| Year | Month | Date | Hour | Relative<br>Humidity (%) | Temperature<br>(°C) | Wind Speed (m/s) | Wind<br>Direction (°) |
|------|-------|------|------|--------------------------|---------------------|------------------|-----------------------|
| 2023 | 4     | 4    | 21   | 33.75                    | 28.37               | 2.83             | 40                    |
| 2023 | 4     | 4    | 22   | 35.31                    | 27.43               | 2.72             | 40                    |
| 2023 | 4     | 4    | 23   | 36.31                    | 26.62               | 2.65             | 40                    |
| 2023 | 4     | 4    | 24   | 37.06                    | 25.83               | 2.57             | 40                    |
| 2023 | 4     | 5    | 1    | 37.44                    | 25.01               | 2.43             | 40                    |
| 2023 | 4     | 5    | 2    | 33.94                    | 24.33               | 2.16             | 40                    |
| 2023 | 4     | 5    | 3    | 27.06                    | 24                  | 1.81             | 40                    |
| 2023 | 4     | 5    | 4    | 23.25                    | 23.81               | 1.47             | 40                    |
| 2023 | 4     | 5    | 5    | 20.31                    | 23.95               | 0.99             | 40                    |
| 2023 | 4     | 5    | 6    | 18.25                    | 26.03               | 0.84             | 40                    |
| 2023 | 4     | 5    | 7    | 17.06                    | 29.98               | 2.31             | 40                    |
| 2023 | 4     | 5    | 8    | 16.25                    | 32.87               | 2.71             | 40                    |
| 2023 | 4     | 5    | 9    | 15.88                    | 35.15               | 2.27             | 40                    |
| 2023 | 4     | 5    | 10   | 15.81                    | 36.8                | 1.75             | 40                    |
| 2023 | 4     | 5    | 11   | 16.31                    | 37.84               | 1.47             | 40                    |
| 2023 | 4     | 5    | 12   | 17.25                    | 38.46               | 1.54             | 40                    |
| 2023 | 4     | 5    | 13   | 23.5                     | 38.61               | 1.77             | 40                    |
| 2023 | 4     | 5    | 14   | 26.19                    | 38.31               | 2.05             | 40                    |
| 2023 | 4     | 5    | 15   | 27.5                     | 37.53               | 2.23             | 40                    |
| 2023 | 4     | 5    | 16   | 29.19                    | 36.28               | 2.24             | 40                    |
| 2023 | 4     | 5    | 17   | 30.75                    | 33.23               | 1.64             | 40                    |
| 2023 | 4     | 5    | 18   | 32.38                    | 31.21               | 1.94             | 40                    |
| 2023 | 4     | 5    | 19   | 33.81                    | 30.13               | 2.19             | 40                    |
| 2023 | 4     | 5    | 20   | 35.31                    | 29.05               | 2.45             | 40                    |
| 2023 | 4     | 5    | 21   | 36.69                    | 28.16               | 2.66             | 40                    |
| 2023 | 4     | 5    | 22   | 38                       | 27.33               | 2.77             | 40                    |
| 2023 | 4     | 5    | 23   | 39.19                    | 26.58               | 2.78             | 40                    |
| 2023 | 4     | 5    | 24   | 40.56                    | 25.9                | 2.74             | 40                    |
| 2023 | 4     | 6    | 1    | 40.69                    | 25.25               | 2.66             | 40                    |
| 2023 | 4     | 6    | 2    | 33.88                    | 24.65               | 2.6              | 40                    |
| 2023 | 4     | 6    | 3    | 26.88                    | 24.16               | 2.55             | 40                    |
| 2023 | 4     | 6    | 4    | 21.56                    | 23.65               | 2.53             | 40                    |
| 2023 | 4     | 6    | 5    | 19.25                    | 23.62               | 2.42             | 40                    |
| 2023 | 4     | 6    | 6    | 17.94                    | 26.81               | 0.3              | 40                    |
| 2023 | 4     | 6    | 7    | 17.12                    | 30.87               | 0.3              | 40                    |
| 2023 | 4     | 6    | 8    | 16.69                    | 34.36               | 2.78             | 40                    |
| 2023 | 4     | 6    | 9    | 16.56                    | 36.18               | 1.94             | 40                    |
| 2023 | 4     | 6    | 10   | 16.75                    | 37.54               | 1.62             | 40                    |

| Year | Month | Date | Hour | Relative<br>Humidity (%) | Temperature<br>(°C) | Wind Speed (m/s) | Wind<br>Direction (°) |
|------|-------|------|------|--------------------------|---------------------|------------------|-----------------------|
| 2023 | 4     | 6    | 11   | 17.25                    | 38.51               | 1.67             | 40                    |
| 2023 | 4     | 6    | 12   | 18.38                    | 39.09               | 1.86             | 40                    |
| 2023 | 4     | 6    | 13   | 23.62                    | 39.23               | 2.17             | 40                    |
| 2023 | 4     | 6    | 14   | 27                       | 38.9                | 2.38             | 40                    |
| 2023 | 4     | 6    | 15   | 28.12                    | 38.1                | 2.59             | 40                    |
| 2023 | 4     | 6    | 16   | 29.38                    | 36.8                | 2.71             | 40                    |
| 2023 | 4     | 6    | 17   | 30.44                    | 33.91               | 1.91             | 40                    |
| 2023 | 4     | 6    | 18   | 31.62                    | 31.75               | 2.14             | 40                    |
| 2023 | 4     | 6    | 19   | 32.56                    | 30.78               | 2.22             | 40                    |
| 2023 | 4     | 6    | 20   | 33.62                    | 29.83               | 2.4              | 40                    |
| 2023 | 4     | 6    | 21   | 34.62                    | 28.99               | 2.6              | 40                    |
| 2023 | 4     | 6    | 22   | 35.62                    | 28.16               | 2.7              | 40                    |
| 2023 | 4     | 6    | 23   | 36.25                    | 27.51               | 2.72             | 40                    |
| 2023 | 4     | 6    | 24   | 36.88                    | 26.87               | 2.69             | 40                    |
| 2023 | 4     | 7    | 1    | 37.25                    | 26.26               | 2.6              | 40                    |
| 2023 | 4     | 7    | 2    | 32                       | 25.68               | 2.39             | 40                    |
| 2023 | 4     | 7    | 3    | 25.31                    | 25.32               | 2.07             | 40                    |
| 2023 | 4     | 7    | 4    | 20.25                    | 24.98               | 1.8              | 40                    |
| 2023 | 4     | 7    | 5    | 17.56                    | 24.82               | 1.64             | 40                    |
| 2023 | 4     | 7    | 6    | 15.75                    | 27.49               | 1.87             | 40                    |
| 2023 | 4     | 7    | 7    | 14.69                    | 31.59               | 1.8              | 40                    |
| 2023 | 4     | 7    | 8    | 14.06                    | 35.05               | 1.52             | 40                    |
| 2023 | 4     | 7    | 9    | 13.81                    | 36.95               | 1.57             | 40                    |
| 2023 | 4     | 7    | 10   | 13.94                    | 38.4                | 1.54             | 40                    |
| 2023 | 4     | 7    | 11   | 14.38                    | 39.33               | 1.49             | 40                    |
| 2023 | 4     | 7    | 12   | 15.19                    | 39.84               | 1.46             | 40                    |
| 2023 | 4     | 7    | 13   | 20.5                     | 39.9                | 1.62             | 40                    |
| 2023 | 4     | 7    | 14   | 23.12                    | 39.49               | 1.89             | 40                    |
| 2023 | 4     | 7    | 15   | 24.12                    | 38.62               | 2.17             | 40                    |
| 2023 | 4     | 7    | 16   | 25.12                    | 37.33               | 2.32             | 40                    |
| 2023 | 4     | 7    | 17   | 26.19                    | 34.38               | 1.78             | 40                    |
| 2023 | 4     | 7    | 18   | 27.31                    | 32.12               | 2.12             | 40                    |
| 2023 | 4     | 7    | 19   | 28.12                    | 30.94               | 2.34             | 40                    |
| 2023 | 4     | 7    | 20   | 28.38                    | 29.87               | 2.53             | 40                    |
| 2023 | 4     | 7    | 21   | 28.94                    | 28.95               | 2.6              | 40                    |
| 2023 | 4     | 7    | 22   | 29.69                    | 28.15               | 2.52             | 40                    |
| 2023 | 4     | 7    | 23   | 30.56                    | 27.62               | 2.22             | 40                    |
| 2023 | 4     | 7    | 24   | 31.25                    | 27.39               | 1.78             | 40                    |

| Year | Month | Date | Hour | Relative     | Temperature | Wind Speed (m/s) | Wind          |
|------|-------|------|------|--------------|-------------|------------------|---------------|
| 2022 | 4     | 0    | 1    | Humidity (%) | (°C)        | 1.22             | Direction (°) |
| 2023 | 4     | 8    | 1    | 32.12        | 26.99       | 1.32             | 40            |
| 2023 | 4     | 8    | 2    | 29           | 26.47       | 1                | 40            |
| 2023 | 4     | 8    | 3    | 21.69        | 25.91       | 0.88             | 40            |
| 2023 | 4     | 8    | 4    | 18.5         | 25.48       | 0.88             | 40            |
| 2023 | 4     | 8    | 5    | 16.94        | 25.18       | 0.77             | 40            |
| 2023 | 4     | 8    | 6    | 16.06        | 26.96       | 0.64             | 40            |
| 2023 | 4     | 8    | 7    | 15.56        | 31.47       | 0.33             | 40            |
| 2023 | 4     | 8    | 8    | 15.31        | 34.26       | 0.34             | 40            |
| 2023 | 4     | 8    | 9    | 15.62        | 36.13       | 0.5              | 40            |
| 2023 | 4     | 8    | 10   | 16.81        | 37.55       | 0.73             | 250           |
| 2023 | 4     | 8    | 11   | 17.94        | 38.59       | 1.15             | 250           |
| 2023 | 4     | 8    | 12   | 19.62        | 39.19       | 1.66             | 260           |
| 2023 | 4     | 8    | 13   | 22           | 39.16       | 2.05             | 270           |
| 2023 | 4     | 8    | 14   | 24.31        | 38.08       | 2.57             | 280           |
| 2023 | 4     | 8    | 15   | 26           | 37.14       | 0.25             | 290           |
| 2023 | 4     | 8    | 16   | 27.69        | 35.76       | 0.51             | 50            |
| 2023 | 4     | 8    | 17   | 29.62        | 34.04       | 3.3              | 50            |
| 2023 | 4     | 8    | 18   | 31.06        | 32.48       | 0.5              | 50            |
| 2023 | 4     | 8    | 19   | 32.06        | 31.4        | 0.2              | 50            |
| 2023 | 4     | 8    | 20   | 32.81        | 30.39       | 3.3              | 50            |
| 2023 | 4     | 8    | 21   | 33.5         | 29.27       | 3.01             | 50            |
| 2023 | 4     | 8    | 22   | 34.38        | 28.38       | 2.6              | 50            |
| 2023 | 4     | 8    | 23   | 35.31        | 27.76       | 2.4              | 50            |
| 2023 | 4     | 8    | 24   | 35.94        | 27.24       | 2.28             | 50            |
| 2023 | 4     | 9    | 1    | 36           | 26.7        | 2.2              | 50            |
| 2023 | 4     | 9    | 2    | 31.5         | 26.08       | 2.11             | 50            |
| 2023 | 4     | 9    | 3    | 25.81        | 25.5        | 1.97             | 50            |
| 2023 | 4     | 9    | 4    | 22.56        | 25.09       | 1.79             | 50            |
| 2023 | 4     | 9    | 5    | 20.5         | 25.06       | 1.52             | 50            |
| 2023 | 4     | 9    | 6    | 18.75        | 27.27       | 1.4              | 50            |
| 2023 | 4     | 9    | 7    | 17.5         | 30.93       | 0.74             | 50            |
| 2023 | 4     | 9    | 8    | 16.56        | 33.8        | 0.71             | 50            |
| 2023 | 4     | 9    | 9    | 16.19        | 35.64       | 1.62             | 270           |
| 2023 | 4     | 9    | 10   | 16.12        | 37.09       | 2.27             | 280           |
| 2023 | 4     | 9    | 11   | 16.38        | 38.14       | 2.67             | 285           |
| 2023 | 4     | 9    | 12   | 17.19        | 38.84       | 2.83             | 290           |
| 2023 | 4     | 9    | 13   | 21.75        | 39.01       | 2.79             | 290           |
| 2023 | 4     | 9    | 14   | 23.25        | 38.74       | 2.87             | 290           |

| Year | Month | Date | Hour | Relative     | Temperature | Wind Speed (m/s) | Wind                 |
|------|-------|------|------|--------------|-------------|------------------|----------------------|
|      |       |      |      | Humidity (%) | (°C)        |                  | <b>Direction</b> (°) |
| 2023 | 4     | 9    | 15   | 24.12        | 37.99       | 2.79             | 290                  |
| 2023 | 4     | 9    | 16   | 25.19        | 36.79       | 0.5              | 291                  |
| 2023 | 4     | 9    | 17   | 26.38        | 34.19       | 1.42             | 260                  |
| 2023 | 4     | 9    | 18   | 27.75        | 32.74       | 1.32             | 250                  |
| 2023 | 4     | 9    | 19   | 29.06        | 31.83       | 1.49             | 230                  |
| 2023 | 4     | 9    | 20   | 30.38        | 30.9        | 1.66             | 233                  |
| 2023 | 4     | 9    | 21   | 31.88        | 30.01       | 1.77             | 235                  |
| 2023 | 4     | 9    | 22   | 33.69        | 29.05       | 1.89             | 240                  |
| 2023 | 4     | 9    | 23   | 35.56        | 28.16       | 1.92             | 250                  |
| 2023 | 4     | 9    | 24   | 37           | 27.36       | 1.88             | 260                  |
| 2023 | 4     | 10   | 1    | 37.06        | 26.52       | 1.9              | 280                  |
| 2023 | 4     | 10   | 2    | 31.19        | 25.57       | 1.98             | 300                  |
| 2023 | 4     | 10   | 3    | 24.44        | 24.6        | 2.08             | 250                  |
| 2023 | 4     | 10   | 4    | 20           | 23.84       | 2.16             | 300                  |
| 2023 | 4     | 10   | 5    | 18.38        | 23.73       | 2.01             | 300                  |
| 2023 | 4     | 10   | 6    | 17.12        | 26.57       | 2.2              | 300                  |
| 2023 | 4     | 10   | 7    | 16.5         | 30.78       | 2.04             | 350                  |
| 2023 | 4     | 10   | 8    | 16.06        | 34.69       | 2.21             | 335                  |
| 2023 | 4     | 10   | 9    | 16           | 36.52       | 2.27             | 305                  |
| 2023 | 4     | 10   | 10   | 16.19        | 37.94       | 2.44             | 40                   |
| 2023 | 4     | 10   | 11   | 16.75        | 38.68       | 2.58             | 40                   |
| 2023 | 4     | 10   | 12   | 17.88        | 39.21       | 2.71             | 40                   |
| 2023 | 4     | 10   | 13   | 22.44        | 39.3        | 2.71             | 50                   |
| 2023 | 4     | 10   | 14   | 23.62        | 39.09       | 2.75             | 50                   |
| 2023 | 4     | 10   | 15   | 24.12        | 38.37       | 2.7              | 300                  |
| 2023 | 4     | 10   | 16   | 25.12        | 37.23       | 2.42             | 290                  |
| 2023 | 4     | 10   | 17   | 26.25        | 34.67       | 1.45             | 290                  |
| 2023 | 4     | 10   | 18   | 27.62        | 33.49       | 1.16             | 270                  |
| 2023 | 4     | 10   | 19   | 28.88        | 32.87       | 1.05             | 249                  |
| 2023 | 4     | 10   | 20   | 30.5         | 32          | 1.3              | 236                  |
| 2023 | 4     | 10   | 21   | 32.25        | 31.08       | 1.63             | 239                  |
| 2023 | 4     | 10   | 22   | 33.56        | 30.15       | 1.93             | 246                  |
| 2023 | 4     | 10   | 23   | 34.62        | 29.33       | 2.14             | 255                  |
| 2023 | 4     | 10   | 24   | 35.06        | 28.42       | 2.31             | 257                  |
| 2023 | 4     | 11   | 1    | 34.25        | 27.46       | 2.44             | 280                  |
| 2023 | 4     | 11   | 2    | 27.56        | 26.59       | 2.47             | 289                  |
| 2023 | 4     | 11   | 3    | 20.38        | 25.73       | 2.33             | 298                  |
| 2023 | 4     | 11   | 4    | 16.12        | 25.02       | 2.11             | 308                  |

| Year | Month | Date | Hour | Relative<br>Humidity (%) | Temperature<br>(°C) | Wind Speed (m/s) | Wind<br>Direction (°) |
|------|-------|------|------|--------------------------|---------------------|------------------|-----------------------|
| 2023 | 4     | 11   | 5    | 15.31                    | 24.87               | 1.91             | 321                   |
| 2023 | 4     | 11   | 6    | 14.88                    | 27.76               | 2.33             | 335                   |
| 2023 | 4     | 11   | 7    | 14.5                     | 31.71               | 2.36             | 353                   |
| 2023 | 4     | 11   | 8    | 14.25                    | 36.37               | 2.89             | 350                   |
| 2023 | 4     | 11   | 9    | 14.25                    | 38.33               | 2.75             | 350                   |
| 2023 | 4     | 11   | 10   | 14.44                    | 39.48               | 2.33             | 350                   |
| 2023 | 4     | 11   | 11   | 14.94                    | 40.27               | 1.86             | 350                   |
| 2023 | 4     | 11   | 12   | 16                       | 40.71               | 1.48             | 340                   |
| 2023 | 4     | 11   | 13   | 20                       | 40.77               | 1.27             | 335                   |
| 2023 | 4     | 11   | 14   | 21.62                    | 40.47               | 1.24             | 314                   |
| 2023 | 4     | 11   | 15   | 22.5                     | 39.72               | 1.32             | 305                   |
| 2023 | 4     | 11   | 16   | 23.62                    | 38.53               | 1.24             | 297                   |
| 2023 | 4     | 11   | 17   | 24.56                    | 36.43               | 0.57             | 280                   |
| 2023 | 4     | 11   | 18   | 24.81                    | 35.19               | 0.45             | 260                   |
| 2023 | 4     | 11   | 19   | 25.25                    | 33.87               | 1.09             | 160                   |
| 2023 | 4     | 11   | 20   | 26.06                    | 32.59               | 1.44             | 160                   |
| 2023 | 4     | 11   | 21   | 26.94                    | 31.71               | 1.41             | 170                   |
| 2023 | 4     | 11   | 22   | 27.69                    | 31.25               | 1.04             | 187                   |
| 2023 | 4     | 11   | 23   | 28.44                    | 30.6                | 0.57             | 237                   |
| 2023 | 4     | 11   | 24   | 28.94                    | 29.55               | 0.77             | 300                   |
| 2023 | 4     | 12   | 1    | 29                       | 28.4                | 1.3              | 350                   |
| 2023 | 4     | 12   | 2    | 24.62                    | 27.39               | 1.65             | 10                    |
| 2023 | 4     | 12   | 3    | 18.5                     | 26.44               | 1.79             | 24                    |
| 2023 | 4     | 12   | 4    | 13.44                    | 25.77               | 1.84             | 40                    |
| 2023 | 4     | 12   | 5    | 12.38                    | 25.54               | 1.78             | 50                    |
| 2023 | 4     | 12   | 6    | 12.06                    | 28.23               | 2.21             | 70                    |
| 2023 | 4     | 12   | 7    | 11.88                    | 32.5                | 2.29             | 80                    |
| 2023 | 4     | 12   | 8    | 11.75                    | 37.12               | 2.57             | 75                    |
| 2023 | 4     | 12   | 9    | 11.81                    | 39.12               | 2.02             | 60                    |
| 2023 | 4     | 12   | 10   | 11.94                    | 40.46               | 1.85             | 37                    |
| 2023 | 4     | 12   | 11   | 12.12                    | 41.33               | 2.03             | 30                    |
| 2023 | 4     | 12   | 12   | 12.81                    | 41.84               | 2.32             | 11                    |
| 2023 | 4     | 12   | 13   | 16.94                    | 41.84               | 2.61             | 10                    |
| 2023 | 4     | 12   | 14   | 18.5                     | 41.44               | 2.75             | 10                    |
| 2023 | 4     | 12   | 15   | 18.56                    | 40.65               | 2.68             | 355                   |
| 2023 | 4     | 12   | 16   | 18.88                    | 39.3                | 2.44             | 355                   |
| 2023 | 4     | 12   | 17   | 19.81                    | 36.29               | 1.41             | 350                   |
| 2023 | 4     | 12   | 18   | 20.44                    | 34.46               | 0.92             | 357                   |

| Year | Month | Date | Hour | Relative<br>Humidity (%) | Temperature<br>(°C) | Wind Speed (m/s) | Wind<br>Direction (°) |
|------|-------|------|------|--------------------------|---------------------|------------------|-----------------------|
| 2023 | 4     | 12   | 19   | 20.75                    | 33.99               | 0.22             | 40                    |
| 2023 | 4     | 12   | 20   | 21.31                    | 33.61               | 0.56             | 150                   |
| 2023 | 4     | 12   | 21   | 21.81                    | 32.82               | 1.11             | 170                   |
| 2023 | 4     | 12   | 22   | 22.44                    | 31.63               | 1.42             | 170                   |
| 2023 | 4     | 12   | 23   | 23.31                    | 31.08               | 1.55             | 180                   |
| 2023 | 4     | 12   | 24   | 24.12                    | 30.52               | 1.49             | 180                   |
| 2023 | 4     | 13   | 1    | 25.19                    | 30.07               | 1.28             | 270                   |
| 2023 | 4     | 13   | 2    | 22.56                    | 29.51               | 1.01             | 190                   |
| 2023 | 4     | 13   | 3    | 17.88                    | 28.84               | 0.77             | 190                   |
| 2023 | 4     | 13   | 4    | 14.81                    | 28.19               | 0.65             | 190                   |
| 2023 | 4     | 13   | 5    | 13.69                    | 27.57               | 0.77             | 190                   |
| 2023 | 4     | 13   | 6    | 12.94                    | 29.65               | 1.18             | 190                   |
| 2023 | 4     | 13   | 7    | 12.5                     | 33.61               | 1.32             | 220                   |
| 2023 | 4     | 13   | 8    | 12.38                    | 37.66               | 1.68             | 260                   |
| 2023 | 4     | 13   | 9    | 12.56                    | 39.76               | 1.63             | 290                   |
| 2023 | 4     | 13   | 10   | 13                       | 41.07               | 1.74             | 318                   |
| 2023 | 4     | 13   | 11   | 13.44                    | 41.83               | 1.93             | 80                    |
| 2023 | 4     | 13   | 12   | 14.12                    | 42.21               | 2.15             | 342                   |
| 2023 | 4     | 13   | 13   | 18.06                    | 42.1                | 2.35             | 347                   |
| 2023 | 4     | 13   | 14   | 19.75                    | 41.57               | 2.55             | 350                   |
| 2023 | 4     | 13   | 15   | 20.69                    | 40.79               | 2.5              | 357                   |
| 2023 | 4     | 13   | 16   | 21.38                    | 39.63               | 2.24             | 10                    |
| 2023 | 4     | 13   | 17   | 22.06                    | 36.77               | 1.48             | 40                    |
| 2023 | 4     | 13   | 18   | 22.69                    | 34.73               | 1.81             | 75                    |
| 2023 | 4     | 13   | 19   | 23                       | 33.6                | 2.15             | 100                   |
| 2023 | 4     | 13   | 20   | 23.44                    | 32.8                | 2.33             | 123                   |
| 2023 | 4     | 13   | 21   | 24.31                    | 31.99               | 2.35             | 80                    |
| 2023 | 4     | 13   | 22   | 25.69                    | 31.27               | 2.26             | 30                    |
| 2023 | 4     | 13   | 23   | 26.81                    | 30.77               | 2.09             | 155                   |
| 2023 | 4     | 13   | 24   | 28.62                    | 30.28               | 1.94             | 170                   |
| 2023 | 4     | 14   | 1    | 30.38                    | 29.58               | 1.93             | 199                   |
| 2023 | 4     | 14   | 2    | 26.25                    | 28.69               | 2.27             | 222                   |
| 2023 | 4     | 14   | 3    | 20.44                    | 28.31               | 2.59             | 230                   |
| 2023 | 4     | 14   | 4    | 15.31                    | 27.8                | 2.76             | 257                   |
| 2023 | 4     | 14   | 5    | 13.25                    | 27.4                | 2.66             | 270                   |
| 2023 | 4     | 14   | 6    | 12.19                    | 30.19               | 3.31             | 278                   |
| 2023 | 4     | 14   | 7    | 11.62                    | 33.99               | 3.12             | 328                   |
| 2023 | 4     | 14   | 8    | 11.31                    | 37.94               | 4.57             | 358                   |

| Year | Month | Date | Hour | Relative<br>Humidity (%) | Temperature<br>(°C) | Wind Speed (m/s) | Wind<br>Direction (°) |
|------|-------|------|------|--------------------------|---------------------|------------------|-----------------------|
| 2023 | 4     | 14   | 9    | 11.19                    | 40.21               | 0.51             | 40                    |
| 2023 | 4     | 14   | 10   | 11.38                    | 41.8                | 0.25             | 10                    |
| 2023 | 4     | 14   | 11   | 11.81                    | 42.65               | 0.25             | 360                   |
| 2023 | 4     | 14   | 12   | 12.5                     | 43.19               | 3.52             | 350                   |
| 2023 | 4     | 14   | 12   | 16.12                    | 43.26               | 3.25             | 350                   |
| 2023 | 4     | 14   | 14   | 16.94                    | 42.82               | 2.96             | 350                   |
| 2023 | 4     | 14   | 15   | 17.94                    | 41.91               | 2.68             | 350                   |
| 2023 | 4     | 14   | 16   | 19.19                    | 40.76               | 2.29             | 350                   |
| 2023 | 4     | 14   | 17   | 22.81                    | 38.11               | 1.25             | 350                   |
| 2023 | 4     | 14   | 18   | 29.38                    | 36.96               | 0.69             | 350                   |
| 2023 | 4     | 14   | 19   | 40.62                    | 35.94               | 0.3              | 350                   |
| 2023 | 4     | 14   | 20   | 45.62                    | 35.12               | 0.72             | 350                   |
| 2023 | 4     | 14   | 21   | 46.94                    | 33.31               | 3.79             | 350                   |
| 2023 | 4     | 14   | 22   | 48.12                    | 32.1                | 0.3              | 350                   |
| 2023 | 4     | 14   | 23   | 48.62                    | 30.06               | 0.3              | 350                   |
| 2023 | 4     | 14   | 24   | 49.38                    | 28.85               | 0.2              | 350                   |
| 2023 | 4     | 15   | 1    | 49.62                    | 28.19               | 2.27             | 350                   |
| 2023 | 4     | 15   | 2    | 42.19                    | 27.48               | 1.3              | 350                   |
| 2023 | 4     | 15   | 3    | 31.5                     | 27.09               | 1.08             | 292                   |
| 2023 | 4     | 15   | 4    | 21.56                    | 26.71               | 1.24             | 250                   |
| 2023 | 4     | 15   | 5    | 18.31                    | 26.63               | 1.67             | 180                   |
| 2023 | 4     | 15   | 6    | 16.38                    | 29.09               | 2.92             | 180                   |
| 2023 | 4     | 15   | 7    | 15.06                    | 32.62               | 2.67             | 270                   |
| 2023 | 4     | 15   | 8    | 14.44                    | 36.82               | 2.71             | 320                   |
| 2023 | 4     | 15   | 9    | 14.31                    | 38.98               | 2.89             | 320                   |
| 2023 | 4     | 15   | 10   | 14.5                     | 40.48               | 0.25             | 320                   |
| 2023 | 4     | 15   | 11   | 14.62                    | 41.58               | 0.25             | 270                   |
| 2023 | 4     | 15   | 12   | 15.31                    | 42.04               | 0.25             | 270                   |
| 2023 | 4     | 15   | 13   | 17.81                    | 41.82               | 0.3              | 320                   |
| 2023 | 4     | 15   | 14   | 20.31                    | 41.33               | 0.2              | 320                   |
| 2023 | 4     | 15   | 15   | 21.25                    | 40.77               | 0.2              | 320                   |
| 2023 | 4     | 15   | 16   | 22.12                    | 39.57               | 0.2              | 320                   |
| 2023 | 4     | 15   | 17   | 23.25                    | 36.89               | 2.67             | 320                   |
| 2023 | 4     | 15   | 18   | 24.69                    | 34.33               | 2.8              | 320                   |
| 2023 | 4     | 15   | 19   | 26.94                    | 33.1                | 0.2              | 320                   |
| 2023 | 4     | 15   | 20   | 29.75                    | 32.15               | 3.59             | 320                   |
| 2023 | 4     | 15   | 21   | 32.25                    | 31.33               | 0.2              | 320                   |
| 2023 | 4     | 15   | 22   | 35.06                    | 30.67               | 0.2              | 320                   |

| Year | Month | Date | Hour | Relative<br>Humidity (%) | Temperature<br>(°C) | Wind Speed (m/s) | Wind<br>Direction (°) |
|------|-------|------|------|--------------------------|---------------------|------------------|-----------------------|
| 2023 | 4     | 15   | 23   | 37.12                    | 30.05               | 0.2              | 320                   |
| 2023 | 4     | 15   | 23   | 38.62                    | 29.33               | 0.2              | 320                   |
| 2023 | 4     | 15   | 1    | 38.94                    | 29.55               | 0.2              | 320                   |
| 2023 | 4     | 16   | 2    | 35.25                    | 27.68               | 2.81             | 320                   |
| 2023 | 4     | 16   | 3    | 25.94                    | 27.08               | 2.23             | 320                   |
| 2023 | 4     | 16   | 4    | 17                       | 26.58               | 2.23             | 320                   |
| 2023 | 4     | 16   | 5    | 14.94                    | 26.59               | 1.95             | 320                   |
| 2023 | 4     | 16   | 6    | 14.04                    | 28.46               | 2.4              | 320                   |
| 2023 | 4     | 16   | 7    | 13.56                    | 32.22               | 2.16             | 320                   |
| 2023 | 4     | 16   | 8    | 13.25                    | 36.67               | 2.62             | 320                   |
| 2023 | 4     | 16   | 9    | 13.12                    | 38.79               | 1.82             | 320                   |
| 2023 | 4     | 16   | 10   | 13.12                    | 40.3                | 1.32             | 320                   |
| 2023 | 4     | 16   | 10   | 13.56                    | 41.33               | 1.28             | 320                   |
| 2023 | 4     | 16   | 12   | 14.38                    | 42.05               | 1.5              | 320                   |
| 2023 | 4     | 16   | 13   | 17.88                    | 42.29               | 1.77             | 320                   |
| 2023 | 4     | 16   | 14   | 19.38                    | 42.08               | 2.07             | 320                   |
| 2023 | 4     | 16   | 15   | 20.25                    | 41.31               | 2.17             | 260                   |
| 2023 | 4     | 16   | 16   | 21.5                     | 40.08               | 2.1              | 270                   |
| 2023 | 4     | 16   | 17   | 23.25                    | 37.55               | 1.44             | 270                   |
| 2023 | 4     | 16   | 18   | 25.31                    | 35.85               | 1.5              | 270                   |
| 2023 | 4     | 16   | 19   | 27.31                    | 34.92               | 1.63             | 270                   |
| 2023 | 4     | 16   | 20   | 29.19                    | 33.87               | 1.83             | 270                   |
| 2023 | 4     | 16   | 21   | 31.06                    | 32.62               | 2.08             | 290                   |
| 2023 | 4     | 16   | 22   | 32.88                    | 31.34               | 2.34             | 320                   |
| 2023 | 4     | 16   | 23   | 34.75                    | 30.32               | 2.52             | 350                   |
| 2023 | 4     | 16   | 24   | 36.12                    | 29.56               | 2.61             | 320                   |
| 2023 | 4     | 17   | 1    | 35.94                    | 28.85               | 2.67             | 320                   |
| 2023 | 4     | 17   | 2    | 31.19                    | 28.19               | 2.59             | 320                   |
| 2023 | 4     | 17   | 3    | 24.5                     | 27.57               | 2.41             | 320                   |
| 2023 | 4     | 17   | 4    | 19.06                    | 27.15               | 2.14             | 350                   |
| 2023 | 4     | 17   | 5    | 17.19                    | 27.42               | 1.69             | 350                   |
| 2023 | 4     | 17   | 6    | 15.81                    | 30.08               | 1.4              | 332                   |
| 2023 | 4     | 17   | 7    | 14.81                    | 34.15               | 1.06             | 320                   |
| 2023 | 4     | 17   | 8    | 14                       | 37.99               | 1.12             | 320                   |
| 2023 | 4     | 17   | 9    | 13.56                    | 39.62               | 0.79             | 320                   |
| 2023 | 4     | 17   | 10   | 13.44                    | 40.84               | 0.93             | 350                   |
| 2023 | 4     | 17   | 11   | 13.5                     | 41.69               | 1.27             | 270                   |
| 2023 | 4     | 17   | 12   | 14                       | 42.18               | 1.66             | 280                   |

| Year | Month | Date | Hour | Relative     | Temperature | Wind Speed (m/s) | Wind          |
|------|-------|------|------|--------------|-------------|------------------|---------------|
|      |       | 1.5  | 10   | Humidity (%) | (°C)        | <b>A</b> 0.1     | Direction (°) |
| 2023 | 4     | 17   | 13   | 17.25        | 42.26       | 2.01             | 280           |
| 2023 | 4     | 17   | 14   | 18.81        | 41.73       | 2.32             | 280           |
| 2023 | 4     | 17   | 15   | 19.5         | 40.91       | 2.48             | 280           |
| 2023 | 4     | 17   | 16   | 20.25        | 39.83       | 2.48             | 280           |
| 2023 | 4     | 17   | 17   | 21.25        | 37.32       | 1.71             | 280           |
| 2023 | 4     | 17   | 18   | 22.5         | 35.65       | 1.89             | 280           |
| 2023 | 4     | 17   | 19   | 23.81        | 34.79       | 2.09             | 280           |
| 2023 | 4     | 17   | 20   | 25.25        | 33.91       | 2.32             | 270           |
| 2023 | 4     | 17   | 21   | 26.44        | 32.98       | 2.56             | 280           |
| 2023 | 4     | 17   | 22   | 27.5         | 32.09       | 2.82             | 270           |
| 2023 | 4     | 17   | 23   | 28.75        | 31.38       | 2.99             | 299           |
| 2023 | 4     | 17   | 24   | 30.12        | 30.74       | 3.06             | 350           |
| 2023 | 4     | 18   | 1    | 30.69        | 30.27       | 3.12             | 350           |
| 2023 | 4     | 18   | 2    | 27.5         | 29.76       | 3                | 350           |
| 2023 | 4     | 18   | 3    | 22.06        | 29.11       | 2.79             | 350           |
| 2023 | 4     | 18   | 4    | 15.19        | 28.44       | 2.63             | 350           |
| 2023 | 4     | 18   | 5    | 13           | 28.3        | 2.55             | 350           |
| 2023 | 4     | 18   | 6    | 11.88        | 30.35       | 0.2              | 350           |
| 2023 | 4     | 18   | 7    | 11.31        | 33.76       | 0.2              | 350           |
| 2023 | 4     | 18   | 8    | 11.12        | 38.43       | 0.2              | 350           |
| 2023 | 4     | 18   | 9    | 11.19        | 40.69       | 0.2              | 350           |
| 2023 | 4     | 18   | 10   | 11.5         | 42.17       | 2.6              | 350           |
| 2023 | 4     | 18   | 11   | 11.81        | 43.07       | 2.2              | 350           |
| 2023 | 4     | 18   | 12   | 12.44        | 43.56       | 1.99             | 350           |
| 2023 | 4     | 18   | 13   | 15.62        | 43.58       | 1.9              | 350           |
| 2023 | 4     | 18   | 14   | 16.5         | 43.16       | 1.9              | 350           |
| 2023 | 4     | 18   | 15   | 17.12        | 42.38       | 1.97             | 350           |
| 2023 | 4     | 18   | 16   | 18           | 41.2        | 1.95             | 350           |
| 2023 | 4     | 18   | 17   | 19.19        | 38.71       | 1.38             | 350           |
| 2023 | 4     | 18   | 18   | 20.31        | 37.25       | 1.36             | 350           |
| 2023 | 4     | 18   | 19   | 21.25        | 36.27       | 1.49             | 270           |
| 2023 | 4     | 18   | 20   | 21.94        | 34.97       | 1.81             | 350           |
| 2023 | 4     | 18   | 21   | 22.75        | 33.42       | 2.22             | 350           |
| 2023 | 4     | 18   | 22   | 23.81        | 31.9        | 2.58             | 350           |
| 2023 | 4     | 18   | 23   | 25.19        | 30.65       | 2.8              | 350           |
| 2023 | 4     | 18   | 24   | 26.38        | 29.69       | 2.89             | 350           |
| 2023 | 4     | 19   | 1    | 26.75        | 28.8        | 2.86             | 350           |
| 2023 | 4     | 19   | 2    | 23.38        | 28.11       | 2.79             | 350           |

| Year | Month | Date | Hour | Relative     | Temperature | Wind Speed (m/s) | Wind          |
|------|-------|------|------|--------------|-------------|------------------|---------------|
|      |       |      |      | Humidity (%) | (°C)        |                  | Direction (°) |
| 2023 | 4     | 19   | 3    | 19.38        | 27.45       | 2.61             | 350           |
| 2023 | 4     | 19   | 4    | 13.06        | 27.07       | 2.33             | 350           |
| 2023 | 4     | 19   | 5    | 11.19        | 27.28       | 1.99             | 350           |
| 2023 | 4     | 19   | 6    | 10.5         | 29.96       | 2.12             | 350           |
| 2023 | 4     | 19   | 7    | 10.19        | 33.01       | 2.45             | 310           |
| 2023 | 4     | 19   | 8    | 10.06        | 37.9        | 0.5              | 310           |
| 2023 | 4     | 19   | 9    | 10.12        | 40.39       | 0.25             | 310           |
| 2023 | 4     | 19   | 10   | 10.44        | 41.9        | 0.2              | 310           |
| 2023 | 4     | 19   | 11   | 10.81        | 42.81       | 0.2              | 310           |
| 2023 | 4     | 19   | 12   | 11.5         | 43.38       | 2.88             | 310           |
| 2023 | 4     | 19   | 13   | 14.56        | 43.49       | 2.59             | 310           |
| 2023 | 4     | 19   | 14   | 15.25        | 42.98       | 2.27             | 310           |
| 2023 | 4     | 19   | 15   | 16.12        | 42.29       | 1.93             | 310           |
| 2023 | 4     | 19   | 16   | 16.81        | 41.09       | 1.62             | 310           |
| 2023 | 4     | 19   | 17   | 17.62        | 38.67       | 1.03             | 310           |
| 2023 | 4     | 19   | 18   | 18.88        | 37.53       | 0.83             | 310           |
| 2023 | 4     | 19   | 19   | 20.06        | 36.68       | 0.98             | 310           |
| 2023 | 4     | 19   | 20   | 21.19        | 35.33       | 1.32             | 230           |
| 2023 | 4     | 19   | 21   | 22.44        | 34.27       | 1.65             | 310           |
| 2023 | 4     | 19   | 22   | 24           | 32.99       | 1.93             | 310           |
| 2023 | 4     | 19   | 23   | 25.94        | 31.85       | 2.12             | 310           |
| 2023 | 4     | 19   | 24   | 27.94        | 30.9        | 2.19             | 310           |
| 2023 | 4     | 20   | 1    | 28.88        | 30.02       | 2.18             | 310           |
| 2023 | 4     | 20   | 2    | 25.5         | 29.04       | 2.29             | 310           |
| 2023 | 4     | 20   | 3    | 20.69        | 28.13       | 2.44             | 310           |
| 2023 | 4     | 20   | 4    | 16.12        | 27.39       | 2.51             | 310           |
| 2023 | 4     | 20   | 5    | 14.56        | 27.4        | 2.43             | 280           |
| 2023 | 4     | 20   | 6    | 13.5         | 30.02       | 0.2              | 310           |
| 2023 | 4     | 20   | 7    | 12.88        | 33.63       | 4.02             | 310           |
| 2023 | 4     | 20   | 8    | 12.69        | 37.81       | 4.3              | 310           |
| 2023 | 4     | 20   | 9    | 12.94        | 39.93       | 0.2              | 310           |
| 2023 | 4     | 20   | 10   | 13.44        | 41.44       | 0.2              | 310           |
| 2023 | 4     | 20   | 11   | 14.19        | 42.45       | 0.2              | 310           |
| 2023 | 4     | 20   | 12   | 15.38        | 42.98       | 0.2              | 310           |
| 2023 | 4     | 20   | 13   | 17.19        | 42.81       | 0.2              | 310           |
| 2023 | 4     | 20   | 14   | 19.88        | 42.22       | 0.2              | 310           |
| 2023 | 4     | 20   | 15   | 21.56        | 41.23       | 0.2              | 270           |
| 2023 | 4     | 20   | 16   | 23.19        | 39.73       | 0.2              | 270           |

| Year | Month | Date | Hour | Relative     | Temperature | Wind Speed (m/s) | Wind          |
|------|-------|------|------|--------------|-------------|------------------|---------------|
| 2022 | 4     | 20   | 17   | Humidity (%) | (°C)        | 0.2              | Direction (°) |
| 2023 |       | 20   | 17   | 24.88        | 37.73       |                  | 260           |
| 2023 | 4     | 20   | 18   | 26.56        | 35.25       | 0.2              | 260           |
| 2023 | 4     | 20   | 19   | 28.38        | 33.85       | 0.2              | 260           |
| 2023 | 4     | 20   | 20   | 29.75        | 32.62       | 2.94             | 260           |
| 2023 | 4     | 20   | 21   | 30.75        | 31.54       | 2.76             | 260           |
| 2023 | 4     | 20   | 22   | 31.81        | 30.53       | 2.56             | 260           |
| 2023 | 4     | 20   | 23   | 33.38        | 29.55       | 2.31             | 260           |
| 2023 | 4     | 20   | 24   | 35.62        | 28.91       | 1.95             | 260           |
| 2023 | 4     | 21   | 1    | 35.69        | 28.57       | 1.6              | 270           |
| 2023 | 4     | 21   | 2    | 29.94        | 28.16       | 1.41             | 270           |
| 2023 | 4     | 21   | 3    | 24.56        | 27.49       | 1.61             | 270           |
| 2023 | 4     | 21   | 4    | 22           | 26.5        | 2.11             | 270           |
| 2023 | 4     | 21   | 5    | 20.38        | 26.61       | 2.5              | 270           |
| 2023 | 4     | 21   | 6    | 18.62        | 29.83       | 4.45             | 270           |
| 2023 | 4     | 21   | 7    | 17.31        | 33.44       | 0.2              | 270           |
| 2023 | 4     | 21   | 8    | 16.44        | 35.49       | 0.2              | 270           |
| 2023 | 4     | 21   | 9    | 16.25        | 36.87       | 0.2              | 270           |
| 2023 | 4     | 21   | 10   | 16.31        | 38.39       | 4.57             | 270           |
| 2023 | 4     | 21   | 11   | 16.56        | 39.62       | 4.33             | 270           |
| 2023 | 4     | 21   | 12   | 17.44        | 40.48       | 4.22             | 270           |
| 2023 | 4     | 21   | 13   | 20           | 40.73       | 4.22             | 270           |
| 2023 | 4     | 21   | 14   | 23.31        | 40.49       | 4.31             | 270           |
| 2023 | 4     | 21   | 15   | 24.75        | 39.83       | 4.45             | 270           |
| 2023 | 4     | 21   | 16   | 26.25        | 38.6        | 4.51             | 270           |
| 2023 | 4     | 21   | 17   | 27.88        | 36.16       | 0.2              | 270           |
| 2023 | 4     | 21   | 18   | 29.38        | 33.48       | 2.65             | 270           |
| 2023 | 4     | 21   | 19   | 30.75        | 32.49       | 2.72             | 270           |
| 2023 | 4     | 21   | 20   | 32.12        | 31.6        | 2.71             | 270           |
| 2023 | 4     | 21   | 21   | 33.75        | 30.73       | 2.66             | 270           |
| 2023 | 4     | 21   | 22   | 35.31        | 29.9        | 2.6              | 270           |
| 2023 | 4     | 21   | 23   | 37.12        | 29.19       | 2.57             | 270           |
| 2023 | 4     | 21   | 24   | 38.81        | 28.5        | 2.56             | 270           |
| 2023 | 4     | 22   | 1    | 38.31        | 27.72       | 2.59             | 270           |
| 2023 | 4     | 22   | 2    | 32.19        | 27.05       | 2.57             | 180           |
| 2023 | 4     | 22   | 3    | 24.44        | 26.36       | 2.55             | 180           |
| 2023 | 4     | 22   | 4    | 20.69        | 25.8        | 2.58             | 240           |
| 2023 | 4     | 22   | 5    | 19           | 26.28       | 2.58             | 240           |
| 2023 | 4     | 22   | 6    | 17.88        | 29.48       | 0.2              | 240           |

| Year | Month | Date | Hour | Relative<br>Humidity (%) | Temperature<br>(°C) | Wind Speed (m/s) | Wind<br>Direction (°) |
|------|-------|------|------|--------------------------|---------------------|------------------|-----------------------|
| 2023 | 4     | 22   | 7    | 17.06                    | 33.49               | 4.91             | 240                   |
| 2023 | 4     | 22   | 8    | 16.94                    | 35.97               | 0.2              | 270                   |
| 2023 | 4     | 22   | 9    | 17.31                    | 37.44               | 4.61             | 280                   |
| 2023 | 4     | 22   | 10   | 17.88                    | 38.61               | 4.07             | 280                   |
| 2023 | 4     | 22   | 11   | 18.94                    | 39.54               | 0.2              | 280                   |
| 2023 | 4     | 22   | 12   | 20.38                    | 39.85               | 0.2              | 280                   |
| 2023 | 4     | 22   | 13   | 22.56                    | 39.65               | 0.2              | 280                   |
| 2023 | 4     | 22   | 14   | 25.31                    | 39.26               | 0.2              | 260                   |
| 2023 | 4     | 22   | 15   | 28.12                    | 38.46               | 0.2              | 260                   |
| 2023 | 4     | 22   | 16   | 31.94                    | 37.4                | 0.2              | 260                   |
| 2023 | 4     | 22   | 17   | 36                       | 35.94               | 2.45             | 260                   |
| 2023 | 4     | 22   | 18   | 40.62                    | 34.44               | 1.95             | 260                   |
| 2023 | 4     | 22   | 19   | 43.81                    | 33.71               | 2.75             | 260                   |
| 2023 | 4     | 22   | 20   | 46                       | 32.38               | 4.42             | 320                   |
| 2023 | 4     | 22   | 21   | 48.19                    | 30.51               | 0.2              | 320                   |
| 2023 | 4     | 22   | 22   | 50.5                     | 28.5                | 0.2              | 320                   |
| 2023 | 4     | 22   | 23   | 52.5                     | 26.88               | 0.2              | 320                   |
| 2023 | 4     | 22   | 24   | 54.44                    | 25.71               | 0.2              | 320                   |
| 2023 | 4     | 23   | 1    | 55.25                    | 24.79               | 0.2              | 320                   |
| 2023 | 4     | 23   | 2    | 50.56                    | 24.08               | 0.2              | 320                   |
| 2023 | 4     | 23   | 3    | 43.88                    | 23.57               | 0.25             | 320                   |
| 2023 | 4     | 23   | 4    | 36.31                    | 23.15               | 0.25             | 320                   |
| 2023 | 4     | 23   | 5    | 31.31                    | 23.08               | 0.5              | 40                    |
| 2023 | 4     | 23   | 6    | 27.75                    | 24.76               | 0.2              | 40                    |
| 2023 | 4     | 23   | 7    | 25.19                    | 27.57               | 0.3              | 260                   |
| 2023 | 4     | 23   | 8    | 23.69                    | 31.05               | 2.91             | 40                    |
| 2023 | 4     | 23   | 9    | 22.62                    | 33.39               | 2.01             | 40                    |
| 2023 | 4     | 23   | 10   | 22.12                    | 35.05               | 1.58             | 197                   |
| 2023 | 4     | 23   | 11   | 22.5                     | 36.21               | 1.44             | 270                   |
| 2023 | 4     | 23   | 12   | 23.56                    | 36.71               | 1.5              | 40                    |
| 2023 | 4     | 23   | 13   | 26.06                    | 37.02               | 1.57             | 40                    |
| 2023 | 4     | 23   | 14   | 31                       | 36.82               | 1.56             | 40                    |
| 2023 | 4     | 23   | 15   | 33                       | 36.05               | 1.3              | 40                    |
| 2023 | 4     | 23   | 16   | 35.06                    | 35.12               | 1.02             | 40                    |
| 2023 | 4     | 23   | 17   | 36.12                    | 34.03               | 0.87             | 176                   |
| 2023 | 4     | 23   | 18   | 36.75                    | 32.8                | 1.01             | 167                   |
| 2023 | 4     | 23   | 19   | 38.62                    | 32.16               | 1.14             | 165                   |
| 2023 | 4     | 23   | 20   | 39.38                    | 31.4                | 1.35             | 151                   |

| Year | Month | Date | Hour | Relative<br>Humidity (%) | Temperature<br>(°C) | Wind Speed (m/s) | Wind<br>Direction (°) |
|------|-------|------|------|--------------------------|---------------------|------------------|-----------------------|
| 2023 | 4     | 23   | 21   | 40.31                    | 30.58               | 1.66             | 126                   |
| 2023 | 4     | 23   | 22   | 42                       | 29.75               | 2.19             | 105                   |
| 2023 | 4     | 23   | 23   | 42.69                    | 28.44               | 2.74             | 98                    |
| 2023 | 4     | 23   | 24   | 44.44                    | 27.83               | 0.2              | 98                    |
| 2023 | 4     | 24   | 1    | 46.31                    | 27.34               | 0.2              | 100                   |
| 2023 | 4     | 24   | 2    | 44.69                    | 26.79               | 0.2              | 100                   |
| 2023 | 4     | 24   | 3    | 38.62                    | 26.9                | 0.2              | 100                   |
| 2023 | 4     | 24   | 4    | 33.19                    | 26.75               | 0.2              | 100                   |
| 2023 | 4     | 24   | 5    | 29.81                    | 26.62               | 0.2              | 100                   |
| 2023 | 4     | 24   | 6    | 27.19                    | 28.12               | 0.5              | 100                   |
| 2023 | 4     | 24   | 7    | 25.25                    | 30.92               | 2.9              | 100                   |
| 2023 | 4     | 24   | 8    | 24                       | 33.25               | 2.36             | 100                   |
| 2023 | 4     | 24   | 9    | 23.81                    | 34.83               | 2.12             | 100                   |
| 2023 | 4     | 24   | 10   | 24.44                    | 35.98               | 1.94             | 210                   |
| 2023 | 4     | 24   | 11   | 24.5                     | 36.59               | 1.83             | 210                   |
| 2023 | 4     | 24   | 12   | 25.31                    | 36.91               | 1.68             | 230                   |
| 2023 | 4     | 24   | 13   | 27.75                    | 36.44               | 1.48             | 230                   |
| 2023 | 4     | 24   | 14   | 33.38                    | 35.74               | 0.98             | 230                   |
| 2023 | 4     | 24   | 15   | 33.06                    | 35.43               | 0.56             | 260                   |
| 2023 | 4     | 24   | 16   | 33.38                    | 34.72               | 0.2              | 290                   |
| 2023 | 4     | 24   | 17   | 34.19                    | 33.73               | 0.43             | 50                    |
| 2023 | 4     | 24   | 18   | 35.62                    | 32.35               | 1.17             | 100                   |
| 2023 | 4     | 24   | 19   | 37.62                    | 31.64               | 1.81             | 123                   |
| 2023 | 4     | 24   | 20   | 40.06                    | 31.07               | 2.58             | 129                   |
| 2023 | 4     | 24   | 21   | 42.44                    | 30.51               | 3.52             | 260                   |
| 2023 | 4     | 24   | 22   | 44.06                    | 29.87               | 0.3              | 260                   |
| 2023 | 4     | 24   | 23   | 46.12                    | 29.11               | 4.29             | 128                   |
| 2023 | 4     | 24   | 24   | 48.44                    | 28.3                | 0.5              | 80                    |
| 2023 | 4     | 25   | 1    | 49.69                    | 27.6                | 0.5              | 80                    |
| 2023 | 4     | 25   | 2    | 46.38                    | 27.33               | 0.5              | 80                    |
| 2023 | 4     | 25   | 3    | 40.44                    | 26.9                | 0.5              | 80                    |
| 2023 | 4     | 25   | 4    | 35.31                    | 26.36               | 0.5              | 80                    |
| 2023 | 4     | 25   | 5    | 31.19                    | 26.18               | 0.51             | 80                    |
| 2023 | 4     | 25   | 6    | 28.62                    | 27.7                | 0.51             | 80                    |
| 2023 | 4     | 25   | 7    | 27.69                    | 30.05               | 0.51             | 80                    |
| 2023 | 4     | 25   | 8    | 27.12                    | 32.23               | 3.16             | 80                    |
| 2023 | 4     | 25   | 9    | 26.81                    | 34.32               | 2.29             | 80                    |
| 2023 | 4     | 25   | 10   | 26.56                    | 35.59               | 1.69             | 80                    |

| Year | Month | Date | Hour | Relative<br>Humidity (%) | Temperature<br>(°C) | Wind Speed (m/s) | Wind<br>Direction (°) |
|------|-------|------|------|--------------------------|---------------------|------------------|-----------------------|
| 2023 | 4     | 25   | 11   | 26.62                    | 35.83               | 1.25             | 109                   |
| 2023 | 4     | 25   | 12   | 27.19                    | 35.9                | 0.75             | 90                    |
| 2023 | 4     | 25   | 13   | 30.56                    | 35.83               | 0.52             | 51                    |
| 2023 | 4     | 25   | 14   | 33.19                    | 35.58               | 0.55             | 310                   |
| 2023 | 4     | 25   | 15   | 33.56                    | 35.15               | 0.77             | 310                   |
| 2023 | 4     | 25   | 16   | 34.38                    | 34.58               | 0.85             | 310                   |
| 2023 | 4     | 25   | 17   | 35.81                    | 33.62               | 0.68             | 310                   |
| 2023 | 4     | 25   | 18   | 37.38                    | 32.62               | 0.74             | 310                   |
| 2023 | 4     | 25   | 19   | 38.94                    | 31.87               | 0.88             | 310                   |
| 2023 | 4     | 25   | 20   | 40.44                    | 31.16               | 1.07             | 310                   |
| 2023 | 4     | 25   | 21   | 41.25                    | 30.33               | 1.33             | 310                   |
| 2023 | 4     | 25   | 22   | 41.81                    | 29.36               | 1.56             | 310                   |
| 2023 | 4     | 25   | 23   | 44                       | 28.44               | 1.69             | 310                   |
| 2023 | 4     | 25   | 24   | 47                       | 27.68               | 1.7              | 40                    |
| 2023 | 4     | 26   | 1    | 49.25                    | 27.32               | 1.34             | 50                    |
| 2023 | 4     | 26   | 2    | 46.94                    | 27.16               | 0.92             | 121                   |
| 2023 | 4     | 26   | 3    | 41.88                    | 26.48               | 1.68             | 175                   |
| 2023 | 4     | 26   | 4    | 37.69                    | 25.82               | 2.07             | 190                   |
| 2023 | 4     | 26   | 5    | 33.5                     | 25.94               | 2.9              | 214                   |
| 2023 | 4     | 26   | 6    | 29.31                    | 27.62               | 0.3              | 220                   |
| 2023 | 4     | 26   | 7    | 26.31                    | 29.59               | 0.3              | 220                   |
| 2023 | 4     | 26   | 8    | 24.19                    | 31.47               | 0.3              | 220                   |
| 2023 | 4     | 26   | 9    | 22.81                    | 33.42               | 0.3              | 220                   |
| 2023 | 4     | 26   | 10   | 22.38                    | 35.4                | 0.3              | 220                   |
| 2023 | 4     | 26   | 11   | 22.5                     | 36.86               | 0.3              | 220                   |
| 2023 | 4     | 26   | 12   | 23.44                    | 37.82               | 0.5              | 220                   |
| 2023 | 4     | 26   | 13   | 26.62                    | 38.29               | 2.86             | 230                   |
| 2023 | 4     | 26   | 14   | 31.56                    | 38.05               | 2.73             | 230                   |
| 2023 | 4     | 26   | 15   | 33.31                    | 37.43               | 2.73             | 230                   |
| 2023 | 4     | 26   | 16   | 35.31                    | 36.4                | 2.71             | 230                   |
| 2023 | 4     | 26   | 17   | 37.62                    | 34.69               | 2.01             | 230                   |
| 2023 | 4     | 26   | 18   | 40.5                     | 32.46               | 1.84             | 230                   |
| 2023 | 4     | 26   | 19   | 43.06                    | 31.49               | 1.99             | 230                   |
| 2023 | 4     | 26   | 20   | 44.81                    | 30.64               | 2.12             | 230                   |
| 2023 | 4     | 26   | 21   | 46.56                    | 29.8                | 2.25             | 230                   |
| 2023 | 4     | 26   | 22   | 48.56                    | 28.9                | 2.37             | 230                   |
| 2023 | 4     | 26   | 23   | 49.88                    | 28.13               | 2.41             | 230                   |
| 2023 | 4     | 26   | 24   | 50.94                    | 27.65               | 2.38             | 230                   |

| Year | Month | Date | Hour | Relative     | Temperature | Wind Speed (m/s) | Wind                 |
|------|-------|------|------|--------------|-------------|------------------|----------------------|
|      |       |      |      | Humidity (%) | (°C)        |                  | <b>Direction</b> (°) |
| 2023 | 4     | 27   | 1    | 49.69        | 27.17       | 2.3              | 230                  |
| 2023 | 4     | 27   | 2    | 43.5         | 26.57       | 2.12             | 250                  |
| 2023 | 4     | 27   | 3    | 32.81        | 26.2        | 1.85             | 270                  |
| 2023 | 4     | 27   | 4    | 27.69        | 25.86       | 1.56             | 270                  |
| 2023 | 4     | 27   | 5    | 24.31        | 26.21       | 1.36             | 314                  |
| 2023 | 4     | 27   | 6    | 21.5         | 28.23       | 1.72             | 320                  |
| 2023 | 4     | 27   | 7    | 19.75        | 31.98       | 2.49             | 80                   |
| 2023 | 4     | 27   | 8    | 18.69        | 34.24       | 2.19             | 322                  |
| 2023 | 4     | 27   | 9    | 18.25        | 36.01       | 2.08             | 310                  |
| 2023 | 4     | 27   | 10   | 18.38        | 37.51       | 2.39             | 310                  |
| 2023 | 4     | 27   | 11   | 19.06        | 38.43       | 2.87             | 310                  |
| 2023 | 4     | 27   | 12   | 20.25        | 38.96       | 0.2              | 310                  |
| 2023 | 4     | 27   | 13   | 23.56        | 39.23       | 0.25             | 320                  |
| 2023 | 4     | 27   | 14   | 28.19        | 39.04       | 0.25             | 320                  |
| 2023 | 4     | 27   | 15   | 29.12        | 38.29       | 0.25             | 320                  |
| 2023 | 4     | 27   | 16   | 30.5         | 37.12       | 2.76             | 320                  |
| 2023 | 4     | 27   | 17   | 32           | 35.17       | 1.79             | 320                  |
| 2023 | 4     | 27   | 18   | 33.31        | 32.8        | 1.66             | 320                  |
| 2023 | 4     | 27   | 19   | 34.5         | 31.98       | 1.71             | 320                  |
| 2023 | 4     | 27   | 20   | 35.69        | 30.99       | 1.91             | 320                  |
| 2023 | 4     | 27   | 21   | 36.75        | 29.98       | 2.18             | 320                  |
| 2023 | 4     | 27   | 22   | 36.75        | 29.08       | 2.34             | 350                  |
| 2023 | 4     | 27   | 23   | 37.25        | 28.33       | 2.39             | 320                  |
| 2023 | 4     | 27   | 24   | 37.81        | 27.53       | 2.36             | 320                  |
| 2023 | 4     | 28   | 1    | 36.94        | 26.8        | 2.3              | 320                  |
| 2023 | 4     | 28   | 2    | 32.06        | 26.55       | 2.01             | 320                  |
| 2023 | 4     | 28   | 3    | 26.38        | 26.08       | 1.75             | 320                  |
| 2023 | 4     | 28   | 4    | 22.81        | 25.63       | 1.56             | 320                  |
| 2023 | 4     | 28   | 5    | 20.62        | 25.92       | 1.54             | 50                   |
| 2023 | 4     | 28   | 6    | 19.19        | 28.19       | 1.97             | 50                   |
| 2023 | 4     | 28   | 7    | 18.31        | 32.56       | 0.86             | 50                   |
| 2023 | 4     | 28   | 8    | 17.88        | 35.47       | 1.4              | 50                   |
| 2023 | 4     | 28   | 9    | 17.81        | 37.46       | 2.46             | 50                   |
| 2023 | 4     | 28   | 10   | 18.62        | 38.9        | 2.96             | 50                   |
| 2023 | 4     | 28   | 11   | 19.38        | 39.83       | 3.38             | 50                   |
| 2023 | 4     | 28   | 12   | 20.31        | 40.3        | 3.82             | 50                   |
| 2023 | 4     | 28   | 13   | 22.44        | 40.32       | 0.5              | 50                   |
| 2023 | 4     | 28   | 14   | 26.19        | 39.51       | 0.5              | 50                   |

| Year | Month | Date | Hour | Relative     | Temperature | Wind Speed (m/s) | Wind                 |
|------|-------|------|------|--------------|-------------|------------------|----------------------|
|      |       |      |      | Humidity (%) | (°C)        |                  | <b>Direction</b> (°) |
| 2023 | 4     | 28   | 15   | 27.19        | 38.62       | 0.5              | 50                   |
| 2023 | 4     | 28   | 16   | 28.5         | 37.58       | 0.5              | 50                   |
| 2023 | 4     | 28   | 17   | 29.88        | 35.69       | 0.5              | 50                   |
| 2023 | 4     | 28   | 18   | 31.19        | 33.15       | 0.5              | 50                   |
| 2023 | 4     | 28   | 19   | 32.44        | 32.34       | 0.25             | 225                  |
| 2023 | 4     | 28   | 20   | 33.75        | 31.44       | 3.62             | 250                  |
| 2023 | 4     | 28   | 21   | 35.12        | 30.42       | 3.37             | 250                  |
| 2023 | 4     | 28   | 22   | 36.75        | 29.48       | 3.16             | 260                  |
| 2023 | 4     | 28   | 23   | 38.19        | 28.63       | 2.96             | 270                  |
| 2023 | 4     | 28   | 24   | 39.38        | 27.88       | 2.81             | 270                  |
| 2023 | 4     | 29   | 1    | 38.94        | 27.12       | 2.7              | 270                  |
| 2023 | 4     | 29   | 2    | 33.81        | 26.38       | 2.49             | 290                  |
| 2023 | 4     | 29   | 3    | 26.06        | 25.82       | 2.21             | 310                  |
| 2023 | 4     | 29   | 4    | 21.5         | 25.4        | 1.94             | 320                  |
| 2023 | 4     | 29   | 5    | 19.44        | 25.69       | 1.61             | 310                  |
| 2023 | 4     | 29   | 6    | 18.25        | 28.16       | 1.74             | 310                  |
| 2023 | 4     | 29   | 7    | 17.62        | 31.94       | 1.15             | 320                  |
| 2023 | 4     | 29   | 8    | 17.75        | 34.43       | 1.74             | 310                  |
| 2023 | 4     | 29   | 9    | 18.62        | 36.22       | 2.55             | 310                  |
| 2023 | 4     | 29   | 10   | 19.62        | 37.62       | 3.04             | 320                  |
| 2023 | 4     | 29   | 11   | 20.69        | 38.63       | 3.37             | 250                  |
| 2023 | 4     | 29   | 12   | 22           | 38.93       | 3.64             | 260                  |
| 2023 | 4     | 29   | 13   | 24           | 38.44       | 3.92             | 260                  |
| 2023 | 4     | 29   | 14   | 27.88        | 37.81       | 0.3              | 260                  |
| 2023 | 4     | 29   | 15   | 29.75        | 37.01       | 4.17             | 270                  |
| 2023 | 4     | 29   | 16   | 30.94        | 36.03       | 0.25             | 270                  |
| 2023 | 4     | 29   | 17   | 32.56        | 34.64       | 0.25             | 280                  |
| 2023 | 4     | 29   | 18   | 34.5         | 32.45       | 2.06             | 287                  |
| 2023 | 4     | 29   | 19   | 36.44        | 31.33       | 2.09             | 290                  |
| 2023 | 4     | 29   | 20   | 38.44        | 30.65       | 2.08             | 290                  |
| 2023 | 4     | 29   | 21   | 40.19        | 29.94       | 2.11             | 290                  |
| 2023 | 4     | 29   | 22   | 41.94        | 29.14       | 2.2              | 290                  |
| 2023 | 4     | 29   | 23   | 42.75        | 28.45       | 2.29             | 290                  |
| 2023 | 4     | 29   | 24   | 44.69        | 27.83       | 2.27             | 320                  |
| 2023 | 4     | 30   | 1    | 44.19        | 27.33       | 2.1              | 320                  |
| 2023 | 4     | 30   | 2    | 37.19        | 26.84       | 1.7              | 320                  |
| 2023 | 4     | 30   | 3    | 30.94        | 26.59       | 1.24             | 40                   |
| 2023 | 4     | 30   | 4    | 28.19        | 25.89       | 1.46             | 90                   |

| Year | Month | Date | Hour | Relative<br>Humidity (%) | Temperature<br>(°C) | Wind Speed (m/s) | Wind<br>Direction (°) |
|------|-------|------|------|--------------------------|---------------------|------------------|-----------------------|
| 2023 | 4     | 30   | 5    | 26.75                    | 26.08               | 1.66             | 120                   |
| 2023 | 4     | 30   | 6    | 25.38                    | 29.19               | 2.16             | 30                    |
| 2023 | 4     | 30   | 7    | 24.56                    | 32.75               | 3.11             | 180                   |
| 2023 | 4     | 30   | 8    | 24.44                    | 34.94               | 4.11             | 210                   |
| 2023 | 4     | 30   | 9    | 24.62                    | 36.4                | 0.3              | 220                   |
| 2023 | 4     | 30   | 10   | 24.62                    | 37.49               | 0.2              | 230                   |
| 2023 | 4     | 30   | 11   | 26.38                    | 37.95               | 0.2              | 230                   |
| 2023 | 4     | 30   | 12   | 28.81                    | 37.91               | 0.2              | 230                   |
| 2023 | 4     | 30   | 13   | 31.81                    | 37.79               | 0.2              | 230                   |
| 2023 | 4     | 30   | 14   | 34.88                    | 37.64               | 0.2              | 230                   |
| 2023 | 4     | 30   | 15   | 37                       | 36.39               | 0.2              | 270                   |
| 2023 | 4     | 30   | 16   | 38.94                    | 35.06               | 4.77             | 280                   |
| 2023 | 4     | 30   | 17   | 41.38                    | 33.76               | 4.1              | 293                   |
| 2023 | 4     | 30   | 18   | 44.56                    | 32.64               | 0.25             | 270                   |
| 2023 | 4     | 30   | 19   | 50.75                    | 31.83               | 2.69             | 270                   |
| 2023 | 4     | 30   | 20   | 58.88                    | 31.02               | 0.25             | 270                   |
| 2023 | 4     | 30   | 21   | 70                       | 30.11               | 0.25             | 270                   |
| 2023 | 4     | 30   | 22   | 81.25                    | 29.29               | 0.25             | 270                   |
| 2023 | 4     | 30   | 23   | 88.62                    | 27.89               | 0.2              | 270                   |
| 2023 | 4     | 30   | 24   | 91.31                    | 26.29               | 0.2              | 270                   |
| 2023 | 5     | 1    | 1    | 91.69                    | 24.48               | 4.83             | 270                   |
| 2023 | 5     | 1    | 2    | 88.06                    | 22.94               | 0.3              | 320                   |
| 2023 | 5     | 1    | 3    | 83.38                    | 22.18               | 2.84             | 310                   |
| 2023 | 5     | 1    | 4    | 76.19                    | 21.99               | 1.73             | 40                    |
| 2023 | 5     | 1    | 5    | 64.44                    | 22.02               | 1.95             | 40                    |
| 2023 | 5     | 1    | 6    | 53.44                    | 22.58               | 2.83             | 40                    |
| 2023 | 5     | 1    | 7    | 46.31                    | 23.44               | 3.77             | 40                    |
| 2023 | 5     | 1    | 8    | 41.81                    | 24.73               | 3.5              | 40                    |
| 2023 | 5     | 1    | 9    | 38.81                    | 27.03               | 0.2              | 40                    |
| 2023 | 5     | 1    | 10   | 36.94                    | 29.23               | 0.2              | 40                    |
| 2023 | 5     | 1    | 11   | 36.19                    | 30.9                | 0.2              | 180                   |
| 2023 | 5     | 1    | 12   | 36.81                    | 32.21               | 4.41             | 190                   |
| 2023 | 5     | 1    | 13   | 42.81                    | 33.15               | 3.54             | 196                   |
| 2023 | 5     | 1    | 14   | 53.38                    | 33.55               | 2.75             | 190                   |
| 2023 | 5     | 1    | 15   | 62.44                    | 33.4                | 2.08             | 190                   |
| 2023 | 5     | 1    | 16   | 62.62                    | 32.66               | 1.4              | 200                   |
| 2023 | 5     | 1    | 17   | 62                       | 31.54               | 0.53             | 160                   |
| 2023 | 5     | 1    | 18   | 64.12                    | 29.87               | 1.04             | 70                    |

| Year | Month | Date | Hour | Relative<br>Humidity (%) | Temperature<br>(°C) | Wind Speed (m/s) | Wind<br>Direction (°) |
|------|-------|------|------|--------------------------|---------------------|------------------|-----------------------|
| 2023 | 5     | 1    | 19   | 66.75                    | 28.23               | 1.89             | 70                    |
| 2023 | 5     | 1    | 20   | 69.44                    | 27.27               | 2.41             | 70                    |
| 2023 | 5     | 1    | 21   | 70.12                    | 26.66               | 0.5              | 70                    |
| 2023 | 5     | 1    | 22   | 71.44                    | 25.95               | 0.5              | 110                   |
| 2023 | 5     | 1    | 23   | 73.38                    | 25.4                | 0.5              | 120                   |
| 2023 | 5     | 1    | 24   | 75.12                    | 24.83               | 0.5              | 120                   |
| 2023 | 5     | 2    | 1    | 73.31                    | 24.56               | 0.25             | 30                    |
| 2023 | 5     | 2    | 2    | 64.19                    | 24.11               | 2.95             | 150                   |
| 2023 | 5     | 2    | 3    | 57.69                    | 23.65               | 2.37             | 170                   |
| 2023 | 5     | 2    | 4    | 53.25                    | 23.44               | 1.95             | 190                   |
| 2023 | 5     | 2    | 5    | 49.44                    | 24.07               | 1.61             | 190                   |
| 2023 | 5     | 2    | 6    | 45.62                    | 25.5                | 1.87             | 220                   |
| 2023 | 5     | 2    | 7    | 41.62                    | 27.09               | 2.38             | 180                   |
| 2023 | 5     | 2    | 8    | 38.81                    | 28.23               | 2.35             | 260                   |
| 2023 | 5     | 2    | 9    | 37.81                    | 29.3                | 2.26             | 180                   |
| 2023 | 5     | 2    | 10   | 37.31                    | 30.44               | 2.32             | 230                   |
| 2023 | 5     | 2    | 11   | 37.75                    | 31.8                | 2.31             | 230                   |
| 2023 | 5     | 2    | 12   | 38.94                    | 32.86               | 2.19             | 230                   |
| 2023 | 5     | 2    | 13   | 46.94                    | 33.22               | 1.93             | 230                   |
| 2023 | 5     | 2    | 14   | 59.5                     | 33.32               | 1.67             | 230                   |
| 2023 | 5     | 2    | 15   | 59.19                    | 32.94               | 1.49             | 230                   |
| 2023 | 5     | 2    | 16   | 59.94                    | 32.22               | 1.32             | 260                   |
| 2023 | 5     | 2    | 17   | 60.88                    | 30.62               | 1.01             | 260                   |
| 2023 | 5     | 2    | 18   | 60.12                    | 28.53               | 1.22             | 260                   |
| 2023 | 5     | 2    | 19   | 60.12                    | 27.93               | 1.48             | 260                   |
| 2023 | 5     | 2    | 20   | 62                       | 27.44               | 1.51             | 260                   |
| 2023 | 5     | 2    | 21   | 64.62                    | 27.04               | 1.29             | 260                   |
| 2023 | 5     | 2    | 22   | 66.69                    | 26.95               | 0.91             | 260                   |
| 2023 | 5     | 2    | 23   | 68.19                    | 26.76               | 0.69             | 50                    |
| 2023 | 5     | 2    | 24   | 70.25                    | 26.26               | 0.91             | 110                   |
| 2023 | 5     | 3    | 1    | 70.75                    | 25.59               | 1.19             | 80                    |
| 2023 | 5     | 3    | 2    | 59.06                    | 24.94               | 1.4              | 180                   |
| 2023 | 5     | 3    | 3    | 51.56                    | 24.4                | 1.44             | 150                   |
| 2023 | 5     | 3    | 4    | 47                       | 24.02               | 1.34             | 180                   |
| 2023 | 5     | 3    | 5    | 43.94                    | 24.34               | 1.5              | 220                   |
| 2023 | 5     | 3    | 6    | 41.19                    | 26.25               | 2.67             | 250                   |
| 2023 | 5     | 3    | 7    | 38.25                    | 28.41               | 0.25             | 277                   |
| 2023 | 5     | 3    | 8    | 35.19                    | 30.05               | 0.25             | 277                   |

| Year | Month | Date | Hour | Relative     | Temperature | Wind Speed (m/s) | Wind                 |
|------|-------|------|------|--------------|-------------|------------------|----------------------|
|      |       |      |      | Humidity (%) | (°C)        |                  | <b>Direction</b> (°) |
| 2023 | 5     | 3    | 9    | 33.31        | 31.38       | 0.25             | 277                  |
| 2023 | 5     | 3    | 10   | 32.88        | 32.55       | 0.25             | 277                  |
| 2023 | 5     | 3    | 11   | 33.12        | 33.47       | 4.22             | 225                  |
| 2023 | 5     | 3    | 12   | 34.38        | 34.16       | 4.48             | 277                  |
| 2023 | 5     | 3    | 13   | 44.5         | 34.41       | 4.43             | 230                  |
| 2023 | 5     | 3    | 14   | 56.88        | 34.22       | 4.15             | 230                  |
| 2023 | 5     | 3    | 15   | 58.44        | 33.66       | 0.25             | 230                  |
| 2023 | 5     | 3    | 16   | 59.06        | 32.61       | 0.25             | 230                  |
| 2023 | 5     | 3    | 17   | 59.19        | 30.4        | 2.2              | 230                  |
| 2023 | 5     | 3    | 18   | 59.25        | 27.86       | 1.97             | 230                  |
| 2023 | 5     | 3    | 19   | 59.06        | 27.01       | 1.96             | 260                  |
| 2023 | 5     | 3    | 20   | 58.75        | 26.3        | 1.94             | 260                  |
| 2023 | 5     | 3    | 21   | 59.44        | 25.77       | 1.88             | 260                  |
| 2023 | 5     | 3    | 22   | 60.94        | 25.35       | 1.79             | 260                  |
| 2023 | 5     | 3    | 23   | 63.69        | 25.04       | 1.68             | 260                  |
| 2023 | 5     | 3    | 24   | 66.5         | 24.8        | 1.54             | 230                  |
| 2023 | 5     | 4    | 1    | 67.69        | 24.37       | 1.43             | 260                  |
| 2023 | 5     | 4    | 2    | 53.25        | 23.86       | 1.38             | 210                  |
| 2023 | 5     | 4    | 3    | 41.81        | 23.11       | 1.48             | 190                  |
| 2023 | 5     | 4    | 4    | 35.19        | 22.38       | 1.69             | 280                  |
| 2023 | 5     | 4    | 5    | 31.25        | 22.69       | 1.76             | 170                  |
| 2023 | 5     | 4    | 6    | 28.75        | 25.67       | 2.56             | 170                  |
| 2023 | 5     | 4    | 7    | 27.38        | 29.33       | 2.42             | 180                  |
| 2023 | 5     | 4    | 8    | 26.56        | 31.71       | 2.05             | 220                  |
| 2023 | 5     | 4    | 9    | 26.56        | 33.4        | 1.9              | 210                  |
| 2023 | 5     | 4    | 10   | 26.88        | 34.69       | 2.18             | 275                  |
| 2023 | 5     | 4    | 11   | 27.44        | 35.59       | 2.49             | 275                  |
| 2023 | 5     | 4    | 12   | 28.75        | 36.21       | 2.77             | 275                  |
| 2023 | 5     | 4    | 13   | 39.5         | 36.37       | 2.96             | 275                  |
| 2023 | 5     | 4    | 14   | 52           | 36.23       | 0.25             | 275                  |
| 2023 | 5     | 4    | 15   | 53.44        | 35.74       | 0.25             | 275                  |
| 2023 | 5     | 4    | 16   | 54.62        | 34.69       | 0.25             | 275                  |
| 2023 | 5     | 4    | 17   | 56           | 32.33       | 2.02             | 275                  |
| 2023 | 5     | 4    | 18   | 57.19        | 29.69       | 1.93             | 275                  |
| 2023 | 5     | 4    | 19   | 59.5         | 28.9        | 1.97             | 310                  |
| 2023 | 5     | 4    | 20   | 61.75        | 28.21       | 2.01             | 310                  |
| 2023 | 5     | 4    | 21   | 63.69        | 27.61       | 2.03             | 310                  |
| 2023 | 5     | 4    | 22   | 65.19        | 27.08       | 2.08             | 310                  |

| Year | Month | Date | Hour | Relative              | Temperature   | Wind Speed (m/s) | Wind<br>Direction (°) |
|------|-------|------|------|-----------------------|---------------|------------------|-----------------------|
| 2023 | 5     | 4    | 23   | Humidity (%)<br>67.81 | (°C)<br>26.34 | 2.17             | 310                   |
| 2023 | 5     | 4    | 23   | 69.81                 | 25.65         | 2.17             | 310                   |
| 2023 | 5     | 5    | 1    | 67.5                  | 25.12         | 2.26             | 310                   |
| 2023 | 5     | 5    | 2    | 55.88                 | 24.94         | 2.07             | 310                   |
| 2023 | 5     | 5    | 3    | 42.12                 | 24.34         | 1.94             | 310                   |
| 2023 | 5     | 5    | 4    | 37.56                 | 23.8          | 1.94             | 310                   |
| 2023 | 5     | 5    | 5    | 34.38                 | 23.8          | 1.55             | 310                   |
| 2023 | 5     | 5    | 6    | 32.06                 | 26.73         | 1.41             | 320                   |
| 2023 | 5     | 5    | 7    | 30.38                 | 31.02         | 1.12             | 320                   |
| 2023 | 5     | 5    | 8    | 29.56                 | 33.05         | 1.65             | 320                   |
| 2023 | 5     | 5    | 9    | 29.30                 | 34.48         | 2.26             | 320                   |
| 2023 | 5     | 5    | 10   | 29.5                  | 35.61         | 2.75             | 320                   |
| 2023 | 5     | 5    | 10   | 30.62                 | 36.41         | 0.25             | 320                   |
| 2023 | 5     | 5    | 12   | 32.69                 | 36.77         | 0.25             | 320                   |
| 2023 | 5     | 5    | 13   | 40.69                 | 36.89         | 0.25             | 320                   |
| 2023 | 5     | 5    | 14   | 54.06                 | 36.65         | 0.25             | 320                   |
| 2023 | 5     | 5    | 15   | 55.75                 | 35.89         | 0.25             | 300                   |
| 2023 | 5     | 5    | 16   | 56.88                 | 34.77         | 0.25             | 300                   |
| 2023 | 5     | 5    | 17   | 58.19                 | 32.92         | 2.45             | 300                   |
| 2023 | 5     | 5    | 18   | 59.44                 | 30.65         | 1.88             | 300                   |
| 2023 | 5     | 5    | 19   | 61                    | 30.08         | 1.88             | 270                   |
| 2023 | 5     | 5    | 20   | 62.94                 | 29.45         | 2.01             | 270                   |
| 2023 | 5     | 5    | 21   | 64.5                  | 28.73         | 2.15             | 300                   |
| 2023 | 5     | 5    | 22   | 66                    | 27.94         | 2.28             | 300                   |
| 2023 | 5     | 5    | 23   | 67.5                  | 27.23         | 2.35             | 300                   |
| 2023 | 5     | 5    | 24   | 68.56                 | 26.46         | 2.37             | 280                   |
| 2023 | 5     | 6    | 1    | 66.25                 | 25.82         | 2.32             | 280                   |
| 2023 | 5     | 6    | 2    | 53.06                 | 25.26         | 2.24             | 280                   |
| 2023 | 5     | 6    | 3    | 39.19                 | 24.73         | 2.16             | 280                   |
| 2023 | 5     | 6    | 4    | 34.06                 | 24.31         | 2.08             | 280                   |
| 2023 | 5     | 6    | 5    | 31.25                 | 24.96         | 2.04             | 280                   |
| 2023 | 5     | 6    | 6    | 28.94                 | 27.65         | 2.27             | 280                   |
| 2023 | 5     | 6    | 7    | 27                    | 31.76         | 2.46             | 280                   |
| 2023 | 5     | 6    | 8    | 25.69                 | 34.07         | 2.57             | 320                   |
| 2023 | 5     | 6    | 9    | 24.75                 | 35.56         | 2.65             | 320                   |
| 2023 | 5     | 6    | 10   | 24.38                 | 36.75         | 2.78             | 320                   |
| 2023 | 5     | 6    | 11   | 24.5                  | 37.68         | 2.89             | 320                   |
| 2023 | 5     | 6    | 12   | 25.56                 | 38.23         | 2.99             | 320                   |

| Year | Month | Date | Hour | Relative<br>Humidity (%) | Temperature<br>(°C) | Wind Speed (m/s) | Wind<br>Direction (°) |
|------|-------|------|------|--------------------------|---------------------|------------------|-----------------------|
| 2023 | 5     | 6    | 13   | 34.38                    | 38.4                | 0.25             | 320                   |
| 2023 | 5     | 6    | 14   | 40.44                    | 38.18               | 2.88             | 320                   |
| 2023 | 5     | 6    | 15   | 40.62                    | 37.5                | 2.51             | 320                   |
| 2023 | 5     | 6    | 16   | 42.62                    | 36.37               | 1.92             | 320                   |
| 2023 | 5     | 6    | 17   | 44.31                    | 34.37               | 0.77             | 320                   |
| 2023 | 5     | 6    | 18   | 46.75                    | 32.8                | 0.14             | 320                   |
| 2023 | 5     | 6    | 19   | 48.25                    | 32.01               | 0.94             | 320                   |
| 2023 | 5     | 6    | 20   | 50.31                    | 31.01               | 1.43             | 170                   |
| 2023 | 5     | 6    | 21   | 52.69                    | 30.22               | 1.68             | 280                   |
| 2023 | 5     | 6    | 22   | 55.19                    | 29.35               | 1.85             | 170                   |
| 2023 | 5     | 6    | 23   | 57.38                    | 28.52               | 2.02             | 170                   |
| 2023 | 5     | 6    | 24   | 59.69                    | 27.69               | 2.18             | 170                   |
| 2023 | 5     | 7    | 1    | 60.62                    | 26.87               | 2.34             | 170                   |
| 2023 | 5     | 7    | 2    | 47.25                    | 26.17               | 2.44             | 170                   |
| 2023 | 5     | 7    | 3    | 34.94                    | 25.55               | 2.48             | 170                   |
| 2023 | 5     | 7    | 4    | 27.44                    | 25.03               | 2.49             | 170                   |
| 2023 | 5     | 7    | 5    | 25.25                    | 25.58               | 2.24             | 170                   |
| 2023 | 5     | 7    | 6    | 23.81                    | 28.63               | 0.25             | 170                   |
| 2023 | 5     | 7    | 7    | 22.88                    | 32.63               | 2.83             | 170                   |
| 2023 | 5     | 7    | 8    | 22.25                    | 35.57               | 2.43             | 170                   |
| 2023 | 5     | 7    | 9    | 22.06                    | 36.98               | 2.14             | 170                   |
| 2023 | 5     | 7    | 10   | 22.38                    | 38.08               | 2.07             | 170                   |
| 2023 | 5     | 7    | 11   | 23.12                    | 38.86               | 2.09             | 170                   |
| 2023 | 5     | 7    | 12   | 24.56                    | 39.33               | 2.1              | 170                   |
| 2023 | 5     | 7    | 13   | 34.25                    | 39.4                | 2.05             | 170                   |
| 2023 | 5     | 7    | 14   | 43.56                    | 39.01               | 2.07             | 170                   |
| 2023 | 5     | 7    | 15   | 46.19                    | 38.28               | 2.13             | 350                   |
| 2023 | 5     | 7    | 16   | 45.56                    | 37.12               | 2.01             | 350                   |
| 2023 | 5     | 7    | 17   | 43.75                    | 34.91               | 1.19             | 350                   |
| 2023 | 5     | 7    | 18   | 43.31                    | 32.78               | 1.22             | 350                   |
| 2023 | 5     | 7    | 19   | 44.06                    | 31.91               | 1.28             | 350                   |
| 2023 | 5     | 7    | 20   | 45.31                    | 31.44               | 1.2              | 350                   |
| 2023 | 5     | 7    | 21   | 47.5                     | 31.26               | 1.07             | 350                   |
| 2023 | 5     | 7    | 22   | 49.75                    | 30.92               | 1.11             | 350                   |
| 2023 | 5     | 7    | 23   | 52.62                    | 30.41               | 1.29             | 350                   |
| 2023 | 5     | 7    | 24   | 54.94                    | 29.79               | 1.52             | 350                   |
| 2023 | 5     | 8    | 1    | 55.06                    | 29.03               | 1.74             | 210                   |
| 2023 | 5     | 8    | 2    | 41.75                    | 28.2                | 2                | 210                   |

| Year | Month | Date | Hour | Relative     | Temperature | Wind Speed (m/s) | Wind          |
|------|-------|------|------|--------------|-------------|------------------|---------------|
|      |       |      |      | Humidity (%) | (°C)        |                  | Direction (°) |
| 2023 | 5     | 8    | 3    | 33.31        | 27.32       | 2.24             | 210           |
| 2023 | 5     | 8    | 4    | 27.12        | 26.66       | 2.39             | 210           |
| 2023 | 5     | 8    | 5    | 25.19        | 27.11       | 2.3              | 210           |
| 2023 | 5     | 8    | 6    | 23.88        | 30.26       | 0.25             | 210           |
| 2023 | 5     | 8    | 7    | 23.06        | 33.67       | 2.79             | 210           |
| 2023 | 5     | 8    | 8    | 22.5         | 36.57       | 1.88             | 210           |
| 2023 | 5     | 8    | 9    | 22.44        | 37.98       | 1.21             | 210           |
| 2023 | 5     | 8    | 10   | 22.5         | 39.08       | 1.13             | 210           |
| 2023 | 5     | 8    | 11   | 23           | 39.75       | 1.35             | 210           |
| 2023 | 5     | 8    | 12   | 24.19        | 40.19       | 1.64             | 320           |
| 2023 | 5     | 8    | 13   | 32.69        | 40.2        | 1.84             | 333           |
| 2023 | 5     | 8    | 14   | 41.31        | 39.96       | 1.91             | 320           |
| 2023 | 5     | 8    | 15   | 38.69        | 39.26       | 1.75             | 320           |
| 2023 | 5     | 8    | 16   | 39.44        | 38.11       | 1.37             | 320           |
| 2023 | 5     | 8    | 17   | 40.75        | 36.08       | 0.67             | 320           |
| 2023 | 5     | 8    | 18   | 40.75        | 34.12       | 0.4              | 320           |
| 2023 | 5     | 8    | 19   | 41.88        | 33.72       | 0.38             | 320           |
| 2023 | 5     | 8    | 20   | 43.12        | 33.14       | 0.54             | 320           |
| 2023 | 5     | 8    | 21   | 44.44        | 32.5        | 0.68             | 320           |
| 2023 | 5     | 8    | 22   | 45.44        | 31.96       | 0.87             | 320           |
| 2023 | 5     | 8    | 23   | 46.31        | 31.33       | 1.09             | 320           |
| 2023 | 5     | 8    | 24   | 48.25        | 30.78       | 1.27             | 320           |
| 2023 | 5     | 9    | 1    | 50.12        | 30.12       | 1.4              | 320           |
| 2023 | 5     | 9    | 2    | 40.5         | 29.67       | 1.36             | 320           |
| 2023 | 5     | 9    | 3    | 32           | 29.29       | 1.21             | 320           |
| 2023 | 5     | 9    | 4    | 26.88        | 28.82       | 1.09             | 250           |
| 2023 | 5     | 9    | 5    | 24.44        | 28.83       | 1.01             | 180           |
| 2023 | 5     | 9    | 6    | 22.69        | 30.83       | 1.49             | 180           |
| 2023 | 5     | 9    | 7    | 21.31        | 34.42       | 0.91             | 180           |
| 2023 | 5     | 9    | 8    | 20.31        | 37.16       | 0.97             | 180           |
| 2023 | 5     | 9    | 9    | 19.88        | 38.69       | 1.32             | 180           |
| 2023 | 5     | 9    | 10   | 19.88        | 39.86       | 1.67             | 180           |
| 2023 | 5     | 9    | 11   | 20.12        | 40.71       | 2                | 180           |
| 2023 | 5     | 9    | 12   | 21.12        | 41.31       | 2.36             | 180           |
| 2023 | 5     | 9    | 13   | 29.5         | 41.47       | 2.66             | 180           |
| 2023 | 5     | 9    | 14   | 36.44        | 41.16       | 2.65             | 340           |
| 2023 | 5     | 9    | 15   | 39           | 40.5        | 2.3              | 270           |
| 2023 | 5     | 9    | 16   | 39.12        | 39.33       | 1.87             | 340           |

| Year | Month | Date | Hour | Relative     | Temperature | Wind Speed (m/s) | Wind                 |
|------|-------|------|------|--------------|-------------|------------------|----------------------|
|      |       |      |      | Humidity (%) | (°C)        |                  | <b>Direction</b> (°) |
| 2023 | 5     | 9    | 17   | 39.56        | 37.16       | 1.24             | 230                  |
| 2023 | 5     | 9    | 18   | 40.25        | 34.76       | 1.84             | 180                  |
| 2023 | 5     | 9    | 19   | 41.5         | 33.41       | 2.49             | 180                  |
| 2023 | 5     | 9    | 20   | 43.06        | 32.67       | 2.86             | 200                  |
| 2023 | 5     | 9    | 21   | 44.69        | 32.14       | 0.25             | 200                  |
| 2023 | 5     | 9    | 22   | 46.94        | 31.67       | 0.25             | 200                  |
| 2023 | 5     | 9    | 23   | 49.38        | 31.12       | 0.25             | 200                  |
| 2023 | 5     | 9    | 24   | 51.88        | 30.51       | 2.94             | 200                  |
| 2023 | 5     | 10   | 1    | 51.75        | 29.91       | 2.85             | 200                  |
| 2023 | 5     | 10   | 2    | 39.19        | 29.16       | 2.72             | 200                  |
| 2023 | 5     | 10   | 3    | 29.31        | 28.39       | 2.6              | 200                  |
| 2023 | 5     | 10   | 4    | 19.81        | 27.55       | 2.49             | 200                  |
| 2023 | 5     | 10   | 5    | 16.44        | 27.98       | 2.15             | 260                  |
| 2023 | 5     | 10   | 6    | 14.56        | 30.94       | 2.52             | 260                  |
| 2023 | 5     | 10   | 7    | 13.38        | 34.62       | 2.3              | 260                  |
| 2023 | 5     | 10   | 8    | 12.69        | 38.1        | 0.25             | 260                  |
| 2023 | 5     | 10   | 9    | 12.31        | 39.82       | 0.25             | 260                  |
| 2023 | 5     | 10   | 10   | 12.31        | 40.96       | 0.25             | 260                  |
| 2023 | 5     | 10   | 11   | 12.44        | 41.71       | 0.25             | 260                  |
| 2023 | 5     | 10   | 12   | 13           | 42.11       | 0.25             | 260                  |
| 2023 | 5     | 10   | 13   | 26           | 42.15       | 2.9              | 260                  |
| 2023 | 5     | 10   | 14   | 27.88        | 41.76       | 2.68             | 180                  |
| 2023 | 5     | 10   | 15   | 30.75        | 41.02       | 2.35             | 180                  |
| 2023 | 5     | 10   | 16   | 31.81        | 39.88       | 1.86             | 180                  |
| 2023 | 5     | 10   | 17   | 32.31        | 36.89       | 1.2              | 180                  |
| 2023 | 5     | 10   | 18   | 31.88        | 34.33       | 1.89             | 180                  |
| 2023 | 5     | 10   | 19   | 31.75        | 32.53       | 2.4              | 180                  |
| 2023 | 5     | 10   | 20   | 33.69        | 31.38       | 2.55             | 180                  |
| 2023 | 5     | 10   | 21   | 35.38        | 30.86       | 2.36             | 180                  |
| 2023 | 5     | 10   | 22   | 36.69        | 30.74       | 1.97             | 180                  |
| 2023 | 5     | 10   | 23   | 37.44        | 30.35       | 1.69             | 180                  |
| 2023 | 5     | 10   | 24   | 37.81        | 29.12       | 1.78             | 180                  |
| 2023 | 5     | 11   | 1    | 36.44        | 27.65       | 2.09             | 180                  |
| 2023 | 5     | 11   | 2    | 23.88        | 26.24       | 2.39             | 180                  |
| 2023 | 5     | 11   | 3    | 19.31        | 24.88       | 2.67             | 180                  |
| 2023 | 5     | 11   | 4    | 11.25        | 23.75       | 2.71             | 180                  |
| 2023 | 5     | 11   | 5    | 8.81         | 24.12       | 2.49             | 180                  |
| 2023 | 5     | 11   | 6    | 8.56         | 27.04       | 0.25             | 180                  |

| Year | Month | Date | Hour | Relative     | Temperature | Wind Speed (m/s) | Wind          |
|------|-------|------|------|--------------|-------------|------------------|---------------|
|      |       |      |      | Humidity (%) | (°C)        |                  | Direction (°) |
| 2023 | 5     | 11   | 7    | 8.69         | 30.4        | 0.25             | 180           |
| 2023 | 5     | 11   | 8    | 8.81         | 35.96       | 0.25             | 180           |
| 2023 | 5     | 11   | 9    | 8.75         | 39.01       | 0.25             | 180           |
| 2023 | 5     | 11   | 10   | 8.69         | 40.39       | 0.25             | 180           |
| 2023 | 5     | 11   | 11   | 8.56         | 41.16       | 2.86             | 180           |
| 2023 | 5     | 11   | 12   | 8.88         | 41.59       | 2.7              | 180           |
| 2023 | 5     | 11   | 13   | 20.19        | 41.65       | 2.84             | 180           |
| 2023 | 5     | 11   | 14   | 18.81        | 41.34       | 2.97             | 180           |
| 2023 | 5     | 11   | 15   | 20.75        | 40.58       | 2.81             | 180           |
| 2023 | 5     | 11   | 16   | 23.69        | 39.36       | 2.28             | 180           |
| 2023 | 5     | 11   | 17   | 25.06        | 36.42       | 0.98             | 180           |
| 2023 | 5     | 11   | 18   | 25.62        | 34.46       | 1.11             | 180           |
| 2023 | 5     | 11   | 19   | 26           | 32.64       | 1.97             | 180           |
| 2023 | 5     | 11   | 20   | 26.38        | 30.59       | 2.58             | 180           |
| 2023 | 5     | 11   | 21   | 26.88        | 29.3        | 2.83             | 40            |
| 2023 | 5     | 11   | 22   | 27.25        | 28.62       | 2.78             | 40            |
| 2023 | 5     | 11   | 23   | 26.5         | 28.14       | 2.61             | 40            |
| 2023 | 5     | 11   | 24   | 25.62        | 27.73       | 2.46             | 40            |
| 2023 | 5     | 12   | 1    | 26.31        | 27.26       | 2.34             | 40            |
| 2023 | 5     | 12   | 2    | 22.69        | 26.94       | 2.11             | 40            |
| 2023 | 5     | 12   | 3    | 17.06        | 27.01       | 1.68             | 225           |
| 2023 | 5     | 12   | 4    | 11.38        | 26.93       | 0.99             | 40            |
| 2023 | 5     | 12   | 5    | 9.81         | 27.04       | 0.28             | 310           |
| 2023 | 5     | 12   | 6    | 9.25         | 28.65       | 1.17             | 310           |
| 2023 | 5     | 12   | 7    | 8.94         | 31.84       | 2.16             | 310           |
| 2023 | 5     | 12   | 8    | 8.81         | 36.33       | 2.33             | 310           |
| 2023 | 5     | 12   | 9    | 8.88         | 38.61       | 2.12             | 310           |
| 2023 | 5     | 12   | 10   | 9.06         | 40.01       | 2.29             | 310           |
| 2023 | 5     | 12   | 11   | 9.44         | 40.88       | 2.56             | 310           |
| 2023 | 5     | 12   | 12   | 10.19        | 41.29       | 2.75             | 310           |
| 2023 | 5     | 12   | 13   | 21           | 41.25       | 2.69             | 310           |
| 2023 | 5     | 12   | 14   | 24.75        | 40.86       | 2.44             | 310           |
| 2023 | 5     | 12   | 15   | 25.12        | 40.05       | 2.09             | 310           |
| 2023 | 5     | 12   | 16   | 26           | 38.81       | 1.83             | 310           |
| 2023 | 5     | 12   | 17   | 26.88        | 35.48       | 1.62             | 310           |
| 2023 | 5     | 12   | 18   | 27.12        | 32          | 2.53             | 260           |
| 2023 | 5     | 12   | 19   | 26.62        | 30.65       | 2.87             | 260           |
| 2023 | 5     | 12   | 20   | 26.31        | 29.67       | 2.89             | 310           |

| Year | Month | Date | Hour | Relative<br>Humidity (%) | Temperature<br>(°C) | Wind Speed (m/s) | Wind<br>Direction (°) |
|------|-------|------|------|--------------------------|---------------------|------------------|-----------------------|
| 2023 | 5     | 12   | 21   | 27.88                    | 28.94               | 2.79             | 310                   |
| 2023 | 5     | 12   | 21   | 30.44                    | 28.53               | 2.61             | 310                   |
| 2023 | 5     | 12   | 22   | 32.75                    | 28.44               | 2.25             | 310                   |
| 2023 | 5     | 12   | 23   | 34.62                    | 28.27               | 1.95             | 310                   |
| 2023 | 5     | 12   | 1    | 35.56                    | 27.19               | 1.98             | 310                   |
| 2023 | 5     | 13   | 2    | 24.62                    | 25.75               | 2.16             | 310                   |
| 2023 | 5     | 13   | 3    | 19.06                    | 24.51               | 2.29             | 310                   |
| 2023 | 5     | 13   | 4    | 13.38                    | 23.57               | 2.3              | 310                   |
| 2023 | 5     | 13   | 5    | 10.94                    | 23.83               | 2.15             | 310                   |
| 2023 | 5     | 13   | 6    | 10.62                    | 27.35               | 2.62             | 310                   |
| 2023 | 5     | 13   | 7    | 10.56                    | 30.95               | 2.45             | 310                   |
| 2023 | 5     | 13   | 8    | 10.75                    | 35.94               | 0.25             | 310                   |
| 2023 | 5     | 13   | 9    | 11.19                    | 39.2                | 0.25             | 310                   |
| 2023 | 5     | 13   | 10   | 11.75                    | 40.5                | 0.25             | 310                   |
| 2023 | 5     | 13   | 11   | 12.25                    | 41.41               | 0.51             | 20                    |
| 2023 | 5     | 13   | 12   | 13.12                    | 41.98               | 0.51             | 24                    |
| 2023 | 5     | 13   | 13   | 22.25                    | 42.06               | 0.51             | 24                    |
| 2023 | 5     | 13   | 14   | 27                       | 41.73               | 0.51             | 24                    |
| 2023 | 5     | 13   | 15   | 27.56                    | 40.97               | 0.51             | 24                    |
| 2023 | 5     | 13   | 16   | 26.69                    | 39.76               | 0.25             | 24                    |
| 2023 | 5     | 13   | 17   | 25.81                    | 36.3                | 2.09             | 24                    |
| 2023 | 5     | 13   | 18   | 24.94                    | 33.19               | 2.48             | 24                    |
| 2023 | 5     | 13   | 19   | 25.94                    | 32.52               | 2.27             | 24                    |
| 2023 | 5     | 13   | 20   | 26.31                    | 32.73               | 1.56             | 24                    |
| 2023 | 5     | 13   | 21   | 28.31                    | 32.65               | 0.81             | 24                    |
| 2023 | 5     | 13   | 22   | 29.06                    | 32.15               | 0.43             | 60                    |
| 2023 | 5     | 13   | 23   | 29.25                    | 31.25               | 0.83             | 30                    |
| 2023 | 5     | 13   | 24   | 30.62                    | 30.01               | 1.27             | 30                    |
| 2023 | 5     | 14   | 1    | 31.19                    | 28.91               | 1.58             | 30                    |
| 2023 | 5     | 14   | 2    | 25.62                    | 28.16               | 1.56             | 30                    |
| 2023 | 5     | 14   | 3    | 19.5                     | 27.67               | 1.35             | 30                    |
| 2023 | 5     | 14   | 4    | 12.75                    | 27.11               | 1.15             | 30                    |
| 2023 | 5     | 14   | 5    | 11                       | 27.32               | 1.02             | 30                    |
| 2023 | 5     | 14   | 6    | 10.31                    | 29.9                | 1.13             | 30                    |
| 2023 | 5     | 14   | 7    | 10                       | 33.9                | 1.78             | 30                    |
| 2023 | 5     | 14   | 8    | 9.88                     | 39.25               | 0.25             | 30                    |
| 2023 | 5     | 14   | 9    | 9.94                     | 41.37               | 4.49             | 30                    |
| 2023 | 5     | 14   | 10   | 10.19                    | 42.66               | 0.3              | 260                   |

| Year | Month | Date | Hour | Relative<br>Humidity (%) | Temperature<br>(°C) | Wind Speed (m/s) | Wind<br>Direction (°) |
|------|-------|------|------|--------------------------|---------------------|------------------|-----------------------|
| 2023 | 5     | 14   | 11   | 10.5                     | 43.61               | 0.3              | 260                   |
| 2023 | 5     | 14   | 12   | 11.25                    | 44.15               | 0.3              | 260                   |
| 2023 | 5     | 14   | 13   | 20.75                    | 44.23               | 0.3              | 260                   |
| 2023 | 5     | 14   | 14   | 23.5                     | 43.84               | 0.25             | 260                   |
| 2023 | 5     | 14   | 15   | 23.12                    | 43.07               | 2.88             | 260                   |
| 2023 | 5     | 14   | 16   | 23.62                    | 41.94               | 2.22             | 260                   |
| 2023 | 5     | 14   | 17   | 25.12                    | 38.69               | 1.55             | 260                   |
| 2023 | 5     | 14   | 18   | 26.75                    | 35.29               | 2.59             | 260                   |
| 2023 | 5     | 14   | 19   | 28.25                    | 33.99               | 3.23             | 260                   |
| 2023 | 5     | 14   | 20   | 29.75                    | 33.05               | 3.39             | 260                   |
| 2023 | 5     | 14   | 21   | 30.88                    | 32.11               | 3.35             | 260                   |
| 2023 | 5     | 14   | 22   | 31.94                    | 31.15               | 3.29             | 260                   |
| 2023 | 5     | 14   | 23   | 32.69                    | 30.23               | 3.22             | 260                   |
| 2023 | 5     | 14   | 24   | 33.56                    | 29.26               | 3.14             | 260                   |
| 2023 | 5     | 15   | 1    | 31.88                    | 28.55               | 3.02             | 260                   |
| 2023 | 5     | 15   | 2    | 25.25                    | 27.91               | 2.91             | 260                   |
| 2023 | 5     | 15   | 3    | 20.19                    | 27.46               | 2.83             | 260                   |
| 2023 | 5     | 15   | 4    | 16.88                    | 26.95               | 2.83             | 260                   |
| 2023 | 5     | 15   | 5    | 14.62                    | 27.78               | 3.15             | 260                   |
| 2023 | 5     | 15   | 6    | 13.31                    | 30.92               | 0.3              | 260                   |
| 2023 | 5     | 15   | 7    | 12.81                    | 34.44               | 0.2              | 260                   |
| 2023 | 5     | 15   | 8    | 12.62                    | 37.51               | 0.2              | 260                   |
| 2023 | 5     | 15   | 9    | 12.62                    | 40.03               | 0.3              | 260                   |
| 2023 | 5     | 15   | 10   | 12.88                    | 42.05               | 0.2              | 260                   |
| 2023 | 5     | 15   | 11   | 13.19                    | 43.17               | 0.3              | 260                   |
| 2023 | 5     | 15   | 12   | 13.81                    | 43.89               | 0.3              | 260                   |
| 2023 | 5     | 15   | 13   | 17.38                    | 44.05               | 0.3              | 260                   |
| 2023 | 5     | 15   | 14   | 23                       | 43.7                | 0.2              | 260                   |
| 2023 | 5     | 15   | 15   | 24.19                    | 42.9                | 0.2              | 260                   |
| 2023 | 5     | 15   | 16   | 25.25                    | 41.71               | 0.2              | 260                   |
| 2023 | 5     | 15   | 17   | 26.81                    | 39.07               | 3.51             | 260                   |
| 2023 | 5     | 15   | 18   | 28.56                    | 35.76               | 2.98             | 260                   |
| 2023 | 5     | 15   | 19   | 30.56                    | 34.88               | 3.05             | 260                   |
| 2023 | 5     | 15   | 20   | 32.38                    | 34.13               | 3.15             | 260                   |
| 2023 | 5     | 15   | 21   | 34.06                    | 33.38               | 3.23             | 260                   |
| 2023 | 5     | 15   | 22   | 35.12                    | 32.61               | 0.25             | 220                   |
| 2023 | 5     | 15   | 23   | 36.06                    | 31.9                | 0.25             | 220                   |
| 2023 | 5     | 15   | 24   | 37.06                    | 31.3                | 0.25             | 220                   |

| Year | Month | Date | Hour | Relative     | Temperature | Wind Speed (m/s) | Wind          |
|------|-------|------|------|--------------|-------------|------------------|---------------|
| 2022 | 5     | 16   | 1    | Humidity (%) | (°C)        | 0.25             | Direction (°) |
| 2023 | 5     | 16   | 1    | 35.88        | 30.77       | 0.25             | 220           |
| 2023 |       | 16   | 2    | 31.12        | 30.48       | 0.25             | 220           |
| 2023 | 5     | 16   | 3    | 24.69        | 30.13       | 0.25             | 280           |
| 2023 | 5     | 16   | 4    | 18.56        | 29.63       | 2.81             | 220           |
| 2023 | 5     | 16   | 5    | 15.56        | 29.96       | 0.25             | 270           |
| 2023 | 5     | 16   | 6    | 13.81        | 31.69       | 0.25             | 220           |
| 2023 | 5     | 16   | 7    | 12.56        | 34.89       | 0.25             | 220           |
| 2023 | 5     | 16   | 8    | 11.69        | 38.6        | 0.25             | 220           |
| 2023 | 5     | 16   | 9    | 11.19        | 41.02       | 0.25             | 220           |
| 2023 | 5     | 16   | 10   | 11.12        | 42.54       | 0.25             | 220           |
| 2023 | 5     | 16   | 11   | 11.56        | 43.42       | 3.15             | 220           |
| 2023 | 5     | 16   | 12   | 12.69        | 43.93       | 3.1              | 220           |
| 2023 | 5     | 16   | 13   | 16.75        | 44.05       | 3.13             | 50            |
| 2023 | 5     | 16   | 14   | 22.25        | 43.72       | 3.37             | 50            |
| 2023 | 5     | 16   | 15   | 23.62        | 43.08       | 0.51             | 50            |
| 2023 | 5     | 16   | 16   | 25.56        | 41.9        | 0.51             | 50            |
| 2023 | 5     | 16   | 17   | 27.81        | 39.3        | 0.51             | 50            |
| 2023 | 5     | 16   | 18   | 29.19        | 36.12       | 0.51             | 50            |
| 2023 | 5     | 16   | 19   | 31.25        | 35.62       | 0.61             | 50            |
| 2023 | 5     | 16   | 20   | 32.94        | 35.13       | 0.61             | 50            |
| 2023 | 5     | 16   | 21   | 34.5         | 34.41       | 0.61             | 50            |
| 2023 | 5     | 16   | 22   | 36.12        | 33.93       | 4.85             | 280           |
| 2023 | 5     | 16   | 23   | 38.06        | 32.98       | 0.61             | 50            |
| 2023 | 5     | 16   | 24   | 40.44        | 32.2        | 4.51             | 289           |
| 2023 | 5     | 17   | 1    | 39.44        | 31.58       | 0.61             | 50            |
| 2023 | 5     | 17   | 2    | 33.69        | 30.94       | 0.61             | 50            |
| 2023 | 5     | 17   | 3    | 24.31        | 30.21       | 0.61             | 50            |
| 2023 | 5     | 17   | 4    | 18.88        | 29.33       | 2.67             | 50            |
| 2023 | 5     | 17   | 5    | 16.31        | 29.83       | 2.78             | 50            |
| 2023 | 5     | 17   | 6    | 14.75        | 32.51       | 0.25             | 50            |
| 2023 | 5     | 17   | 7    | 13.69        | 37.03       | 0.25             | 50            |
| 2023 | 5     | 17   | 8    | 13.12        | 39.72       | 0.61             | 50            |
| 2023 | 5     | 17   | 9    | 13           | 41.28       | 0.61             | 50            |
| 2023 | 5     | 17   | 10   | 13.25        | 42.4        | 0.61             | 50            |
| 2023 | 5     | 17   | 11   | 14           | 43.19       | 0.61             | 50            |
| 2023 | 5     | 17   | 12   | 15.31        | 43.67       | 0.61             | 50            |
| 2023 | 5     | 17   | 13   | 18.19        | 43.75       | 0.61             | 50            |
| 2023 | 5     | 17   | 14   | 23.19        | 43.4        | 0.61             | 50            |

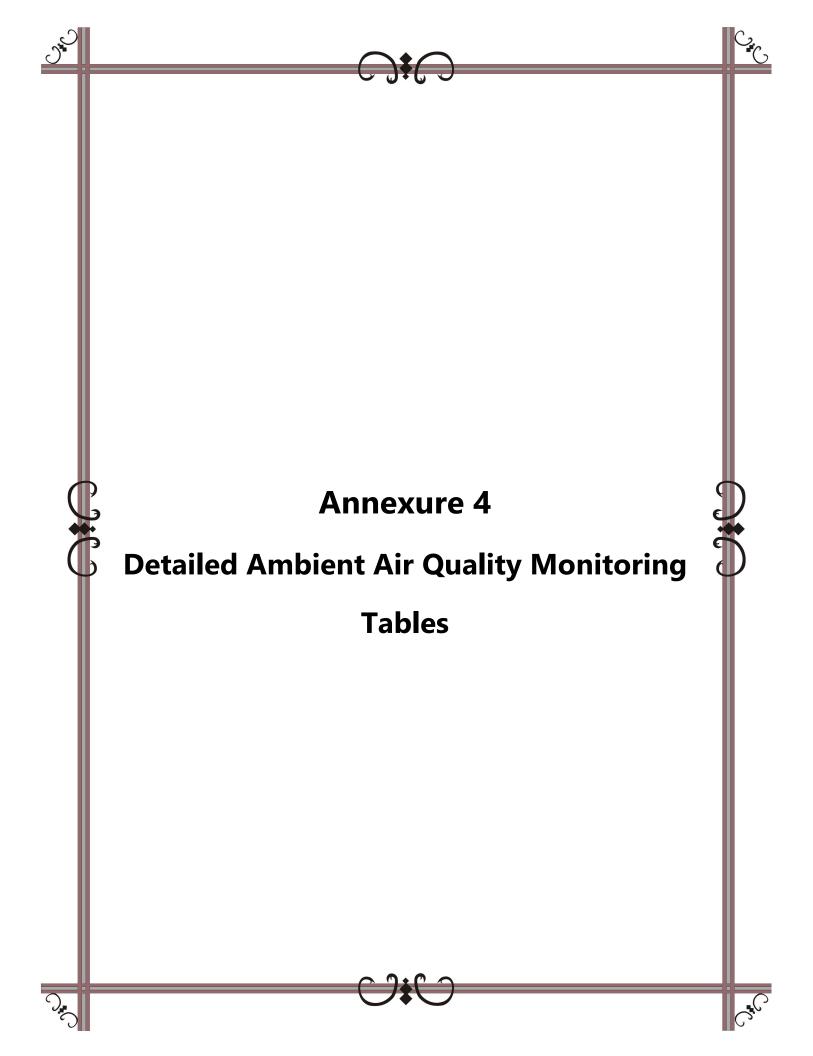
| Year | Month | Date | Hour | Relative<br>Humidity (%) | Temperature<br>(°C) | Wind Speed (m/s) | Wind<br>Direction (°) |
|------|-------|------|------|--------------------------|---------------------|------------------|-----------------------|
| 2023 | 5     | 17   | 15   | 23.56                    | 42.63               | 0.61             | 50                    |
| 2023 | 5     | 17   | 16   | 23.75                    | 41.33               | 0.61             | 50                    |
| 2023 | 5     | 17   | 17   | 23.81                    | 39.22               | 0.25             | 50                    |
| 2023 | 5     | 17   | 18   | 23.88                    | 36.25               | 2.76             | 50                    |
| 2023 | 5     | 17   | 19   | 24.44                    | 35.34               | 0.25             | 310                   |
| 2023 | 5     | 17   | 20   | 25.56                    | 34.59               | 0.25             | 310                   |
| 2023 | 5     | 17   | 21   | 26.81                    | 34.05               | 0.25             | 310                   |
| 2023 | 5     | 17   | 22   | 28.19                    | 33.49               | 0.25             | 310                   |
| 2023 | 5     | 17   | 23   | 29.69                    | 32.77               | 0.25             | 310                   |
| 2023 | 5     | 17   | 24   | 31.25                    | 31.98               | 0.25             | 310                   |
| 2023 | 5     | 18   | 1    | 32                       | 31.26               | 0.25             | 225                   |
| 2023 | 5     | 18   | 2    | 30.56                    | 30.72               | 0.25             | 310                   |
| 2023 | 5     | 18   | 3    | 26.25                    | 30.27               | 0.25             | 310                   |
| 2023 | 5     | 18   | 4    | 21.81                    | 29.87               | 0.25             | 310                   |
| 2023 | 5     | 18   | 5    | 19.56                    | 30.15               | 4.65             | 310                   |
| 2023 | 5     | 18   | 6    | 18.5                     | 31.93               | 0.2              | 310                   |
| 2023 | 5     | 18   | 7    | 17.81                    | 35.26               | 0.2              | 310                   |
| 2023 | 5     | 18   | 8    | 17.38                    | 38.47               | 0.2              | 310                   |
| 2023 | 5     | 18   | 9    | 17.31                    | 40.42               | 0.2              | 310                   |
| 2023 | 5     | 18   | 10   | 18.19                    | 41.73               | 0.2              | 310                   |
| 2023 | 5     | 18   | 11   | 18.94                    | 42.51               | 0.25             | 310                   |
| 2023 | 5     | 18   | 12   | 19.88                    | 42.97               | 0.25             | 310                   |
| 2023 | 5     | 18   | 13   | 22                       | 43.06               | 0.25             | 310                   |
| 2023 | 5     | 18   | 14   | 27                       | 42.24               | 0.25             | 310                   |
| 2023 | 5     | 18   | 15   | 28                       | 41.59               | 4.68             | 280                   |
| 2023 | 5     | 18   | 16   | 28.75                    | 40.8                | 0.25             | 310                   |
| 2023 | 5     | 18   | 17   | 29.75                    | 39.15               | 0.25             | 310                   |
| 2023 | 5     | 18   | 18   | 30.62                    | 36.43               | 2.56             | 310                   |
| 2023 | 5     | 18   | 19   | 31.62                    | 35.57               | 2.68             | 310                   |
| 2023 | 5     | 18   | 20   | 32.56                    | 34.76               | 2.77             | 310                   |
| 2023 | 5     | 18   | 21   | 33.88                    | 33.85               | 2.81             | 310                   |
| 2023 | 5     | 18   | 22   | 35.31                    | 32.94               | 2.81             | 310                   |
| 2023 | 5     | 18   | 23   | 36.75                    | 32.05               | 2.79             | 310                   |
| 2023 | 5     | 18   | 24   | 38.12                    | 31.3                | 2.72             | 310                   |
| 2023 | 5     | 19   | 1    | 36.81                    | 30.51               | 2.62             | 310                   |
| 2023 | 5     | 19   | 2    | 30.75                    | 29.82               | 2.52             | 180                   |
| 2023 | 5     | 19   | 3    | 23                       | 29.23               | 2.43             | 180                   |
| 2023 | 5     | 19   | 4    | 19.12                    | 28.75               | 2.31             | 180                   |

| Year | Month | Date     | Hour   | Relative<br>Humidity (%) | Temperature<br>(°C) | Wind Speed (m/s) | Wind<br>Direction (°) |
|------|-------|----------|--------|--------------------------|---------------------|------------------|-----------------------|
| 2023 | 5     | 19       | 5      | 17.5                     | 29.68               | 2.15             | 180                   |
| 2023 | 5     | 19       | 6      | 16.56                    | 32.76               | 2.15             | 180                   |
| 2023 | 5     | 19       | 7      | 15.88                    | 37.52               | 0.25             | 180                   |
|      | 5     | 19       | 8      |                          |                     |                  |                       |
| 2023 | 5     | 19       | 8<br>9 | 15.5                     | 40.25               | 0.25             | 180                   |
| 2023 |       |          |        | 15.12                    | 41.72               |                  | 180                   |
| 2023 | 5     | 19<br>19 | 10     | 15                       | 42.75               | 0.25             | 180<br>180            |
| 2023 | 5     |          | 11     | 15.25                    | 43.33               | 0.25             |                       |
| 2023 |       | 19       | 12     | 15.56                    | 43.51               |                  | 180                   |
| 2023 | 5     | 19       | 13     | 20.31                    | 43.54               | 3.26             | 180                   |
| 2023 | 5     | 19       | 14     | 23.31                    | 43.14               | 3.07             | 180                   |
| 2023 | 5     | 19       | 15     | 22.31                    | 42.35               | 2.92             | 180                   |
| 2023 | 5     | 19       | 16     | 23.06                    | 41.56               | 2.66             | 180                   |
| 2023 | 5     | 19       | 17     | 25.62                    | 39.68               | 1.52             | 180                   |
| 2023 | 5     | 19       | 18     | 27.12                    | 38.1                | 1.05             | 180                   |
| 2023 | 5     | 19       | 19     | 27.19                    | 37.76               | 0.67             | 280                   |
| 2023 | 5     | 19       | 20     | 27.5                     | 36.87               | 0.97             | 180                   |
| 2023 | 5     | 19       | 21     | 28.25                    | 35.34               | 1.67             | 180                   |
| 2023 | 5     | 19       | 22     | 29.25                    | 33.92               | 2.31             | 180                   |
| 2023 | 5     | 19       | 23     | 30.81                    | 33.06               | 2.74             | 350                   |
| 2023 | 5     | 19       | 24     | 32.56                    | 32.39               | 3.07             | 350                   |
| 2023 | 5     | 20       | 1      | 32                       | 31.72               | 0.25             | 350                   |
| 2023 | 5     | 20       | 2      | 27.38                    | 31.19               | 0.25             | 350                   |
| 2023 | 5     | 20       | 3      | 21.5                     | 30.5                | 0.25             | 350                   |
| 2023 | 5     | 20       | 4      | 18.19                    | 29.74               | 0.25             | 350                   |
| 2023 | 5     | 20       | 5      | 16.31                    | 30.23               | 0.25             | 350                   |
| 2023 | 5     | 20       | 6      | 15.19                    | 32.84               | 0.25             | 350                   |
| 2023 | 5     | 20       | 7      | 14.5                     | 36.9                | 0.25             | 350                   |
| 2023 | 5     | 20       | 8      | 14.12                    | 39.8                | 0.25             | 350                   |
| 2023 | 5     | 20       | 9      | 13.88                    | 41.56               | 2.93             | 350                   |
| 2023 | 5     | 20       | 10     | 14                       | 42.67               | 2.53             | 318                   |
| 2023 | 5     | 20       | 11     | 14.19                    | 43.33               | 2.21             | 350                   |
| 2023 | 5     | 20       | 12     | 14.69                    | 43.67               | 2.04             | 350                   |
| 2023 | 5     | 20       | 13     | 17.12                    | 43.63               | 1.93             | 350                   |
| 2023 | 5     | 20       | 14     | 21.75                    | 43.09               | 1.77             | 350                   |
| 2023 | 5     | 20       | 15     | 23.25                    | 42.39               | 1.6              | 350                   |
| 2023 | 5     | 20       | 16     | 23.56                    | 41.33               | 1.2              | 350                   |
| 2023 | 5     | 20       | 17     | 24.25                    | 39.9                | 0.48             | 350                   |
| 2023 | 5     | 20       | 18     | 25.12                    | 38.07               | 1                | 350                   |

| Year | Month | Date | Hour | Relative<br>Humidity (%) | Temperature<br>(°C) | Wind Speed (m/s) | Wind<br>Direction (°) |
|------|-------|------|------|--------------------------|---------------------|------------------|-----------------------|
| 2023 | 5     | 20   | 19   | 26.06                    | 36.51               | 1.81             | 350                   |
| 2023 | 5     | 20   | 20   | 27                       | 35.43               | 2.21             | 350                   |
| 2023 | 5     | 20   | 21   | 27.94                    | 34.44               | 2.42             | 350                   |
| 2023 | 5     | 20   | 22   | 28.88                    | 33.37               | 2.59             | 350                   |
| 2023 | 5     | 20   | 23   | 29.94                    | 32.24               | 2.75             | 350                   |
| 2023 | 5     | 20   | 24   | 31.38                    | 31.3                | 2.83             | 350                   |
| 2023 | 5     | 21   | 1    | 31.44                    | 30.45               | 2.84             | 350                   |
| 2023 | 5     | 21   | 2    | 27.88                    | 29.77               | 3.03             | 350                   |
| 2023 | 5     | 21   | 3    | 21.25                    | 29.21               | 3.4              | 350                   |
| 2023 | 5     | 21   | 4    | 17.06                    | 28.74               | 0.25             | 350                   |
| 2023 | 5     | 21   | 5    | 14.81                    | 29.34               | 4.62             | 350                   |
| 2023 | 5     | 21   | 6    | 13.25                    | 31.98               | 0.2              | 90                    |
| 2023 | 5     | 21   | 7    | 12                       | 36.4                | 0.2              | 90                    |
| 2023 | 5     | 21   | 8    | 11.06                    | 39.8                | 0.51             | 90                    |
| 2023 | 5     | 21   | 9    | 10.38                    | 41.81               | 0.51             | 90                    |
| 2023 | 5     | 21   | 10   | 10.06                    | 43.11               | 2.85             | 90                    |
| 2023 | 5     | 21   | 11   | 10.06                    | 43.91               | 2.4              | 90                    |
| 2023 | 5     | 21   | 12   | 10.56                    | 44.3                | 2.11             | 90                    |
| 2023 | 5     | 21   | 13   | 15.25                    | 44.37               | 1.9              | 90                    |
| 2023 | 5     | 21   | 14   | 18.44                    | 43.98               | 1.58             | 90                    |
| 2023 | 5     | 21   | 15   | 19.44                    | 43.23               | 1.12             | 90                    |
| 2023 | 5     | 21   | 16   | 20.62                    | 42.05               | 0.72             | 270                   |
| 2023 | 5     | 21   | 17   | 22.25                    | 39.76               | 1                | 90                    |
| 2023 | 5     | 21   | 18   | 23.62                    | 36.67               | 1.99             | 90                    |
| 2023 | 5     | 21   | 19   | 25.12                    | 35.07               | 2.63             | 90                    |
| 2023 | 5     | 21   | 20   | 26.5                     | 34.05               | 2.97             | 90                    |
| 2023 | 5     | 21   | 21   | 27.56                    | 33.23               | 3.14             | 90                    |
| 2023 | 5     | 21   | 22   | 28.62                    | 32.82               | 3.2              | 90                    |
| 2023 | 5     | 21   | 23   | 29.81                    | 32.31               | 3.24             | 90                    |
| 2023 | 5     | 21   | 24   | 31.62                    | 31.74               | 0.15             | 90                    |
| 2023 | 5     | 22   | 1    | 34.12                    | 31.18               | 3.32             | 90                    |
| 2023 | 5     | 22   | 2    | 35.12                    | 30.68               | 0.51             | 90                    |
| 2023 | 5     | 22   | 3    | 32.31                    | 30.28               | 0.51             | 90                    |
| 2023 | 5     | 22   | 4    | 27.19                    | 29.98               | 0.51             | 90                    |
| 2023 | 5     | 22   | 5    | 23                       | 30.05               | 0.2              | 90                    |
| 2023 | 5     | 22   | 6    | 20.06                    | 32.15               | 0.3              | 130                   |
| 2023 | 5     | 22   | 7    | 18.38                    | 35.2                | 0.2              | 130                   |
| 2023 | 5     | 22   | 8    | 17.44                    | 37.85               | 0.2              | 130                   |

| Year | Month | Date | Hour | Relative<br>Humidity (%) | Temperature<br>(°C) | Wind Speed (m/s) | Wind<br>Direction (°) |
|------|-------|------|------|--------------------------|---------------------|------------------|-----------------------|
| 2023 | 5     | 22   | 9    | 17                       | 40.12               | 0.3              | 130                   |
| 2023 | 5     | 22   | 10   | 16.81                    | 41.85               | 0.2              | 130                   |
| 2023 | 5     | 22   | 11   | 16.75                    | 42.88               | 0.2              | 130                   |
| 2023 | 5     | 22   | 12   | 17.19                    | 43.41               | 0.2              | 130                   |
| 2023 | 5     | 22   | 13   | 19.5                     | 43.55               | 0.51             | 130                   |
| 2023 | 5     | 22   | 14   | 24.31                    | 43.3                | 0.51             | 130                   |
| 2023 | 5     | 22   | 15   | 24.75                    | 42.69               | 4.19             | 280                   |
| 2023 | 5     | 22   | 16   | 25.25                    | 41.65               | 0.25             | 280                   |
| 2023 | 5     | 22   | 17   | 25.56                    | 39.65               | 2.66             | 130                   |
| 2023 | 5     | 22   | 18   | 26.44                    | 36.6                | 2.45             | 130                   |
| 2023 | 5     | 22   | 19   | 27.62                    | 35.78               | 2.76             | 130                   |
| 2023 | 5     | 22   | 20   | 28.94                    | 35.22               | 2.89             | 130                   |
| 2023 | 5     | 22   | 21   | 29.88                    | 34.98               | 2.84             | 130                   |
| 2023 | 5     | 22   | 22   | 30.38                    | 34.33               | 2.9              | 130                   |
| 2023 | 5     | 22   | 23   | 31.62                    | 33.52               | 3.05             | 130                   |
| 2023 | 5     | 22   | 24   | 33.56                    | 32.76               | 2.99             | 130                   |
| 2023 | 5     | 23   | 1    | 35.25                    | 32.16               | 2.99             | 130                   |
| 2023 | 5     | 23   | 2    | 33.25                    | 31.88               | 3.36             | 130                   |
| 2023 | 5     | 23   | 3    | 28                       | 31.32               | 0.15             | 230                   |
| 2023 | 5     | 23   | 4    | 23.88                    | 30.75               | 0.5              | 130                   |
| 2023 | 5     | 23   | 5    | 21.44                    | 30.8                | 0.2              | 130                   |
| 2023 | 5     | 23   | 6    | 20.19                    | 32.82               | 0.2              | 130                   |
| 2023 | 5     | 23   | 7    | 19.5                     | 36.07               | 0.3              | 130                   |
| 2023 | 5     | 23   | 8    | 19                       | 38.35               | 0.2              | 130                   |
| 2023 | 5     | 23   | 9    | 18.75                    | 40.01               | 0.2              | 130                   |
| 2023 | 5     | 23   | 10   | 18.62                    | 41.2                | 0.2              | 130                   |
| 2023 | 5     | 23   | 11   | 18.69                    | 42.01               | 0.51             | 130                   |
| 2023 | 5     | 23   | 12   | 19.25                    | 42.55               | 4.44             | 280                   |
| 2023 | 5     | 23   | 13   | 21                       | 42.66               | 0.25             | 280                   |
| 2023 | 5     | 23   | 14   | 25.62                    | 42.54               | 0.25             | 270                   |
| 2023 | 5     | 23   | 15   | 26.56                    | 41.99               | 0.25             | 270                   |
| 2023 | 5     | 23   | 16   | 27.75                    | 40.99               | 0.25             | 270                   |
| 2023 | 5     | 23   | 17   | 29                       | 39.37               | 0.25             | 270                   |
| 2023 | 5     | 23   | 18   | 29.5                     | 36.59               | 2.64             | 270                   |
| 2023 | 5     | 23   | 19   | 30.44                    | 35.94               | 0.25             | 270                   |
| 2023 | 5     | 23   | 20   | 31.81                    | 35.32               | 0.25             | 270                   |
| 2023 | 5     | 23   | 21   | 33.19                    | 34.71               | 4.04             | 270                   |
| 2023 | 5     | 23   | 22   | 35.25                    | 34.51               | 4.67             | 230                   |

| Year | Month | Date | Hour | Relative<br>Humidity (%) | Temperature<br>(°C) | Wind Speed (m/s) | Wind<br>Direction (°) |
|------|-------|------|------|--------------------------|---------------------|------------------|-----------------------|
| 2023 | 5     | 23   | 23   | 37.06                    | 34.04               | 0.2              | 230                   |
| 2023 | 5     | 23   | 23   | 38.88                    | 33.32               | 0.2              | 230                   |
| 2023 | 5     | 23   | 1    | 39.31                    | 32.65               | 0.2              | 230                   |
| 2023 | 5     | 24   | 2    | 34.75                    | 31.77               | 4.9              | 230                   |
| 2023 | 5     | 24   | 3    | 27.75                    | 31.12               | 4.77             | 230                   |
| 2023 | 5     | 24   | 4    | 22.38                    | 30.56               | 4.8              | 230                   |
| 2023 | 5     | 24   | 5    | 19.38                    | 30.75               | 0.2              | 230                   |
| 2023 | 5     | 24   | 6    | 17.5                     | 33.24               | 0.3              | 230                   |
| 2023 | 5     | 24   | 7    | 16.38                    | 36.77               | 0.2              | 230                   |
| 2023 | 5     | 24   | 8    | 15.69                    | 39.58               | 0.2              | 230                   |
| 2023 | 5     | 24   | 9    | 15.31                    | 41.5                | 0.2              | 260                   |
| 2023 | 5     | 24   | 10   | 15.19                    | 42.9                | 0.3              | 260                   |
| 2023 | 5     | 24   | 11   | 15.44                    | 43.83               | 0.3              | 260                   |
| 2023 | 5     | 24   | 12   | 16.06                    | 44.3                | 0.2              | 260                   |
| 2023 | 5     | 24   | 13   | 18.06                    | 44.42               | 0.2              | 280                   |
| 2023 | 5     | 24   | 14   | 22.5                     | 44                  | 0.2              | 280                   |
| 2023 | 5     | 24   | 15   | 23.56                    | 43.14               | 4.75             | 280                   |
| 2023 | 5     | 24   | 16   | 24.44                    | 41.98               | 4.47             | 280                   |
| 2023 | 5     | 24   | 17   | 25.62                    | 40.11               | 0.25             | 280                   |
| 2023 | 5     | 24   | 18   | 26.94                    | 37.07               | 2.67             | 280                   |
| 2023 | 5     | 24   | 19   | 28.06                    | 36.17               | 2.91             | 280                   |
| 2023 | 5     | 24   | 20   | 29.12                    | 35.54               | 0.3              | 240                   |
| 2023 | 5     | 24   | 21   | 30.12                    | 34.85               | 0.3              | 240                   |
| 2023 | 5     | 24   | 22   | 31.31                    | 34.15               | 0.3              | 240                   |
| 2023 | 5     | 24   | 23   | 32.56                    | 33.55               | 0.3              | 240                   |
| 2023 | 5     | 24   | 24   | 34.06                    | 32.95               | 0.3              | 240                   |
| 2023 | 5     | 25   | 1    | 33                       | 32.37               | 0.3              | 240                   |
| 2023 | 5     | 25   | 2    | 29.69                    | 31.73               | 0.3              | 240                   |
| 2023 | 5     | 25   | 3    | 23.56                    | 31.15               | 0.3              | 240                   |
| 2023 | 5     | 25   | 4    | 19.44                    | 30.58               | 0.3              | 240                   |
| 2023 | 5     | 25   | 5    | 17                       | 31.26               | 0.3              | 240                   |
| 2023 | 5     | 25   | 6    | 15.5                     | 33.21               | 0.2              | 240                   |
| 2023 | 5     | 25   | 7    | 14.94                    | 36.52               | 0.2              | 250                   |
| 2023 | 5     | 25   | 8    | 15                       | 38.93               | 0.2              | 270                   |
| 2023 | 5     | 25   | 9    | 15.62                    | 40.87               | 0.2              | 280                   |
| 2023 | 5     | 25   | 10   | 16.38                    | 42.6                | 0.2              | 290                   |
| 2023 | 5     | 25   | 11   | 16.56                    | 43.58               | 0.2              | 300                   |
| 2023 | 5     | 25   | 12   | 16.81                    | 43.77               | 0.2              | 300                   |


| Year | Month  | Date | Hour | Relative     | Temperature | Wind Speed (m/s) | Wind          |
|------|--------|------|------|--------------|-------------|------------------|---------------|
| 2022 | 5      | 25   | 12   | Humidity (%) | (°C)        | 0.2              | Direction (°) |
| 2023 | 5<br>5 | 25   | 13   | 18           | 43.26       | 0.2              | 290           |
| 2023 |        | 25   | 14   | 21.25        | 42.53       | 0.2              | 290           |
| 2023 | 5      | 25   | 15   | 22.25        | 42.05       | 0.2              | 280           |
| 2023 | 5      | 25   | 16   | 22.81        | 41.29       | 0.2              | 270           |
| 2023 | 5      | 25   | 17   | 23.75        | 39.73       | 4.88             | 270           |
| 2023 | 5      | 25   | 18   | 24.88        | 37.17       | 0.25             | 270           |
| 2023 | 5      | 25   | 19   | 26.56        | 36.33       | 0.25             | 270           |
| 2023 | 5      | 25   | 20   | 28.62        | 35.79       | 4.01             | 270           |
| 2023 | 5      | 25   | 21   | 30.31        | 34.97       | 4.46             | 270           |
| 2023 | 5      | 25   | 22   | 32.25        | 33.98       | 4.5              | 270           |
| 2023 | 5      | 25   | 23   | 34.31        | 32.59       | 0.25             | 270           |
| 2023 | 5      | 25   | 24   | 36.19        | 31.15       | 0.25             | 270           |
| 2023 | 5      | 26   | 1    | 34.56        | 30.1        | 0.25             | 270           |
| 2023 | 5      | 26   | 2    | 29.5         | 29.21       | 2.82             | 270           |
| 2023 | 5      | 26   | 3    | 20.81        | 28.54       | 2.7              | 270           |
| 2023 | 5      | 26   | 4    | 17.06        | 28.01       | 2.73             | 270           |
| 2023 | 5      | 26   | 5    | 14.88        | 29.2        | 3.64             | 250           |
| 2023 | 5      | 26   | 6    | 13.88        | 32.2        | 4.58             | 225           |
| 2023 | 5      | 26   | 7    | 13.62        | 37.11       | 0.2              | 270           |
| 2023 | 5      | 26   | 8    | 13.75        | 39.48       | 0.2              | 280           |
| 2023 | 5      | 26   | 9    | 14.06        | 41.08       | 0.2              | 270           |
| 2023 | 5      | 26   | 10   | 14.56        | 42.27       | 0.2              | 290           |
| 2023 | 5      | 26   | 11   | 15.44        | 42.98       | 0.2              | 290           |
| 2023 | 5      | 26   | 12   | 16.5         | 43.37       | 0.2              | 290           |
| 2023 | 5      | 26   | 13   | 17.81        | 43.4        | 0.2              | 290           |
| 2023 | 5      | 26   | 14   | 21.44        | 42.93       | 0.2              | 290           |
| 2023 | 5      | 26   | 15   | 22.69        | 41.89       | 0.2              | 280           |
| 2023 | 5      | 26   | 16   | 23.62        | 40.68       | 0.2              | 280           |
| 2023 | 5      | 26   | 17   | 25.12        | 39.26       | 0.2              | 280           |
| 2023 | 5      | 26   | 18   | 26.62        | 36.39       | 0.25             | 270           |
| 2023 | 5      | 26   | 19   | 27.88        | 35.36       | 0.25             | 270           |
| 2023 | 5      | 26   | 20   | 29.12        | 34.58       | 4.01             | 270           |
| 2023 | 5      | 26   | 21   | 30.38        | 33.43       | 0.25             | 270           |
| 2023 | 5      | 26   | 22   | 31.69        | 32.26       | 0.25             | 280           |
| 2023 | 5      | 26   | 23   | 33.19        | 31.21       | 0.25             | 270           |
| 2023 | 5      | 26   | 24   | 34.62        | 30.26       | 2.96             | 298           |
| 2023 | 5      | 27   | 1    | 33.12        | 29.47       | 2.83             | 303           |
| 2023 | 5      | 27   | 2    | 28.5         | 28.74       | 2.76             | 310           |

| Year | Month | Date | Hour | Relative<br>Humidity (%) | Temperature<br>(°C) | Wind Speed (m/s) | Wind<br>Direction (°) |
|------|-------|------|------|--------------------------|---------------------|------------------|-----------------------|
| 2023 | 5     | 27   | 3    | 22.44                    | 28.07               | 2.64             | 318                   |
| 2023 | 5     | 27   | 4    | 19.25                    | 27.47               | 2.45             | 326                   |
| 2023 | 5     | 27   | 5    | 16.94                    | 28.5                | 2.04             | 334                   |
| 2023 | 5     | 27   | 6    | 15.19                    | 31.26               | 1.59             | 335                   |
| 2023 | 5     | 27   | 7    | 14.06                    | 35.89               | 2.44             | 303                   |
| 2023 | 5     | 27   | 8    | 13.44                    | 38.49               | 0.25             | 270                   |
| 2023 | 5     | 27   | 9    | 13.25                    | 40.22               | 0.25             | 286                   |
| 2023 | 5     | 27   | 10   | 13.56                    | 41.58               | 4.03             | 284                   |
| 2023 | 5     | 27   | 11   | 14.31                    | 42.51               | 4.24             | 286                   |
| 2023 | 5     | 27   | 12   | 15.56                    | 43.14               | 4.34             | 288                   |
| 2023 | 5     | 27   | 13   | 18.69                    | 43.26               | 0.25             | 290                   |
| 2023 | 5     | 27   | 14   | 23.38                    | 42.94               | 4                | 270                   |
| 2023 | 5     | 27   | 15   | 24.62                    | 42.19               | 0.25             | 290                   |
| 2023 | 5     | 27   | 16   | 25.62                    | 41.03               | 2.87             | 230                   |
| 2023 | 5     | 27   | 17   | 26.62                    | 39.22               | 1.89             | 230                   |
| 2023 | 5     | 27   | 18   | 27.81                    | 36.91               | 1.57             | 230                   |
| 2023 | 5     | 27   | 19   | 29.19                    | 35.98               | 1.78             | 230                   |
| 2023 | 5     | 27   | 20   | 30.5                     | 35.52               | 1.86             | 230                   |
| 2023 | 5     | 27   | 21   | 31.75                    | 35.1                | 1.85             | 230                   |
| 2023 | 5     | 27   | 22   | 32.88                    | 34.66               | 1.84             | 230                   |
| 2023 | 5     | 27   | 23   | 33.81                    | 34.07               | 1.93             | 230                   |
| 2023 | 5     | 27   | 24   | 34.06                    | 33.48               | 1.99             | 230                   |
| 2023 | 5     | 28   | 1    | 33.62                    | 32.87               | 2.02             | 230                   |
| 2023 | 5     | 28   | 2    | 28.31                    | 32.3                | 1.91             | 230                   |
| 2023 | 5     | 28   | 3    | 23.69                    | 31.77               | 1.65             | 230                   |
| 2023 | 5     | 28   | 4    | 21                       | 31.58               | 1.27             | 230                   |
| 2023 | 5     | 28   | 5    | 19.25                    | 31.88               | 0.83             | 230                   |
| 2023 | 5     | 28   | 6    | 17.88                    | 34.27               | 0.99             | 230                   |
| 2023 | 5     | 28   | 7    | 17                       | 36.71               | 1.91             | 230                   |
| 2023 | 5     | 28   | 8    | 16.44                    | 38.58               | 2.51             | 230                   |
| 2023 | 5     | 28   | 9    | 16.19                    | 40.07               | 2.78             | 230                   |
| 2023 | 5     | 28   | 10   | 16                       | 41.27               | 2.75             | 230                   |
| 2023 | 5     | 28   | 11   | 16                       | 42.01               | 2.6              | 230                   |
| 2023 | 5     | 28   | 12   | 16.38                    | 42.43               | 2.47             | 230                   |
| 2023 | 5     | 28   | 13   | 18.25                    | 42.48               | 2.43             | 348                   |
| 2023 | 5     | 28   | 14   | 23                       | 42.22               | 2.42             | 350                   |
| 2023 | 5     | 28   | 15   | 23.38                    | 41.54               | 2.33             | 2                     |
| 2023 | 5     | 28   | 16   | 23.44                    | 40.44               | 2.1              | 11                    |

| Year         | Month | Date     | Hour   | Relative<br>Humidity (%) | Temperature<br>(°C) | Wind Speed (m/s) | Wind<br>Direction (°) |
|--------------|-------|----------|--------|--------------------------|---------------------|------------------|-----------------------|
| 2023         | 5     | 28       | 17     | 23.38                    | 38.82               | 1.51             | 28                    |
| 2023         | 5     | 28       | 17     | 23.62                    | 36.29               | 1.51             | 63                    |
| 2023         | 5     | 28       | 10     | 23.02                    | 35.2                | 1.98             | 85                    |
| 2023         | 5     | 28       | 20     | 24.12                    | 34.31               | 2.33             | 95                    |
| 2023         | 5     | 28       | 20     | 25.81                    | 33.57               | 2.53             | 100                   |
| 2023         | 5     | 28       | 21     | 25.61                    | 32.73               | 2.61             | 100                   |
| 2023         | 5     | 28       | 22     | 20.09                    | 31.82               | 2.6              | 113                   |
| 2023         | 5     | 28       | 23     | 28.62                    | 30.75               | 2.6              | 113                   |
| 2023         | 5     | 29       | 1      | 27.25                    | 29.93               | 2.55             | 113                   |
| 2023         | 5     | 29       | 2      | 22.88                    | 29.93               | 2.46             | 260                   |
| 2023         | 5     | 29       | 3      | 18.94                    | 29.18               | 2.40             | 141                   |
|              | 5     | 29       | 4      | -                        |                     |                  | 141                   |
| 2023<br>2023 | 5     | 29       | 5      | 16.44<br>15.38           | 28.01<br>29.04      | 2.29<br>2.13     | 150                   |
|              | 5     |          |        |                          |                     |                  |                       |
| 2023         | 5     | 29<br>29 | 6<br>7 | 14.81                    | 31.95               | 2.41<br>0.89     | 200<br>260            |
| 2023         | 5     |          |        | 14.5                     | 36.02               |                  |                       |
| 2023         |       | 29       | 8      | 14.31                    | 38.8                | 1.3              | 260                   |
| 2023         | 5     | 29       | 9      | 14.19                    | 40.41               | 1.67             | 280                   |
| 2023         | 5     | 29       | 10     | 14.19                    | 41.63               | 1.84             | 280                   |
| 2023         | 5     | 29       | 11     | 14.31                    | 42.3                | 1.94             | 288                   |
| 2023         | 5     | 29       | 12     | 14.75                    | 42.77               | 2.02             | 225                   |
| 2023         | 5     | 29       | 13     | 17.25                    | 42.83               | 2.12             | 225                   |
| 2023         | 5     | 29       | 14     | 20.69                    | 42.47               | 2.03             | 225                   |
| 2023         | 5     | 29       | 15     | 21.25                    | 41.8                | 1.78             | 225                   |
| 2023         | 5     | 29       | 16     | 21.75                    | 40.76               | 1.47             | 225                   |
| 2023         | 5     | 29       | 17     | 22.25                    | 39.09               | 0.87             | 225                   |
| 2023         | 5     | 29       | 18     | 22.75                    | 36.99               | 0.97             | 225                   |
| 2023         | 5     | 29       | 19     | 23.38                    | 35.78               | 1.38             | 225                   |
| 2023         | 5     | 29       | 20     | 24.44                    | 34.87               | 1.66             | 225                   |
| 2023         | 5     | 29       | 21     | 25.62                    | 34.13               | 1.78             | 225                   |
| 2023         | 5     | 29       | 22     | 26.75                    | 33.52               | 1.8              | 225                   |
| 2023         | 5     | 29       | 23     | 28.31                    | 32.87               | 1.84             | 225                   |
| 2023         | 5     | 29       | 24     | 30.31                    | 31.9                | 2.04             | 225                   |
| 2023         | 5     | 30       | 1      | 30.44                    | 30.85               | 2.34             | 225                   |
| 2023         | 5     | 30       | 2      | 28.69                    | 30.08               | 2.51             | 225                   |
| 2023         | 5     | 30       | 3      | 27.19                    | 29.4                | 2.59             | 225                   |
| 2023         | 5     | 30       | 4      | 27.5                     | 28.86               | 2.79             | 225                   |
| 2023         | 5     | 30       | 5      | 27.38                    | 30.02               | 0.25             | 225                   |
| 2023         | 5     | 30       | 6      | 25.81                    | 32.97               | 0.2              | 225                   |

| Year | Month | Date | Hour | Relative     | Temperature | Wind Speed (m/s) | Wind                 |
|------|-------|------|------|--------------|-------------|------------------|----------------------|
|      |       |      |      | Humidity (%) | (°C)        |                  | <b>Direction</b> (°) |
| 2023 | 5     | 30   | 7    | 23.88        | 36.16       | 0.2              | 225                  |
| 2023 | 5     | 30   | 8    | 22.5         | 37.91       | 0.3              | 225                  |
| 2023 | 5     | 30   | 9    | 21.88        | 39.16       | 0.2              | 225                  |
| 2023 | 5     | 30   | 10   | 21.69        | 40.32       | 0.2              | 225                  |
| 2023 | 5     | 30   | 11   | 21.81        | 41.23       | 0.2              | 225                  |
| 2023 | 5     | 30   | 12   | 22.5         | 41.8        | 0.2              | 225                  |
| 2023 | 5     | 30   | 13   | 24           | 41.95       | 4.95             | 225                  |
| 2023 | 5     | 30   | 14   | 28.12        | 41.77       | 4.78             | 225                  |
| 2023 | 5     | 30   | 15   | 29.69        | 41.24       | 4.59             | 225                  |
| 2023 | 5     | 30   | 16   | 30.88        | 40.29       | 4.29             | 225                  |
| 2023 | 5     | 30   | 17   | 31.94        | 38.87       | 0.25             | 225                  |
| 2023 | 5     | 30   | 18   | 33.06        | 36.33       | 2.19             | 225                  |
| 2023 | 5     | 30   | 19   | 34.38        | 35.32       | 2.34             | 225                  |
| 2023 | 5     | 30   | 20   | 35.88        | 34.57       | 2.47             | 225                  |
| 2023 | 5     | 30   | 21   | 37.38        | 33.92       | 2.61             | 225                  |
| 2023 | 5     | 30   | 22   | 38.62        | 33.29       | 2.73             | 225                  |
| 2023 | 5     | 30   | 23   | 39.75        | 32.65       | 2.81             | 225                  |
| 2023 | 5     | 30   | 24   | 40.88        | 32          | 2.83             | 225                  |
| 2023 | 5     | 31   | 1    | 40           | 31.4        | 2.81             | 225                  |
| 2023 | 5     | 31   | 2    | 34.44        | 30.98       | 2.97             | 225                  |
| 2023 | 5     | 31   | 3    | 25.69        | 30.54       | 0.25             | 225                  |
| 2023 | 5     | 31   | 4    | 20.5         | 30.01       | 0.25             | 225                  |
| 2023 | 5     | 31   | 5    | 18.06        | 30.28       | 0.5              | 220                  |
| 2023 | 5     | 31   | 6    | 16.94        | 32.21       | 4.48             | 230                  |
| 2023 | 5     | 31   | 7    | 16.38        | 35.44       | 0.2              | 230                  |
| 2023 | 5     | 31   | 8    | 16.12        | 38.15       | 0.2              | 230                  |
| 2023 | 5     | 31   | 9    | 16.12        | 40.12       | 4.91             | 230                  |
| 2023 | 5     | 31   | 10   | 16.25        | 41.58       | 4.64             | 230                  |
| 2023 | 5     | 31   | 11   | 16.31        | 42.55       | 4.44             | 230                  |
| 2023 | 5     | 31   | 12   | 16.62        | 43.2        | 4.29             | 230                  |
| 2023 | 5     | 31   | 13   | 18.56        | 43.33       | 4.12             | 230                  |
| 2023 | 5     | 31   | 14   | 22.25        | 43.03       | 0.25             | 230                  |
| 2023 | 5     | 31   | 15   | 22.38        | 42.59       | 0.25             | 230                  |
| 2023 | 5     | 31   | 16   | 22.88        | 41.62       | 0.25             | 230                  |
| 2023 | 5     | 31   | 17   | 24.25        | 39.82       | 2.13             | 230                  |
| 2023 | 5     | 31   | 18   | 25.81        | 37.61       | 1.47             | 230                  |
| 2023 | 5     | 31   | 19   | 27.31        | 37.22       | 1.18             | 230                  |
| 2023 | 5     | 31   | 20   | 27.94        | 36.68       | 0.9              | 230                  |

| Year | Month | Date | Hour | Relative<br>Humidity (%) | Temperature<br>(°C) | Wind Speed (m/s) | Wind<br>Direction (°) |
|------|-------|------|------|--------------------------|---------------------|------------------|-----------------------|
| 2023 | 5     | 31   | 21   | 29.44                    | 35.94               | 0.7              | 230                   |
| 2023 | 5     | 31   | 22   | 30.62                    | 35.29               | 0.54             | 230                   |
| 2023 | 5     | 31   | 23   | 31.12                    | 34.65               | 0.62             | 230                   |
| 2023 | 5     | 31   | 24   | 31.62                    | 33.55               | 1.11             | 230                   |



#### AMBIENT AIR QUALITY

(Unit  $\mu g/m^3$ )

| DATE OF      |                 |                 |                 |                 | CLOCK             | HOURS           | 5                |                 |                          |  |
|--------------|-----------------|-----------------|-----------------|-----------------|-------------------|-----------------|------------------|-----------------|--------------------------|--|
| MONITORING   | 00 -            | 08              | 08 - 16 16-24   |                 |                   |                 |                  | 24 HOURS        |                          |  |
|              | SO <sub>2</sub> | NO <sub>2</sub> | SO <sub>2</sub> | NO <sub>2</sub> | SO <sub>2</sub>   | NO <sub>2</sub> | PM <sub>10</sub> | PM <sub>2</sub> | 5 CO(mg/m <sup>3</sup> ) |  |
| 01.03.2023   | 8.5             | 15.7            | 7.4             | 17.7            | 5.4               | 19.3            | 54.3             | 27.6            |                          |  |
| 02.03.2023   | 8.4             | 15.7            | 8.3             | 18.7            | 5.9               | 19.5            | 54.2             | 29.9            |                          |  |
| 08.03.2023   | 8.7             | 18.4            | 9.6             | 16.3            | 6.1               | 14.5            | 52.9             | 26.2            | ,<br>,                   |  |
| 09.03. 2023  | 6.0             | 19.2            | 7.1             | 18.6            | 9.0               | 19.0            | 54.6             | 27.9            | )                        |  |
| 15.03. 2023  | 9.5             | 17.2            | 8.7             | 18.2            | 7.7               | 15.6            | 51.3             | 30.1            |                          |  |
| 16.03. 2023  | 7.0             | 16.3            | 6.3             | 15.0            | 8.8               | 18.3            | 55.9             | 27.7            | '                        |  |
| 22.03. 2023  | 7.3             | 14.7            | 9.8             | 16.9            | 7.8               | 15.7            | 53.7             | 26.4            |                          |  |
| 23.03. 2023  | 6.0             | 16.7            | 8.4             | 15.9            | 6.2               | 16.3            | 54.6             | 24.7            | '                        |  |
| 29.03. 2023  | 9.1             | 19.2            | 7.4             | 18.9            | 7.3               | 19.0            | 56.6             | 27.9            | )                        |  |
| 30.03. 2023  | 5.4             | 14.0            | 8.9             | 14.0            | 5.5               | 18.9            | 56.8             | 30.5            |                          |  |
| 05.04. 2023  | 8.4             | 15.8            | 7.4             | 17.8            | 6.0               | 15.2            | 54.4             | 29.0            | )                        |  |
| 06. 04. 2023 | 8.9             | 16.4            | 7.1             | 17.2            | 9.7               | 14.6            | 54.7             | 24.1            |                          |  |
| 12. 04. 2023 | 8.2             | 19.1            | 8.1             | 16.3            | 6.0               | 16.5            | 52.6             | 29.1            |                          |  |
| 13. 04. 2023 | 8.0             | 16.6            | 9.9             | 19.4            | 9.9               | 19.5            | 55.4             | 28.0            | )                        |  |
| 19. 04. 2023 | 8.4             | 18.9            | 6.4             | 18.7            | 7.6               | 17.1            | 55.3             | 30.0            | )                        |  |
| 20. 04. 2023 | 5.6             | 16.1            | 9.5             | 14.9            | 7.4               | 15.8            | 55.7             | 25.8            |                          |  |
| 26. 04. 2023 | 5.4             | 18.0            | 6.7             | 19.6            | 5.3               | 13.9            | 54.6             | 29.2            | ,                        |  |
| 27. 04. 2023 | 8.8             | 18.1            | 10.0            | 15.4            | 6.7               | 18.4            | 59.2             | 25.4            |                          |  |
| 03.05. 2023  | 7.4             | 18.4            | 9.4             | 16.8            | 5.2               | 15.5            | 55.1             | 24.0            | )                        |  |
| 04.05. 2023  | 7.2             | 18.5            | 7.6             | 18.4            | 8.6               | 19.4            | 53.6             | 26.0            | )                        |  |
| 10.05. 2023  | 8.7             | 18.7            | 9.8             | 19.1            | 5.9               | 15.2            | 57.0             | 26.9            | )                        |  |
| 11.05. 2023  | 9.6             | 16.5            | 8.4             | 15.9            | 7.7               | 16.3            | 58.0             | 23.8            |                          |  |
| 17.05. 2023  | 8.3             | 17.5            | 5.9             | 19.0            | 8.7               | 19.2            | 58.1             | 26.3            |                          |  |
| 18.05. 2023  | 9.8             | 14.7            | 6.2             | 16.5            | 7.4               | 14.5            | 57.1             | 28.4            |                          |  |
| 24.05. 2023  | 7.1             | 14.2            | 10.1            | 14.3            | 8.0               | 17.8            | 56.1             | 28.4            |                          |  |
| 25.05. 2023  | 7.3             | 17.3            | 7.6             | 17.6            | 7.5               | 16.9            | 55.4             | 24.0            |                          |  |
|              | NC              | )2              | SC              | )2              | РМ                | 10              | PM 2             | .5              | СО                       |  |
| Max.         | 19              |                 |                 |                 | <b>PM 10</b> 59.2 |                 | <u>30.5</u>      |                 |                          |  |
| Min.         |                 | 13.9            |                 | 10.1<br>5.2     |                   | 59.2            |                  |                 |                          |  |
| Avg.         | 13              |                 |                 | .2              | 55                |                 | 23.8             |                 | BDL (DL-0.50)            |  |
| <u> </u>     | 17              | -               | /.              | ••              | 55                |                 | 27.2             |                 | -                        |  |

#### **LOCATION S1 : Project site**

M/s Piccadily Agro Industries Ltd.

98% tile

19.5

10.0

58.7

30.3

#### AMBIENT AIR QUALITY

#### **LOCATION S2 : Village Bargaon**

### (Unit µg/m<sup>3</sup>)

|                       |                 | CLOCK HOURS     |                 |                 |                     |                 |                  |                   |                            |  |  |  |
|-----------------------|-----------------|-----------------|-----------------|-----------------|---------------------|-----------------|------------------|-------------------|----------------------------|--|--|--|
| DATE OF<br>MONITORING | 00 -            | - 08            | 08 -            | - 16            | 16                  | -24             |                  | 24 HO             | URS                        |  |  |  |
| MONTORINO             | SO <sub>2</sub> | NO <sub>2</sub> | SO <sub>2</sub> | NO <sub>2</sub> | SO <sub>2</sub>     | NO <sub>2</sub> | PM <sub>10</sub> | PM <sub>2.5</sub> | CO<br>(mg/m <sup>3</sup> ) |  |  |  |
| 01.03. 2023           | 9.2             | 17.8            | 7.2             | 20.3            | 8.6                 | 16.9            | 58.7             | 29.3              |                            |  |  |  |
| 02.03. 2023           | 6.1             | 19.9            | 9.0             | 16.2            | 8.1                 | 17.8            | 62.0             | 30.2              |                            |  |  |  |
| 08.03. 2023           | 8.0             | 17.5            | 7.1             | 16.7            | 9.6                 | 14.6            | 63.8             | 34.6              |                            |  |  |  |
| 09.03. 2023           | 7.5             | 16.7            | 6.9             | 18.0            | 10.0                | 19.9            | 61.8             | 29.7              |                            |  |  |  |
| 15.03. 2023           | 11.0            | 19.8            | 9.1             | 17.8            | 10.3                | 16.4            | 64.0             | 35.6              |                            |  |  |  |
| 16.03. 2023           | 9.1             | 18.5            | 10.8            | 17.4            | 10.8                | 19.0            | 57.9             | 35.1              |                            |  |  |  |
| 22.03.2023            | 11.3            | 17.9            | 9.2             | 18.8            | 7.9                 | 15.8            | 62.5             | 34.7              |                            |  |  |  |
| 23.03.2023            | 7.2             | 14.3            | 9.3             | 19.3            | 10.9                | 16.2            | 61.4             | 29.8              |                            |  |  |  |
| 29.03.2023            | 6.4             | 17.8            | 9.2             | 19.7            | 10.5                | 16.7            | 58.3             | 30.5              |                            |  |  |  |
| 30.03.2023            | 7.3             | 15.4            | 7.7             | 19.3            | 11.3                | 16.8            | 62.5             | 33.5              |                            |  |  |  |
| 05.04.2023            | 8.5             | 18.4            | 8.6             | 19.0            | 8.8                 | 18.0            | 64.4             | 28.8              |                            |  |  |  |
| 06.04.2023            | 8.9             | 15.9            | 10.1            | 15.3            | 9.2                 | 19.8            | 61.6             | 29.9              |                            |  |  |  |
| 12.04.2023            | 9.3             | 17.6            | 11.7            | 18.6            | 10.1                | 14.9            | 63.1             | 28.1              | BDL (DL-                   |  |  |  |
| 13.04.2023            | 8.9             | 17.5            | 6.5             | 19.1            | 6.7                 | 17.0            | 57.7             | 32.0              | 0.50)                      |  |  |  |
| 19.04.2023            | 6.5             | 15.7            | 6.3             | 17.8            | 9.9                 | 16.0            | 64.1             | 35.3              |                            |  |  |  |
| 20.04.2023            | 6.4             | 19.8            | 11.2            | 17.3            | 8.7                 | 15.0            | 63.9             | 29.6              |                            |  |  |  |
| 26.04.2023            | 7.7             | 18.4            | 9.3             | 16.0            | 6.8                 | 19.0            | 62.5             | 29.6              |                            |  |  |  |
| 27.04.2023            | 8.4             | 15.3            | 8.9             | 20.1            | 7.3                 | 17.0            | 58.8             | 35.8              |                            |  |  |  |
| 03.05.2023            | 7.3             | 15.5            | 7.3             | 15.6            | 10.1                | 16.5            | 59.5             | 33.4              |                            |  |  |  |
| 04.05.2023            | 9.5             | 15.9            | 9.8             | 14.9            | 8.4                 | 15.5            | 63.5             | 35.0              |                            |  |  |  |
| 10.05.2023            | 7.6             | 16.5            | 6.3             | 15.2            | 8.6                 | 18.6            | 61.8             | 30.3              |                            |  |  |  |
| 11.05.2023            | 7.8             | 19.2            | 10.7            | 19.5            | 8.6                 | 16.6            | 64.9             | 34.4              |                            |  |  |  |
| 17.05.2023            | 8.7             | 17.7            | 10.1            | 16.7            | 11.0                | 17.6            | 61.0             | 31.8              |                            |  |  |  |
| 18.05.2023            | 8.1             | 17.8            | 11.5            | 19.6            | 8.5                 | 19.6            | 58.6             | 28.6              |                            |  |  |  |
| 24.05.2023            | 8.4             | 16.9            | 9.8             | 18.4            | 11.0                | 18.1            | 61.6             | 33.2              |                            |  |  |  |
| 25.05.2023            | 7.1             | 16.3            | 6.4             | 18.7            | 10.5                | 16.4            | 61.0             | 30.8              |                            |  |  |  |
|                       |                 | -<br>-          | SO2             |                 | PM 10               |                 | DN/ 2 7          |                   | <u> </u>                   |  |  |  |
| Max.                  | NO2<br>20.3     |                 | <u> </u>        |                 | 64.9                |                 | PM 2.5<br>35.8   |                   | СО                         |  |  |  |
| Min.                  | 14.3            |                 | 6.1             |                 | <u>64.9</u><br>57.7 |                 | 28.1             |                   |                            |  |  |  |
|                       |                 |                 | 8.8             |                 | 61.6                |                 | 31.9             | В                 | DL (DL-0.50)               |  |  |  |
| Avg.<br>98% tile      | 17.5            |                 | <u> </u>        |                 | 64.7                |                 | 31.9             |                   |                            |  |  |  |
| 90% tile              | 20.0            |                 | 11.4            |                 | 04./                |                 | 33.7             |                   |                            |  |  |  |

#### AMBIENT AIR QUALITY

#### LOCATION S3 :0.5 km from the project site

(Unit µg/m<sup>3</sup>)

|                       | CLOCK HOURS     |                   |        |                 |                 |                 |                         |                   |                        |  |  |
|-----------------------|-----------------|-------------------|--------|-----------------|-----------------|-----------------|-------------------------|-------------------|------------------------|--|--|
| DATE OF<br>MONITORING | 00 -            | - 08              | 08 -   | - 16            | 16              | -24             |                         | 24 HO             | URS                    |  |  |
|                       | SO <sub>2</sub> | NO <sub>2</sub>   | $SO_2$ | NO <sub>2</sub> | SO <sub>2</sub> | NO <sub>2</sub> | <b>PM</b> <sub>10</sub> | PM <sub>2.5</sub> | CO(mg/m <sup>3</sup> ) |  |  |
| 01.03.2023            | 5.9             | 16.7              | 5.8    | 14.3            | 8.5             | 14.6            | 56.8                    | 30.8              |                        |  |  |
| 02.03.2023            | 9.6             | 14.9              | 6.0    | 18.0            | 6.4             | 16.1            | 55.1                    | 29.2              |                        |  |  |
| 08.03.2023            | 6.4             | 14.0              | 9.8    | 19.0            | 7.2             | 15.1            | 53.3                    | 22.9              |                        |  |  |
| 09.03.2023            | 9.9             | 15.9              | 9.8    | 16.5            | 7.0             | 19.1            | 57.8                    | 30.0              |                        |  |  |
| 15.03.2023            | 8.7             | 16.2              | 10.5   | 17.2            | 9.4             | 16.2            | 54.6                    | 26.1              |                        |  |  |
| 16.03.2023            | 6.4             | 13.8              | 7.2    | 16.0            | 10.1            | 14.0            | 54.0                    | 31.4              |                        |  |  |
| 22.03.2023            | 8.5             | 17.9              | 6.7    | 13.8            | 8.0             | 18.7            | 52.4                    | 29.3              | 7                      |  |  |
| 23.03.2023            | 10.9            | 19.1              | 7.1    | 14.2            | 9.4             | 16.7            | 56.6                    | 30.2              |                        |  |  |
| 29.03.2023            | 7.2             | 18.1              | 8.0    | 18.6            | 7.7             | 16.3            | 55.9                    | 24.9              |                        |  |  |
| 30.03.2023            | 8.4             | 18.6              | 7.7    | 16.8            | 6.9             | 15.5            | 55.4                    | 27.4              |                        |  |  |
| 05.04.2023            | 8.6             | 14.7              | 6.9    | 19.2            | 7.5             | 14.0            | 59.5                    | 28.7              |                        |  |  |
| 06.04.2023            | 7.6             | 19.2              | 8.2    | 14.0            | 6.0             | 15.0            | 54.4                    | 29.8              | ]                      |  |  |
| 12.04.2023            | 9.1             | 14.9              | 7.4    | 16.4            | 6.5             | 16.6            | 55.9                    | 32.1              | BDL (DL-               |  |  |
| 13.04.2023            | 7.7             | 14.2              | 7.2    | 18.0            | 6.4             | 14.9            | 56.0                    | 25.1              | 0.50)                  |  |  |
| 19.04.2023            | 6.7             | 18.4              | 8.2    | 18.2            | 9.2             | 19.1            | 59.6                    | 32.2              |                        |  |  |
| 20.04.2023            | 6.6             | 18.6              | 10.4   | 18.2            | 6.3             | 14.2            | 52.2                    | 29.8              |                        |  |  |
| 26.04.2023            | 9.5             | 17.6              | 6.0    | 16.0            | 5.7             | 16.6            | 59.0                    | 27.1              |                        |  |  |
| 27.04.2023            | 10.2            | 13.9              | 7.9    | 17.1            | 8.6             | 15.6            | 53.2                    | 24.1              |                        |  |  |
| 03.05.2023            | 8.4             | 18.6              | 7.9    | 17.5            | 9.7             | 18.7            | 56.0                    | 26.6              |                        |  |  |
| 04.05.2023            | 7.6             | 19.0              | 6.6    | 18.8            | 9.6             | 13.9            | 53.8                    | 31.6              |                        |  |  |
| 10.05.2023            | 8.8             | 14.2              | 5.7    | 15.8            | 8.2             | 13.8            | 57.3                    | 24.9              |                        |  |  |
| 11.05.2023            | 6.8             | 16.9              | 8.9    | 17.0            | 9.7             | 15.8            | 54.2                    | 26.8              |                        |  |  |
| 17.05.2023            | 9.9             | 13.7              | 9.6    | 18.7            | 7.4             | 17.8            |                         | 24.8              |                        |  |  |
| 18.05.2023            | 6.8             | 18.4              | 10.7   | 13.9            | 7.5             | 16.6            |                         | 31.5              |                        |  |  |
| 24.05.2023            | 8.7             | 14.1              | 10.8   | 19.2            | 8.2             | 18.9            | 54.2                    | 27.0              |                        |  |  |
| 25.05.2023            | 5.8             | 16.9              | 10.4   | 14.9            | 7.9             | 19.0            | 61.0                    | 29.2              |                        |  |  |
|                       | N               | 02                | SO     | )2              | PM 10           |                 | PM 2.5                  |                   | СО                     |  |  |
| Max.                  |                 | 0 <u>2</u><br>).2 | 10.    |                 |                 |                 | 32.2                    |                   |                        |  |  |
| Min.                  |                 | 3.7               | 5.     |                 | 52.2            |                 | 22.9                    |                   |                        |  |  |
| Avg.                  | 16.5            |                   | 8.0    |                 | 55.7            |                 | 28.2                    | B                 | DL (DL-0.50)           |  |  |
| 0000 11               | 1               | 10.5              |        | ~               |                 |                 | _0                      |                   |                        |  |  |

98% tile

20.1

9.6

60.3

32.1

#### AMBIENT AIR QUALITY

#### LOCATION S4 : 2.5 km from the project site

(Unit µg/m<sup>3</sup>)

| DATE OF    |                 | CLOCK HOURS     |                 |                 |                 |                 |                  |                   |               |  |  |
|------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|------------------|-------------------|---------------|--|--|
| MONITORING | 00 -            | · 08            | 08              | - 16            | 16              | -24             | 2                | 4 HOURS           |               |  |  |
|            | SO <sub>2</sub> | NO <sub>2</sub> | SO <sub>2</sub> | NO <sub>2</sub> | SO <sub>2</sub> | NO <sub>2</sub> | PM <sub>10</sub> | PM <sub>2.5</sub> | CO            |  |  |
| 03.03.2023 | 10.0            | 21.0            | 9.1             | 15.0            | 8.2             | 14.9            | 58.3             | 32.5              |               |  |  |
| 04.03.2023 | 8.0             | 17.2            | 10.5            | 21.0            | 11.9            | 15.7            | 56.6             | 31.2              |               |  |  |
| 10.03.2023 | 8.4             | 19.7            | 10.8            | 16.0            | 8.7             | 19.0            | 54.9             | 31.5              |               |  |  |
| 11.03.2023 | 10.7            | 20.4            | 11.9            | 14.6            | 11.3            | 14.9            | 55.4             | 31.1              |               |  |  |
| 17.03.2023 | 7.3             | 21.5            | 8.8             | 17.3            | 9.3             | 19.6            | 55.1             | 29.4              |               |  |  |
| 18.03.2023 | 8.5             | 15.9            | 8.5             | 21.0            | 11.3            | 20.0            | 56.3             | 33.5              |               |  |  |
| 24.03.2023 | 10.2            | 17.9            | 7.0             | 22.1            | 8.0             | 19.5            | 56.0             | 30.6              |               |  |  |
| 25.03.2023 | 9.6             | 17.0            | 7.6             | 19.4            | 10.7            | 15.0            | 62.4             | 29.2              |               |  |  |
| 31.03.2023 | 7.5             | 15.1            | 11.3            | 21.5            | 9.8             | 19.4            | 58.3             | 34.3              |               |  |  |
| 01.04.2023 | 7.2             | 16.3            | 10.4            | 15.4            | 9.3             | 15.1            | 62.4             | 32.1              |               |  |  |
| 07.04.2023 | 7.3             | 21.7            | 10.1            | 15.1            | 11.8            | 17.0            | 64.1             | 32.4              |               |  |  |
| 08.04.2023 | 9.4             | 19.5            | 8.7             | 17.2            | 9.3             | 19.5            | 60.3             | 32.2              | BDL           |  |  |
| 14.04.2023 | 8.5             | 18.4            | 10.7            | 22.1            | 7.2             | 21.3            | 56.7             | 32.5              | DL<br>(DL-    |  |  |
| 15.04.2023 | 7.3             | 15.0            | 9.8             | 21.4            | 11.5            | 20.6            | 55.9             | 34.1              | (DL-<br>0.50) |  |  |
| 21.04.2023 | 8.1             | 18.9            | 9.3             | 20.6            | 7.1             | 15.6            | 53.9             | 32.2              | 0.50)         |  |  |
| 22.04.2023 | 10.3            | 20.9            | 12.0            | 22.2            | 9.3             | 20.3            | 60.6             | 32.9              |               |  |  |
| 28.04.2023 | 7.4             | 20.9            | 11.3            | 14.5            | 9.7             | 20.2            | 63.5             | 34.4              |               |  |  |
| 29.04.2023 | 7.3             | 22.1            | 8.0             | 22.6            | 10.3            | 20.6            | 57.2             | 34.0              |               |  |  |
| 05.05.2023 | 10.4            | 19.0            | 8.4             | 20.7            | 8.3             | 17.2            | 62.1             | 32.0              |               |  |  |
| 06.05.2023 | 11.6            | 16.1            | 12.2            | 21.1            | 10.5            | 17.5            | 61.4             | 33.3              |               |  |  |
| 12.05.2023 | 10.5            | 15.3            | 9.1             | 15.8            | 10.5            | 15.9            | 58.7             | 31.4              |               |  |  |
| 13.05.2023 | 10.4            | 19.9            | 12.0            | 19.2            | 11.2            | 21.8            | 60.6             | 34.2              |               |  |  |
| 19.05.2023 | 11.9            | 21.5            | 9.6             | 15.0            | 8.3             | 19.0            | 56.1             | 33.1              |               |  |  |
| 20.05.2023 | 12.0            | 21.8            | 8.5             | 14.3            | 6.4             | 15.1            | 56.8             | 32.9              |               |  |  |
| 26.05.2023 | 9.3             | 20.1            | 8.6             | 17.3            | 10.4            | 17.7            | 60.6             | 32.2              |               |  |  |
| 27.05.2023 | 7.2             | 16.5            | 7.0             | 21.2            | 11.8            | 21.2            | 60.6             | 34.7              |               |  |  |

|          | NO2  | SO2  | PM 10 | PM 2.5 | СО            |
|----------|------|------|-------|--------|---------------|
| Max.     | 22.6 | 12.2 | 64.1  | 34.7   |               |
| Min.     | 14.3 | 6.4  | 53.9  | 29.2   |               |
| Avg.     | 18.5 | 9.5  | 58.6  | 32.5   | BDL (DL-0.50) |
| 98% tile | 22.2 | 12.0 | 63.8  | 34.5   |               |

#### Y

### (Unit $\mu g/m^3$ )

|                               | AMBIENT AIR QUALITY |
|-------------------------------|---------------------|
| LOCATION S5 : Village Bhoring | c .                 |

|                       | U      | 0               |                 |                 |                 |                 |                         | •                 | 0 /                    |
|-----------------------|--------|-----------------|-----------------|-----------------|-----------------|-----------------|-------------------------|-------------------|------------------------|
|                       |        |                 |                 | C               | LOCK            | HOURS           |                         |                   |                        |
| DATE OF<br>MONITORING | 00 -   | 08              | <b>08</b> ·     | 08 – 16         |                 | 5-24            |                         | 24 HOU            | RS                     |
|                       | $SO_2$ | NO <sub>2</sub> | SO <sub>2</sub> | NO <sub>2</sub> | SO <sub>2</sub> | NO <sub>2</sub> | <b>PM</b> <sub>10</sub> | PM <sub>2.5</sub> | CO(mg/m <sup>3</sup> ) |
| 03.03.2023            | 12.2   | 20.8            | 11.1            | 21.9            | 12.0            | 17.4            | 66.0                    | 31.8              | 0.74                   |
| 04.03.2023            | 8.7    | 22.4            | 10.9            | 16.5            | 7.8             | 16.3            | 62.3                    | 36.8              | 0.58                   |
| 10.03.2023            | 11.4   | 21.4            | 9.2             | 18.5            | 10.1            | 19.1            | 65.1                    | 31.2              | 0.63                   |
| 11.03.2023            | 7.3    | 15.6            | 7.0             | 15.1            | 9.8             | 17.4            | 63.2                    | 33.9              | 0.56                   |
| 17.03.2023            | 8.8    | 18.4            | 11.1            | 15.6            | 11.7            | 19.5            | 67.4                    | 31.7              | 0.67                   |
| 18.03.2023            | 10.2   | 18.4            | 8.3             | 20.9            | 10.6            | 22.8            | 62.3                    | 31.9              | 0.59                   |
| 24.03.2023            | 9.1    | 17.4            | 10.0            | 17.8            | 10.5            | 17.7            | 67.0                    | 33.4              | 0.70                   |
| 25.03.2023            | 7.8    | 17.8            | 7.0             | 19.1            | 12.2            | 20.0            | 61.2                    | 34.0              | 0.60                   |
| 31.03.2023            | 11.7   | 19.3            | 7.3             | 16.0            | 9.3             | 22.0            | 70.6                    | 31.9              | 0.59                   |
| 01.04.2023            | 11.1   | 17.9            | 11.0            | 17.2            | 9.8             | 18.7            | 62.8                    | 38.2              | 0.76                   |
| 07.04.2023            | 11.6   | 22.5            | 9.0             | 23.1            | 9.2             | 16.7            | 67.4                    | 31.0              | 0.72                   |
| 08.04.2023            | 11.8   | 20.5            | 7.1             | 16.2            | 9.3             | 17.9            | 66.4                    | 31.2              | 0.63                   |
| 14.04.2023            | 11.4   | 17.9            | 8.6             | 22.8            | 7.0             | 16.2            | 67.9                    | 35.0              | 0.57                   |
| 15.04.2023            | 9.4    | 20.5            | 7.6             | 15.8            | 11.2            | 17.7            | 63.4                    | 38.0              | 0.71                   |
| 21.04.2023            | 8.0    | 22.9            | 9.0             | 17.1            | 12.4            | 17.8            | 66.2                    | 33.3              | 0.64                   |
| 22.04.2023            | 11.5   | 14.9            | 10.2            | 21.7            | 9.8             | 18.5            | 64.6                    | 35.5              | 0.58                   |
| 28.04.2023            | 11.3   | 19.2            | 10.3            | 19.5            | 9.9             | 15.1            | 67.9                    | 32.0              | 0.58                   |
| 29.04.2023            | 10.7   | 20.1            | 10.7            | 23.0            | 9.4             | 19.4            | 64.4                    | 37.7              | 0.71                   |
| 05.05.2023            | 11.9   | 21.9            | 9.9             | 19.3            | 9.3             | 20.1            | 69.1                    | 33.6              | 0.60                   |
| 06.05.2023            | 12.6   | 20.2            | 10.0            | 17.6            | 9.7             | 17.4            | 65.4                    | 37.8              | 0.54                   |
| 12.05.2023            | 12.3   | 16.2            | 8.1             | 16.4            | 8.6             | 18.3            | 68.6                    | 38.2              | 0.60                   |
| 13.05.2023            | 8.2    | 17.4            | 12.0            | 17.0            | 10.4            | 23.3            | 62.5                    | 30.0              | 0.63                   |
| 19.05.2023            | 10.3   | 18.2            | 9.6             | 15.5            | 10.4            | 23.1            | 68.9                    | 32.1              | 0.57                   |
| 20.05.2023            | 10.6   | 20.4            | 7.5             | 17.1            | 12.2            | 14.8            | 67.6                    | 31.6              | 0.72                   |
| 26.05.2023            | 7.6    | 19.9            | 10.7            | 18.3            | 11.6            | 23.0            | 62.9                    | 39.0              | 0.66                   |
| 27.05.2023            | 9.3    | 20.5            | 8.4             | 21.6            | 8.3             | 20.7            | 68.2                    | 33.1              | 0.7                    |

|         | NO2  | SO2  | PM 10 | PM 2.5 | CO   |
|---------|------|------|-------|--------|------|
| Max.    | 23.3 | 12.6 | 70.6  | 39.0   | 0.76 |
| Min.    | 14.8 | 7.0  | 61.2  | 30.0   | 0.54 |
| Avg.    | 18.9 | 9.9  | 65.7  | 34.0   | 0.64 |
| 98%tile | 23.1 | 12.3 | 69.9  | 38.6   | 0.75 |

#### AMBIENT AIR QUALITY

### LOCATION S6:Nr. Village Barbaspur

(Unit µg/m<sup>3</sup>)

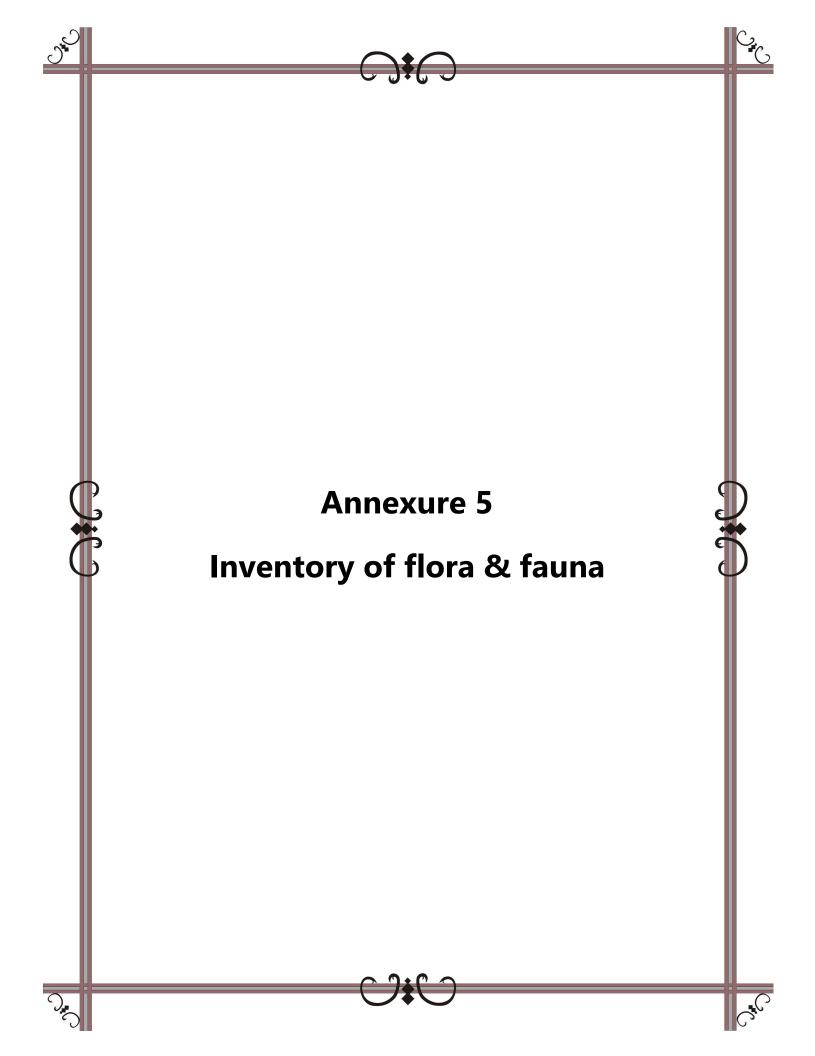
| DATE OF    | CLOCK HOURS     |                 |                 |                 |                 |                 |                       |                   |                        |  |
|------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------------|-------------------|------------------------|--|
| MONITORING | 00 -            | - 08            | 08              | - 16            | 16-             | 24              |                       | 24 HC             | DURS                   |  |
|            | SO <sub>2</sub> | NO <sub>2</sub> | SO <sub>2</sub> | NO <sub>2</sub> | SO <sub>2</sub> | NO <sub>2</sub> | PM <sub>10</sub>      | PM <sub>2.5</sub> | CO(mg/m <sup>3</sup> ) |  |
| 03.03.2023 | 10.2            | 20.1            | 7.1             | 18.2            | 8.1             | 22.6            | 64.4                  | 32.0              |                        |  |
| 04.03.2023 | 8.4             | 18.3            | 12.3            | 19.0            | 9.3             | 16.3            | 60.5                  | 28.7              |                        |  |
| 10.03.2023 | 11.3            | 23.6            | 11.1            | 16.9            | 10.8            | 23.6            | 58.1                  | 29.1              |                        |  |
| 11.03.2023 | 10.5            | 23.7            | 11.1            | 22.6            | 7.1             | 21.6            | 60.3                  | 33.8              |                        |  |
| 17.03.2023 | 7.9             | 15.8            | 6.9             | 15.7            | 10.0            | 16.6            | 60.0                  | 36.0              |                        |  |
| 18.03.2023 | 7.3             | 19.6            | 8.6             | 22.0            | 9.6             | 22.7            | 60.3                  | 34.5              |                        |  |
| 24.03.2023 | 10.3            | 21.5            | 8.8             | 15.7            | 8.5             | 23.6            | 63.3                  | 36.1              |                        |  |
| 25.03.2023 | 7.4             | 16.0            | 12.1            | 19.3            | 10.3            | 19.5            | 56.5                  | 30.9              |                        |  |
| 31.03.2023 | 9.2             | 23.2            | 8.1             | 17.8            | 12.1            | 16.2            | 62.4                  | 36.0              |                        |  |
| 01.04.2023 | 8.9             | 19.8            | 6.6             | 16.3            | 10.8            | 17.1            | 56.9                  | 30.2              |                        |  |
| 07.04.2023 | 11.1            | 23.9            | 9.2             | 19.5            | 9.7             | 19.8            | 62.5                  | 36.4              |                        |  |
| 08.04.2023 | 9.5             | 23.7            | 8.3             | 19.7            | 8.1             | 18.6            | 67.3                  | 36.8              |                        |  |
| 14.04.2023 | 7.0             | 17.4            | 9.5             | 19.3            | 8.7             | 22.5            | 58.1                  | 30.2              | BDL (DL-               |  |
| 15.04.2023 | 12.3            | 23.8            | 11.7            | 19.1            | 11.6            | 22.6            | 59.2                  | 33.5              | 0.50)                  |  |
| 21.04.2023 | 12.1            | 17.2            | 9.1             | 17.6            | 8.9             | 18.0            | 59.4                  | 31.8              |                        |  |
| 22.04.2023 | 10.9            | 16.2            | 8.7             | 18.4            | 9.4             | 15.5            | 65.7                  | 35.6              |                        |  |
| 28.04.2023 | 9.1             | 19.9            | 10.5            | 15.9            | 9.3             | 15.8            | 64.8                  | 32.2              |                        |  |
| 29.04.2023 | 10.6            | 21.4            | 7.9             | 21.6            | 8.4             | 22.7            | 59.9                  | 29.4              |                        |  |
| 05.05.2023 | 11.7            | 18.0            | 12.3            | 16.2            | 8.4             | 15.4            | 57.7                  | 31.2              |                        |  |
| 06.05.2023 | 9.7             | 15.2            | 9.4             | 19.2            | 7.4             | 23.6            | 64.4                  | 31.6              |                        |  |
| 12.05.2023 | 9.9             | 20.8            | 10.9            | 21.9            | 9.4             | 17.3            | 61.3                  | 29.6              |                        |  |
| 13.05.2023 | 7.4             | 16.1            | 8.2             | 23.1            | 8.9             | 17.3            | 65.9                  | 34.6              |                        |  |
| 19.05.2023 | 8.9             | 18.3            | 8.8             | 16.2            | 11.5            | 18.9            | 58.5                  | 36.3              |                        |  |
| 20.05.2023 | 7.8             | 19.7            | 12.0            | 20.4            | 11.3            | 23.1            | 66.7                  | 29.5              |                        |  |
| 26.05.2023 | 12.9            | 21.2            | 11.1            | 21.0            | 8.2             | 19.9            | 64.1                  | 29.9              |                        |  |
| 27.05.2023 | 12.0            | 18.8            | 9.7             | 17.1            | 12.2            | 21.3            | 63.2                  | 31.1              |                        |  |
|            | N               | 02              | S               | 02              | PM 1            | 10              | PM 2                  | 5                 | СО                     |  |
| Max.       |                 | <u>3.9</u>      |                 |                 | 67.3            |                 | <u>PM 2.5</u><br>36.8 |                   |                        |  |
| Min.       | 15.2            |                 |                 | 5.6             | 56.5            |                 | 28.7                  |                   | -                      |  |
| Avg.       |                 | 9.4             |                 | 9.6<br>9.6      | 61.6            |                 | 32.6                  |                   | BDL (DL-0.50)          |  |
| 98%tile    |                 | 3.8             |                 | 2.3             | 67.0            |                 | 36.6                  |                   |                        |  |
|            | I               |                 | I               |                 |                 |                 |                       |                   |                        |  |

#### AMBIENT AIR QUALITY

#### **LOCATION S7 : Village Achholi**

(Unit  $\mu g/m^3$ )

| DATE OF    | CLOCK HOURS     |                 |                 |                 |                 |                 |                  |                   |                        |
|------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|------------------|-------------------|------------------------|
| MONITORING | 00 -            | 08              | 08 -            | - 16            | 16              | -24             |                  | 24 HO             | URS                    |
| -          | SO <sub>2</sub> | NO <sub>2</sub> | SO <sub>2</sub> | NO <sub>2</sub> | SO <sub>2</sub> | NO <sub>2</sub> | PM <sub>10</sub> | PM <sub>2.5</sub> | CO(mg/m <sup>3</sup> ) |
| 05.03.2023 | 7.1             | 20.1            | 11.7            | 20.5            | 7.4             | 21.7            | 61.9             | 34.3              | 0.57                   |
| 06.03.2023 | 8.4             | 18.0            | 7.7             | 19.2            | 10.8            | 19.7            | 66.4             | 35.5              | 0.56                   |
| 12.03.2023 | 8.6             | 20.3            | 9.8             | 20.9            | 6.9             | 15.2            | 64.5             | 28.9              | 0.69                   |
| 13.03.2023 | 9.6             | 17.8            | 11.5            | 22.1            | 11.3            | 22.3            | 66.8             | 30.5              | 0.69                   |
| 19.03.2023 | 8.5             | 21.6            | 10.4            | 14.8            | 12.1            | 20.3            | 65.4             | 33.9              | 0.57                   |
| 20.03.2023 | 8.0             | 20.6            | 8.4             | 20.0            | 9.0             | 18.6            | 57.7             | 37.3              | 0.66                   |
| 26.03.2023 | 6.5             | 18.9            | 6.3             | 19.5            | 12.7            | 14.7            | 57.9             | 31.8              | 0.67                   |
| 27.03.2023 | 12.3            | 21.4            | 12.7            | 15.1            | 11.9            | 20.1            | 60.9             | 36.2              | 0.62                   |
| 02.04.2023 | 9.0             | 15.4            | 11.0            | 17.5            | 6.4             | 21.8            | 67.4             | 35.8              | 0.72                   |
| 03.04.2023 | 12.8            | 20.4            | 10.0            | 15.1            | 7.6             | 21.2            | 68.4             | 32.3              | 0.64                   |
| 09.04.2023 | 8.9             | 19.6            | 9.0             | 22.9            | 11.5            | 19.4            | 57.4             | 33.3              | 0.60                   |
| 10.04.2023 | 7.6             | 22.3            | 12.6            | 21.1            | 6.4             | 21.4            | 56.2             | 35.9              | 0.58                   |
| 16.04.2023 | 7.6             | 19.2            | 8.3             | 19.7            | 6.7             | 14.7            | 58.3             | 35.8              | 0.59                   |
| 17.04.2023 | 9.5             | 19.4            | 11.4            | 21.7            | 6.4             | 21.0            | 63.0             | 37.1              | 0.67                   |
| 23.04.2023 | 8.1             | 17.8            | 10.5            | 15.8            | 8.6             | 15.3            | 67.0             | 38.2              | 0.64                   |
| 24.04.2023 | 10.9            | 21.0            | 9.2             | 16.0            | 11.7            | 15.1            | 62.0             | 30.8              | 0.70                   |
| 30.04.2023 | 10.7            | 19.2            | 12.3            | 18.3            | 8.3             | 19.6            | 65.1             | 29.2              | 0.59                   |
| 01.05.2023 | 7.0             | 23.0            | 12.1            | 20.7            | 11.9            | 16.1            | 61.5             | 33.6              | 0.59                   |
| 07.05.2023 | 11.9            | 15.5            | 9.5             | 21.0            | 12.0            | 16.9            | 66.2             | 33.6              | 0.64                   |
| 08.05.2023 | 8.3             | 21.9            | 7.1             | 18.5            | 9.8             | 17.9            | 65.5             | 35.4              | 0.65                   |
| 14.05.2023 | 9.7             | 15.9            | 7.3             | 21.9            | 11.9            | 19.0            | 59.3             | 34.3              | 0.67                   |
| 15.05.2023 | 7.8             | 15.4            | 12.6            | 19.0            | 12.5            | 20.4            | 58.7             | 32.0              | 0.58                   |
| 21.05.2023 | 9.9             | 15.4            | 12.7            | 15.2            | 9.9             | 19.6            | 66.0             | 35.9              | 0.59                   |
| 22.05.2023 | 10.7            | 17.8            | 7.2             | 19.2            | 10.4            | 22.5            | 61.6             | 33.6              | 0.59                   |
| 28.05.2023 | 12.4            | 22.0            | 12.4            | 22.5            | 8.6             | 18.5            | 60.4             | 34.4              | 0.60                   |
| 29.05.2023 | 8.0             | 14.5            | 7.2             | 19.1            | 7.8             | 23.1            | 62.2             | 35.9              | 0.68                   |
| []         | NC              | )2              | S               | 02              | PM              | [ 10            | PM 2.            | 5                 | СО                     |
| Max.       | 23              |                 |                 | 2.8             |                 | 3.4             | 38.2             |                   | 0.72                   |
| Min.       | 14              |                 |                 | .3              |                 | 5.2             | 28.9             |                   | 0.56                   |
| Avg.       | 19              |                 |                 | .6              |                 | 2.6             | 34.1             |                   | 0.63                   |
| 98% tile   | 23              |                 |                 | 2.7             |                 | <sup>7</sup> .9 | 37.8             |                   | 0.71                   |


LOCATION S8 : Village Beltukri

Annexure 4\_ Detailed AAQM Monitoring Tables

#### AMBIENT AIR QUALITY

### (Unit µg/m<sup>3</sup>)

|                       |                 |                 |                 |                 | CLOCH           | <b>K HOURS</b>  | 6                |                         |                          |
|-----------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|------------------|-------------------------|--------------------------|
| DATE OF<br>MONITORING | 00 -            | 08              | 08              | - 16            | 16              | -24             |                  | 24 HO                   | URS                      |
|                       | SO <sub>2</sub> | NO <sub>2</sub> | SO <sub>2</sub> | NO <sub>2</sub> | SO <sub>2</sub> | NO <sub>2</sub> | PM <sub>10</sub> | <b>PM</b> <sub>2.</sub> | 5 CO(mg/m <sup>3</sup> ) |
| 05.03.2023            | 10.8            | 19.6            | 11.0            | 21.4            | 11.0            | 20.9            | 61.3             | 36.3                    | 0.60                     |
| 06.03.2023            | 11.3            | 16.7            | 9.3             | 17.7            | 7.7             | 17.7            | 60.4             | 36.7                    | BDL                      |
| 12.03.2023            | 10.7            | 15.6            | 9.7             | 19.5            | 6.1             | 19.2            | 59.5             | 33.4                    | DDL                      |
| 13.03.2023            | 9.4             | 21.0            | 7.9             | 16.7            | 11.2            | 17.1            | 63.4             | 32.7                    | 0.57                     |
| 19.03.2023            | 10.2            | 19.8            | 8.1             | 18.5            | 8.7             | 17.7            | 65.1             | 32.0                    | BDL                      |
| 20.03.2023            | 7.2             | 21.0            | 6.5             | 21.2            | 8.2             | 15.7            | 62.4             | 34.0                    | 0.52                     |
| 26.03.2023            | 10.7            | 15.4            | 7.4             | 15.6            | 9.9             | 19.0            | 58.1             | 32.4                    | BDL                      |
| 27.03.2023            | 8.5             | 20.5            | 9.3             | 20.6            | 9.8             | 16.8            | 62.2             | 32.0                    | 0.59                     |
| 02.04.2023            | 8.6             | 15.5            | 11.5            | 15.3            | 11.3            | 17.4            | 59.3             | 34.7                    | BDL                      |
| 03.04.2023            | 11.6            | 15.8            | 11.7            | 18.6            | 8.7             | 17.6            | 59.9             | 35.7                    | BDL                      |
| 09.04.2023            | 9.5             | 18.7            | 8.9             | 20.6            | 11.4            | 18.6            | 63.0             | 30.1                    | 0.60                     |
| 10.04.2023            | 7.3             | 21.0            | 8.2             | 20.5            | 10.1            | 21.7            | 63.5             | 35.8                    | BDL                      |
| 16.04.2023            | 8.8             | 15.3            | 8.3             | 17.9            | 8.5             | 19.6            | 62.6             | 31.0                    | BDL                      |
| 17.04.2023            | 6.7             | 21.0            | 9.9             | 20.1            | 11.0            | 16.5            | 56.4             | 33.5                    | 0.58                     |
| 23.04.2023            | 10.4            | 16.8            | 7.9             | 17.3            | 6.0             | 16.2            | 61.2             | 30.9                    | 0.59                     |
| 24.04.2023            | 6.2             | 21.1            | 11.1            | 18.5            | 9.7             | 16.3            | 61.9             | 34.1                    | 0.60                     |
| 30.04.2023            | 7.2             | 15.5            | 7.1             | 15.1            | 8.8             | 19.5            | 62.4             | 29.8                    | 0.52                     |
| 01.05.2023            | 9.3             | 17.1            | 10.8            | 16.9            | 10.3            | 18.6            | 63.7             | 34.7                    | BDL                      |
| 07.05.2023            | 7.6             | 16.8            | 7.5             | 16.2            | 10.6            | 16.5            | 63.3             | 34.2                    | 0.53                     |
| 08.05.2023            | 8.7             | 17.8            | 8.6             | 15.6            | 10.6            | 14.6            | 62.1             | 37.5                    | 0.59                     |
| 14.05.2023            | 6.8             | 21.2            | 9.2             | 16.3            | 9.3             | 16.9            | 62.7             | 36.4                    | BDL                      |
| 15.05.2023            | 11.6            | 19.3            | 8.2             | 20.7            | 9.8             | 18.7            | 63.7             | 32.1                    | 0.55                     |
| 21.05.2023            | 6.9             | 18.2            | 9.0             | 16.1            | 6.4             | 19.4            | 64.8             | 32.5                    | BDL                      |
| 22.05.2023            | 8.9             | 16.5            | 10.9            | 16.4            | 7.1             | 21.9            | 58.3             | 33.1                    | 0.63                     |
| 28.05.2023            | 10.8            | 20.8            | 6.6             | 18.6            | 6.1             | 15.9            | 60.4             | 32.2                    | 0.52                     |
| 29.05.2023            | 10.8            | 17.7            | 9.3             | 17.3            | 6.7             | 16.6            | 65.8             | 34.7                    | BDL                      |
|                       |                 |                 |                 |                 |                 |                 |                  |                         |                          |
|                       |                 | 02              |                 | SO2             |                 | 1 10            | PM 2.5           |                         | CO                       |
| Max.                  |                 | 1.9             |                 | 11.7            |                 | 5.8             | 37.5             |                         | 0.63                     |
| Min.                  |                 | 4.6             |                 | 6.0             | 56.4            |                 | 29.8             |                         | BDL (DL-0.50)            |
| Avg.                  |                 | 18.1            |                 | 9.0             |                 | 1.8             | 33.6             |                         | 0.51                     |
| 98% tile              | 2               | 1.5             |                 | 11.6            | 6               | 5.5             | 37.1             |                         | 0.62                     |



#### **Inventorization of Flora and Fauna**

List of flora observed in the study area as well as core zone is as mentioned in the list given below:

#### INVENTORYOFFLORAL DIVERSITY INCORE&BUFFER ZONEOFTHEPLANTSITE

#### Based on Actual Sighting, inputs from local sand Secondary Data

#### Habitat: Tree (T), Shrub (S), Herb(H), Grass(G), Climber(C) and Aquatic (Aq.)

| S.<br>No. | Scientific name         | Common name                     | Family         | IUCN       |
|-----------|-------------------------|---------------------------------|----------------|------------|
| 1.        | Acalyphawilkesiana      | Copperleaf                      | Euphorbiaceae  | Not listed |
| 2.        | Achyranthesaspera       | Apamarga                        | Amaranthaceae  | Not listed |
| 3.        | Aervajavanica           | Desertcotton                    | Amaranthaceae  | LC         |
| 4.        | Ageratumconyzoides      | Goatweed                        | Asteraceae     | LC         |
| 5.        | Albizialebbeck          | Siris                           | Mimosaceae     | LC         |
| 6.        | Alysicarpus vaginalis   | AlyceClover                     | Fabaceae       | Not listed |
| 7.        | Amaranthusspinosus      | SpinyAmaranth                   | Amaranthaceae  | Not listed |
| 8.        | Amaranthusviridis       | SlenderAmaranth                 | Amaranthaceae  | Not listed |
| 9.        | Barleriarepens          | Red barleria                    | Acanthaceae    | Not listed |
| 10.       | Blepharismolluginifolia | Creepingblepharis               | Acanthaceae    | Not listed |
| 11.       | Carissa carandas        | Kakronda                        | Asteraceae     | Not listed |
| 12.       | Buteamonosperma         | Palas                           | Fabaceae       | LC         |
| 13.       | Calotropisgigantea      | CrownFlower                     | Asclepiadaceae | Not listed |
| 14.       | Calotropisprocera       | Apple of Sodom                  | Asclepiadaceae | LC         |
| 15.       | ChlorisbarbataCyperales | Swollenfingergrass              | Poaceae        | Not listed |
| 16.       | Eupatorium odoratum     | Siamweed                        | Asteraceae     | Not listed |
| 17.       | Chrysopogonfulvus       | Guriagrass                      | Poaceae        | Not listed |
| 18.       | Crotalariaverrucosa     | Blue rattlepod                  | Fabaceae       | Not listed |
| 19.       | Crotonbonplandianum     | Bantulsi                        | Euphorbiaceae  | Not listed |
| 20.       | Cynodondactylon         | Turfgaddi                       | Poaceae        | Not listed |
| 21.       | Cyperusrotundus         | Nutgrass                        | Cyperaceae     | LC         |
| 22.       | Dactyloctniumaegyptium  | Crow footgrass                  | Poaceae        | Not listed |
| 23.       | Dichanthiumannulatum    | Marvelgrass                     | Poaceae        | Not listed |
| 24.       | Ecliptaprostrata        | Mayweed                         | Asteraceae     | Not listed |
| 25.       | Emiliasonchifolia       | RedTasselflower                 | Asteraceae     | Not listed |
| 26.       | Eragrostis amabilis     | Featherylovegrass               | Poaceae        | Not listed |
| 27.       | Conyza bonariensis      | Flaxleaffleabean                | Asteraceae     | Not listed |
| 28.       | Euphorbiahirta          | Asthmaweed                      | Euphorbiaceae  | Not listed |
| 29.       | Euphorbia hirta L.      | Hairyspurge                     | Euphorbiaceae  | Not listed |
| 30.       | Evolvulusalsinoides     | DwarfMorningglory               | Convolvulaceae | Not listed |
| 31.       | Gomphrenaglobosa        | GlobeAmaranth Amaranthaceae     |                | Not listed |
| 32.       | Mentha spicata          | ntha spicata Bushmint Lamiaceae |                | Not listed |
| 33.       | Indigofera linnaei      | Birdsvilleindigo                | Fabaceae       | Not listed |

| 34.         | Ipomoeacarnea           | Besharam/ Bushmorning<br>glory | Convolvulacae  | Not listed  |  |  |
|-------------|-------------------------|--------------------------------|----------------|-------------|--|--|
| 35.         | Indigoferalinifolia     | Narrowleaf Indigo              | Fabaceae       | LC          |  |  |
| 36.         | Indigoferaprostrata     | ProstrateIndigo                | Fabaceae       | Not listed  |  |  |
| 37.         | Iseilemaprostratum      | Musalgrass                     | Poaceae        | Not listed  |  |  |
| 38.         | Justicia americana      | Water Willow                   | Acanthaceae    | LC          |  |  |
| <i>39</i> . | Lecucaenaleucocephala   | Subabul                        | Mimosaceae     | Not listed  |  |  |
| 40.         | Merremiagangetica       | Kidneyleafmorningglory         | Convolvulaceae | LC          |  |  |
| 41.         | Ocimumbasilicum         | SweetBasil                     | Lamiaceae      | Not listed  |  |  |
| 42.         | Oldenlandiacorymbosa    | Diamondflower                  | Rubiaceae      | Not listed  |  |  |
| 43.         | Oldenlandiaumbellata    | Choyroot                       | Rubiaceae      | Not listed  |  |  |
| 44.         | Oryzasativa             | Paddy                          | Poaceae        | Not listed  |  |  |
| 45.         | Partheniumhysterophorus | Congressgrass                  | Asteraceae     | Not listed  |  |  |
| 46.         | Phoenixsylvestris       | Wild datePalm                  | Arecaceae      | Not listed  |  |  |
| 47.         | Prosopis cineraria      | Kejdi                          | Mimosaceae     | Not listed  |  |  |
| 48.         | Tectonagrandis          | Teak                           | Verbenaceae    | EN          |  |  |
| 49.         | Tephrosia cinerea       | CreepingTephrosia              | Fabaceae       | Not listed  |  |  |
| 50.         | Tephrosiapurpurea       | CommonTephrosia                | Fabaceae       | Not listed  |  |  |
| 51.         | Tridaxprocumbens        | Coatbuttons                    | Asteraceae     | Not llsited |  |  |
| 52.         | Ziziphusnummularia      | Ber                            | Rhamnaceae     | LC          |  |  |

Source: Field Survey

Note: Categories as per IUCN Red List refers Data Deficient (DD), Least Concern (LC), Near Threatened (NT), Vulnerable(VU), Endangered (EN), Critically Endangered (CR), Extinct in the Wild (EW) & Extinct (EX), Not Evaluated (NE).

#### Status of RET Species

According to Botanical Survey of India, no Endemic, Rare, Endangered and Threatened (RET) species of flora were found in the study area.

| S.<br>No. | Scientific name     | Common/local name     | Family        |
|-----------|---------------------|-----------------------|---------------|
| 1.        | Abrusprecatorius    | Gumachi/ gunj/ ratthi | Fabaceae      |
| 2.        | Mimosa hamata       | Chilati               | Mimosaceae    |
| 3.        | Senegalia catechu   | Khair                 | Mimosaceae    |
| 4.        | Vachellianilotica   | Babul                 | Mimoscaeae    |
| 5.        | Acaciaconcinna      | Sheekakai             | Mimosaceae    |
| 6.        | Aeglemarmelos       | Bel                   | Rutaceae      |
| 7.        | Ailanthusexcelsa    | Mahaneem/Maharukh     | Simaroubaceae |
| 8.        | Alangiumsalvifolium | Akol                  | Cornaceae     |
| 9.        | Albizia lebbeck     | Kala Siris            | Mimosaceae    |
| 10.       | Albizia procera     | Safed Siris           | Mimosacea     |

#### List of flora in study area

| 11.         | Albizia odoratissima      | Chichwa                    | Mimosacea       |
|-------------|---------------------------|----------------------------|-----------------|
| 12.         | Alstoniascholaris         | Saptaparni                 | Apocynaceae     |
| 13.         | Anogeissus pendula        | Dhok / Dhonk               | Combretaceae    |
| 14.         | Annona reticulata         | Ramphal                    | Annonaceae      |
| 15.         | Annona squamosa           | Seetaphal, sareefa         | Annonaceae      |
| 16.         | Anogeissus acuminata      | Pasi                       | Combretaceae    |
| 17.         | Anogeissus latifolia      | Dhavada / Dhaora           | Combretaceae    |
| 18.         | Anthocephaluscadamba      | Cadamb                     | Rubiaceae       |
| 19.         | Antidesmadiandrum         | Khatuaa / katama           | Euphorbiaceae   |
| 20.         | Araucaria aracauna        | Monkey's puzzle            | Araucariaceae   |
| 21.         | Asparagus racemosus       | Satavar/ dasmur            | Liliaceae       |
| 22.         | Azadirachta Indica        | Neem                       | Meliaceae       |
| 23.         | Balanites aegyptiaca      | Hingate / hinghan          | Simaroubaceae   |
| 24.         | Bauhinia malabarica       | Amata                      | Caesalpiniaceae |
| 25.         | Bauhinia purpurea         | Ke-olar                    | Caesalpiniaceae |
| 26.         | Bauhinia racemosa         | Asta/ Astara / Bosaa       | Caesalpiniaceae |
| 27.         | Bauhinia vahlii           | Mahul                      | Caesalpiniaceae |
| 28.         | Bauhinia variegata        | Kachanar                   | Caesalpiniaceae |
| 29.         | Boswellia serrata         | Salai                      | Burseraceae     |
| 30.         | Bougainvillea spectabilis | Bougainvillea              | Nyctaginaceae   |
| 31.         | Bridelia retusa           | Kasai / saaja              | Euphorbiaceae   |
| 32.         | Buchananialanzan          | Achar /Char                | Anacardiaceae   |
| 33.         | Butea monosperma          | Palas                      | Fabaceae        |
| 34.         | Butea superba             | Palasbel                   | Fabaceae        |
| 35.         | Careya arborea            | Kumbhi                     | Myrtaceae       |
| 36.         | Carissa spinarum          | Karonda                    | Apocynaceae     |
| 37.         | Casearia graveolens       | Safed karai / Chilla       | Salicaceae      |
| 38.         | Casearia tomentosa        | Tondi / Leaf Chilla        | Salicaceae      |
| <i>39</i> . | Cassia fistula            | Amaltas                    | Caesalpiniaceae |
| 40.         | Cassia siamea             | Siamese Cassia             | Caesalpiniaceae |
| 41.         | Celastruspaniculata       | Maalakhamgani              | Celastraceae    |
| 42.         | Chamaedorea elegans       | Bamboo palm                | Arecaceae       |
| 43.         | Chloroxylon swietenia     | Bhirra / Ceylon Satin Wood | Rutaceae        |
| 44.         | Cissus quadrangularis     | Hadjodi                    | Vitaceae        |
| 45.         | Cissus repanda            | Pani bel / Dokarbe         | Vitaceae        |
| 46.         | Cleistanthuscollinus      | Garari / Karra             | Euphorbiaceae   |
| 47.         | Clematis triloba          | Morbel / Murhar            | Ranunculaceae   |
| 48.         | Cochlospermumreligiosum   | Galgal                     | Bixaceae        |
| 49.         | Cordia sebestena          | Lasora                     | Boroginaceae    |
| 50.         | Colebrookiaoppositifolia  | Kalabansa                  | Lamiaceae       |

| 51.         | Combretum decandrum   | Pivar bel               | Combretaceae    |
|-------------|-----------------------|-------------------------|-----------------|
| 52.         | Scientific name       | Common / local name     | Family          |
| 53.         | Cordia macleodii      | Dahivas                 | Boraginaceae    |
| 54.         | Cryptolepisbuchanani  | Karbel / nagabel        | Asclepiadaceae  |
| 55.         | Dalbergia latifolia   | Seesam                  | Fabaceae        |
| 56.         | Dalbergia paniculata  | Dhobin                  | Fabaceae        |
| 57.         | Dalberig sissoo       | Shisham                 | Fabaceae        |
| 58.         | Dodonaeaviscosa       | Karantha / Sanatta      | Sapindaceae     |
| 59.         | Dendrocalamusstrictus | Bamboo / Bans           | Poaceae         |
| 60.         | Desmodiumpulchellum   | Chipti / Jatsalpan      | Fabaceae        |
| 61.         | Dilleniapentagyna     | Kalla / Karmal          | Dilleniaceae    |
| 62.         | Dioscoreabulbifera    | Kadhadhu/ kanda         | Dioscoreaceae   |
| 63.         | Diospyros melanoxylon | Thendu                  | Ebenaceae       |
| 64.         | Dolichandrone falcata | Medsing                 | Bignoniaceae    |
| 65.         | Durantaerecta         | Golden Dew drops        | Verbenaceae     |
| 66.         | Elaeodendron glaucum  | Lamarasi/ arn           | Celastraceae    |
| 67.         | Erythrina suberosa    | Panjara / gadhapalas    | Fabaceaae       |
| 68.         | Eugenia heyneana      | Katjamun                | Myrtaceae       |
| 69.         | Euphorbia neriifolia  | Ghur                    | Euphorbiaceae   |
| 70.         | Euphorbia tirucalli   | Thuar                   | Euphorbiaceae   |
| 71.         | Limoniaacidissima     | Kaith                   | Rutaceae        |
| 72.         | Ficus benghalensis    | Bud / Banyan            | Moraceae        |
| 73.         | Ficus benjamina       | Weeping Fig             | Moraceae        |
| 74.         | Ficus glomerata       | Gular                   | Moraceae        |
| 75.         | Ficus racemosa        | Cluster Fig / Gular     | Moraceae        |
| 76.         | Ficus religiosa       | Peepal                  | Moraceae        |
| 77.         | Flacourtia indica     | Kakayi / gorghati       | Salicaceae      |
| 78.         | Flacourtiaramontchi   | Kakai / Bilangada       | Salicaceae      |
| 79.         | Flemingiasemialata    | Ban rahar / Bara Solpan | Fabaceae        |
| 80.         | Gardenia latifolia    | Papra                   | Rubiaceae       |
| 81.         | Gardenia resinifera   | Dikamali                | Rubiaceae       |
| 82.         | Gardenia turgida      | Pheda / kharhar         | Rubiaceae       |
| <i>83</i> . | Garuga pinnata        | Kekad / kekar           | Burseraceae     |
| 84.         | Gmelima arborea       | Khamer / Gamari         | Verbenaceae     |
| 85.         | Grevillea robusta     | Silver Oak              | Proteaceae      |
| 86.         | Grewia hirsuta        | Gurasukadi              | Tiliaceae       |
| 87.         | Grewia asiatica       | Phalsa                  | Tiliaceae       |
| 88.         | Grewia tilliifolia    | Dhaman                  | Tiliaceae       |
| 89.         | Haldina cordifolia    | Haldu                   | Rubiaceae       |
| 90.         | Hardwickiabinata      | Anjan                   | Caesalpiniaceae |

| <i>91</i> . | Helicteresisora           | Marorphali            | Sterculiaceae   |
|-------------|---------------------------|-----------------------|-----------------|
| 92.         | Hemidesmus indicus        | Anantamul             | Asclepiadaceae  |
| 93.         | Holarrhenaantidysenterica | Karchi /Dhudhi        | Apocynaceae     |
| 94.         | Hymenodictyonexcelsum     | Bhamvarsaal / bormal  | Rubiaceae       |
| 95.         | Ixora parviflora          | Lokhandi              | Rubiaceae       |
| 96.         | Jasminum arborescens      | Chameli               | Oleaceae        |
| 97.         | Scientific name           | Common / local name   | Family          |
| 98.         | Kydiacalycina             | Poola / barang        | Malvaceae       |
| <i>99</i> . | Lagerstroemia parviflora  | Senha / lendiya       | Lythraceae      |
| 100.        | Lanneacoromandelica       | Gunga / Mohin         | Anacardiaceae   |
| 101.        | Lantana camara            | Raimunia              | Verbenaceae     |
| 102.        | Lawsoniainermis           | Henna                 | Lythraceae      |
| 103.        | Leucaena leucocephala     | Subabul               | Mimosaceae      |
| 104.        | Litseaglutinosa           | Medh / Chandna        | Lauraceae       |
| 105.        | Madhuca indica            | Mahua                 | Sapotaceae      |
| 106.        | Mangifera indica          | Aam / Mango           | Anacardiaceae   |
| 107.        | Maytenusemarginata        | Red spike thorn       | Celastraceae    |
| 108.        | Miliusa tomentosa         | Kaari / Hoom          | Annonaceae      |
| 109.        | Miliusavelutina           | Choparchilla / domsal | Annonaceae      |
| 110.        | Millettia auriculata      | Gurar / gaaj          | Fabaceae        |
| 111.        | Mimusopselengi            | Ponna / Khirani       | Sapotaceae      |
| 112.        | Mimusopsheaxandra         | Khirani               | Sapotceae       |
| 113.        | Mitragyna parviflora      | Kem / mundi           | Ruviaceae       |
| 114.        | Mucuna pruriens           | Kewanch               | Fabaceae        |
| 115.        | Murraya exotica           | Madukamani            | Rutaceae        |
| 116.        | Murrayapaniculata         | Madhukamini           | Rutaceae        |
| 117.        | Musa sapientum            | Kela                  | Musaceae        |
| 118.        | Nerium odorum             | Oleander              | Apocynaceae     |
| 119.        | Nyctanthusarbortristis    | Harsingar             | Oleaceae        |
| 120.        | Ougeiniaoojeinensis       | Tinsa / Sandan        | Fabaceae        |
| 121.        | Peltaphorumpterocarpum    | Copper pod            | Caesalpiniaceae |
| 122.        | Phoenix acaulis           | Kuchachinda           | Arecaceae       |
| 123.        | Phyllanthus emblica       | Amla / Aamvala        | Phyllanthaceae  |
| 124.        | Polyalthia longifolia     | Ashok                 | Annonaceae      |
| 125.        | Pongamia pinnata          | Karanj / karanji      | Fabaceae        |
| 126.        | Pterospermumacerifolium   | Kanak Champa          | Sterculiaceae   |
| 127.        | Randiadumatorum           | Mainphal              | Rubiaceae       |
| 128.        | Randiauliuginosa          | Katul                 | Rubiaceae       |
| 129.        | Roystonea regia           | Royal Palm            | Arecaceae       |
| 130.        | Salmaliamalabarica        | Semal                 | Malvaceae       |

| 131. | Samanea saman             | Rain Tree             | Mimosaceae       |
|------|---------------------------|-----------------------|------------------|
| 132. | Embeliarobusta            | Baibirang             | Primulaceae      |
| 133. | Schleicheraoleosa         | Kusum                 | Sapindaceae      |
| 134. | Schreberaswietenioides    | Mhoka / Banpalas      | Oleaceae         |
| 135. | Semecarpus anacardium     | Bhilwa / Marking nut  | Anacardiaceae    |
| 136. | Shorearobusta             | Saal                  | Depterocarpaceae |
| 137. | Smilax macrophylla        | Ramadataun            | Liliaceae        |
| 138. | Soymidafebrifuga          | Rohan / rohani        | Meliaceae        |
| 139. | Spoindias pinnata         | Amera                 | Anacardiacea     |
| 140. | Sterculia urens           | Kullu                 | Streculiceae     |
| 141. | Stereopermumpersonatum    | Padar / Paral         | Bignoniaceae     |
| 142. | Syzygiumcumini            | Jamun                 | Myrtaceae        |
| 143. | Scientific name           | Common / local name   | Family           |
| 144. | Tabernaemontanadivaricata | Chandri               | Apocynaceae      |
| 145. | Tamarindus indica         | Imali                 | Leguminosae      |
| 146. | Tectona grandis           | Sagaun / saaga / Teak | Verbenaceae      |
| 147. | Terminalia arjuna         | Arjun                 | Combretaceae     |
| 148. | Terminalia arjuna         | Arjun / kahu/ koha    | Combretaceae     |
| 149. | Terminalia bellerica      | Baheda                | Combretaceae     |
| 150. | Terminalia catappa        | Almond                | Combretaceae     |
| 151. | Terminalia chebula        | Harra                 | Combretaceae     |
| 152. | Terminalia tomentosa      | Saaja                 | Combretaceae     |
| 153. | Thespeciapopulnea         | Portia tree           | Malvaceae        |
| 154. | Thuja occidentalis        | Thuja                 | Cupressaceae     |
| 155. | Ventilagocalyculata       | Kevati                | Rhamnaceae       |
| 156. | Ventilagomadraspatana     | Khairabel / kaalibel  | Rhamnaceae       |
| 157. | Vitex negundo             | Nirgudi               | Verbenaceae      |
| 158. | Vitex trifoliata          | Nirgudi               | Verbenaceae      |
| 159. | Wendlandiaexserta         | Tilwah                | Rubiaceae        |
| 160. | Woodfordiafruticosa       | Dhawai                | Lytharaceae      |
| 161. | Wrightia tinctoria        | Dhudhi                | Apocynaceae      |
| 162. | Ziziphus oenoplia         | Makkay / Wild Jujube  | Rhamanaceae      |
| 163. | Ziziphus mauritiana       | Ber, bor              | Rhamnaceae       |
| 164. | Ziziphus rugosa           | Irni, churani         | Rhamanaceae      |
| 165. | Ziziphus xylopyrus        | Ghont / Ghoti         | Rhamanaceae      |

#### INVENTORYOFFAUNAL DIVERSITY INCORE&BUFFER ZONEOFPLANTSITE

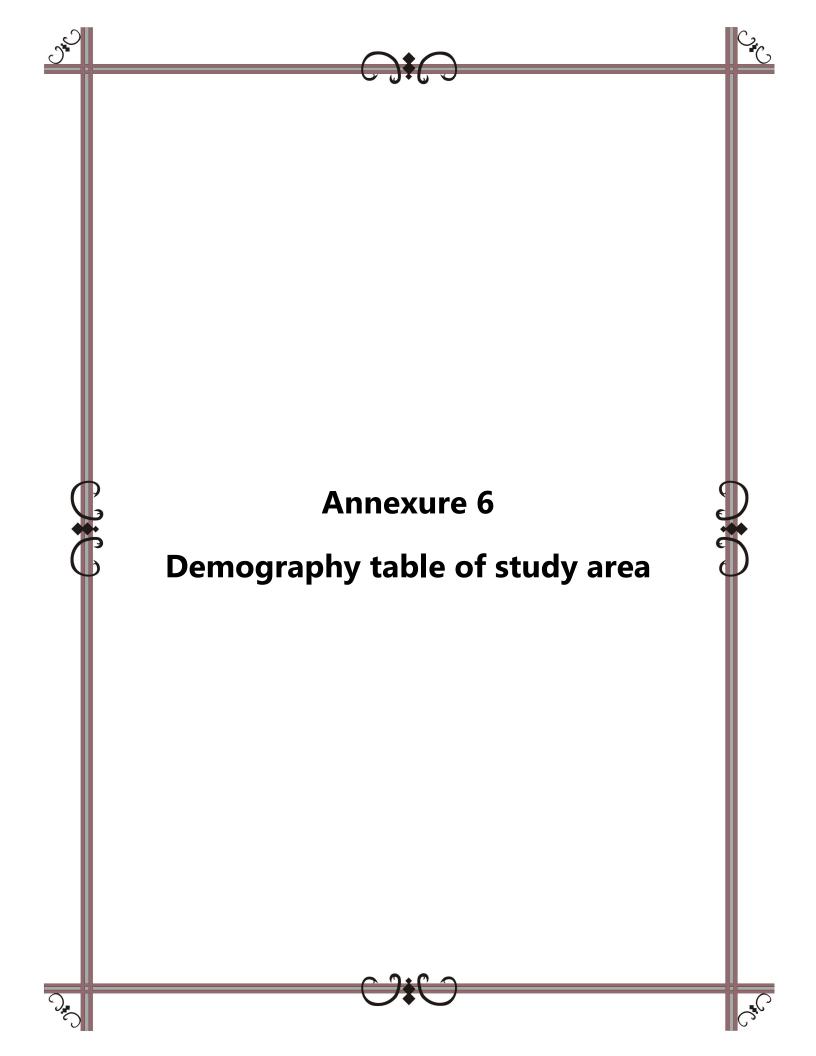
#### Based on Field Survey, based on inputs from locals and Perused from Secondary Data

| Scientific Name           | Common name            | Status According<br>to IWPA- 1972 | IUCN Statu |
|---------------------------|------------------------|-----------------------------------|------------|
| Bandicootabengalensis     | Lesserbandicoot        | NA                                | LC         |
| Bandicotaindica           | GreaterBandicoot       | NA                                | LC         |
| Cynopterussphinx          | ShortnosedFruitBat     | NA                                | LC         |
| Funambuluspalmarum        | ThreestripedSquirrel   | NA                                | NT         |
| Lepusnigricollis          | CommonIndianHare       | Sch II                            | LC         |
| Macacamulatta             | Rhesusmacaque          | NA                                | LC         |
| Semnopithecusentellus     | Commonlangur           | Sch II                            | LC         |
| Rattusrattus              | Rat                    | NA                                | LC         |
| Suncusmurinus             | Asianmuskshrew         | NA                                | LC         |
| Susscrofa                 | Wildpig                | Sch II                            | LC         |
| Vulpesbengalensis         | Indianfox              | Sch IV                            | LC         |
| Reptiles                  |                        |                                   |            |
| Oxybelisfulgidus          | Greenvinesnake         | NA                                | LC         |
| Amphiesmastolatum         | Buffstripedkeelback    | NA                                | LC         |
| Bungaruscaeruleus         | CommonIndianKrait      | NA                                | LC         |
| Calotesversicolor         | Gardenlizard           | NA                                | LC         |
| Cnemaspisindica           | IndianDayGecko         | NA                                | VU         |
| Dendrelaphistristis       | TreeSnake              | NA                                | LC         |
| Echiscarinatus            | Saw scaledviper        | Sch II                            | LC         |
| Eutropiscarinata          | Indaingrass Skink      | NA                                | LC         |
| Lampropholisguichenoti    | Commonskink            | NA                                | LC         |
| Hemidactylusflaviviridis  | Indianwalllizard       | NA                                | LC         |
| Cynopterus sphinx         | Short nosed Fruit Bat  | NA                                | LC         |
| Funambulus palmarum       | Three striped Squirrel | NA                                | LC         |
| Macaca mulatta            | Rhesus macaque         | NA                                | LC         |
| Rattus rattus             | Rat                    | NA                                | LC         |
| Suncus murinus            | Asian musk shrew       | NA                                | LC         |
| Vulpes bengalensis        | Indian fox             | Sch IV                            | LC         |
| Hemidactylusleschenaultii | Marbledtreegecko       | NA                                | LC         |
| Lycodon                   | Wolf snake             | NA                                | LC         |
| Typhlopidae               | GiantBlindSnake        | Sch II                            | LC         |
| Typhlopidae               | SlenderBlindSnake      | Sch II                            | LC         |
| Amphibians                |                        |                                   |            |
| Duttaphrynusmelanostictus | CommonIndianToad       | NA                                | LC         |
| Hoplobatrachustigerinus   | TigerFrog              | Sch IV                            | LC         |
| Polypedatesmaculatus      | TreeFrog               | Sch IV                            | LC         |

| Euphlyctishexadactylus  | GreenPondFrog                  | Sch IV   | LC |
|-------------------------|--------------------------------|----------|----|
| Acridotheres tristis    | Common myna                    | Sch II   | LC |
| Aegithinia tiphia       | Common Iora                    | NA       | LC |
| Alcedoatthis            | Common kingfisher              | Sch II   | LC |
| Ardeola                 | Pond heron                     | NA       | LC |
| Apus nipalensis         | Nepal House swifts             | Sch II   | LC |
| Bubo bengalensis        | Great horned Owl               | NA       | LC |
| Bubulcus ibis           | Cattle Egret                   | Sch II   | LC |
| Caprimulgus asiaticus   | Indian Nightjar                | Sch II   | LC |
| Cerylerudis             | Lesser pied Kingfisher         | Sch II   | LC |
| Columba livia           | Blue rock pigeon / Kabotar     | NA       | LC |
| Coracias benghalensis   | Nilkanth / Indian Roller       | Sch II   | LC |
| Corvus splendens        | House crow                     | NA       | LC |
| Dendrocittavagabunda    | Indian tree pie                | NA       | LC |
| Dendrocopusmarhatensi   | Maratha Woodpecker             | NA       | LC |
| Dicrurusmacrocercus     | Black drongo                   | NA       | LC |
| Egrettagarzetta         | Little egret                   | Sch II   | LC |
| Eudyanamyssclopaceus    | Asian Koel                     | Sch II   | LC |
| Francolinus Pictus      | Painted Francolin / Teetar     | Sch II   | LC |
| Ortygornispondicerianus | Grey Francolin/ SafedTeetar    | Sch II   | LC |
| Gallus gallus           | Red jungle fowl / Murgijungli  | Sch II   | LC |
| Gallus sonneratii       | Grey jungli fowl / Murgijungli | Sch IV   | LC |
| Halcyon smyrnensis      | White-Throated King fisher     | Sch II   | LC |
| Hierococcyxvarius       | Common hawk-cuckoo             | NA       | LC |
| Meropsorientalis        | Little Green Bee Eater         | NA       | LC |
| Milvus migrans          | Black Kite                     | Sch II   | LC |
| Motacilla alba          | White wagtail                  | Sch II   | LC |
| Oriolusoriolus          | Golden Oriole                  | NA       | LC |
| Passer domesticus       | House sparrow                  | Sch II   | LC |
| Phalacrocorax carbo     | Great Cormorant                | Sch II   | LC |
| Microcarboniger         | Little cormorant               | Sch II   | LC |
| Ploceidae               | Weaver bird                    | NA       | LC |
| Psittacularoseata       | Blossom headed Parakeet        | Sch II   | NT |
| Pycnonotus barbatus     | Common Bulbul                  | NA       | LC |
| Pycnonotuscafer         | Red-vented bulbul              | Sch II   | LC |
| Pycnonotusjocosus       | Red whiskered Bulbul           | Sch II   | LC |
| Copsychusfulicatus      | Indian robin                   | Sch II   |    |
| Spilopelia chinensis    | Spotted Dove / Chittafakata    | NA       | LC |
| Sturnus contra          | Pied myna                      | NA<br>NA | LC |
| Siurnus contra          | Brahminy myna                  | NA<br>NA |    |

| psittacines             | Parrot / JunglyTota    | NA         | LC         |  |  |
|-------------------------|------------------------|------------|------------|--|--|
| Treronphoenicoptera     | Green pigeon / Harial  | NA         | LC         |  |  |
| Turdoidescaudata        | Common babbler         | NA         | LC         |  |  |
| Upupa epops             | Common hoopoe          | Sch II     | LC         |  |  |
|                         | Butterflies            |            | ·          |  |  |
| Pseudocoladeniadan      | Fulvouspied flat       | NA         | Not listed |  |  |
| Junonialemonias         | Lemonpansy             | NA         | Not listed |  |  |
| Junoniahierta           | YellowPansy            | NA         | Not listed |  |  |
| Pachlioptaaristolochiae | Commonrose             | NA         | LC         |  |  |
| Aracaviolae             | Tawnycostar            | NA         | Not listed |  |  |
| Tirumalalimniace        | BlueTiger              | NA         | Not listed |  |  |
| Corvus brachyrhynchos   | CommonCrow             | NA         | LC         |  |  |
| Ideopsis vulgaris       | GlassyBlue Tiger       | NA         | Not listed |  |  |
| Junoniaoenone           | Bluepansy              | NA         | LC         |  |  |
| Hypolimnasmisippus      | Danaid eggfly          | Sch II     | LC         |  |  |
| Neptishylas             | Commonsailor           | NA         | Not listed |  |  |
| Papiliodemoleus         | Limebutterfly          | NA         | Not listed |  |  |
| Catopsiliacrocale       | Commonemigrant         | NA         | Not listed |  |  |
| Danaus chrysippus       | Plaintiger             | NA         | LC         |  |  |
| Otherinsects            |                        |            |            |  |  |
| Brachytronpratense      | HairyDragonfly         | NA         | LC         |  |  |
| Anaximperator           | EmperorDragonfly       | NA         | LC         |  |  |
| Tettigoniaviridissima   | Grasshopper            | NA         | Not listed |  |  |
| Hieroglyphus banian     | Rice grasshopper       | NA         | Not listed |  |  |
| Nephotettixapicalis     | Paddy Jassids          | NA         | Not listed |  |  |
| Hybleapurea             | Skeletonizer           | NA         | Not listed |  |  |
| Hepaliamauritia         | Defoliators            | NA         | Not listed |  |  |
| Spodoptera mauritia     | Swarming caterpillar   | NA         | Not listed |  |  |
| Scientific name         | Common name            | IUCN       |            |  |  |
| Ailiacoila              | Gangeticailia          | Not listed |            |  |  |
| Amblypharyngodonmola    | MolaCarplet            | LC         |            |  |  |
| Bagariusbagarius        | Goonch                 | Not listed |            |  |  |
| Bariliusvagra           | Khoksa                 | Not listed |            |  |  |
| Bariliusvagra           | VagraBaril             | Not listed |            |  |  |
| Catlacatla              | Catla                  | Not listed |            |  |  |
| Chandanama              | Elongateglass-perchlet | LC         |            |  |  |
| Channagachua            | DwarfSnakehead         | LC         |            |  |  |
| Channamarulius          | GreatSnakehead         | LC         |            |  |  |
| Channaorientalis        | WalkingSnakehead       | VU         |            |  |  |
| Channapunctatus         | SpottedSnakehead       | LC         |            |  |  |

Annexure 5 Inventory of Flora and Fauna


| Channastriatus             | StripedSnakehead        | LC         |  |
|----------------------------|-------------------------|------------|--|
| Chitalachitala             | ClownKnifefish          | LC         |  |
| Cirrhinusreba              | RebaCarp                | LC         |  |
| Cirrhinuscirrhosus         | Mrigal                  | VU         |  |
| Clariasbatrachus           | PhilippineCatfish       | Not listed |  |
| Clariasgariepinus          | NorthAfricanCatfish     | Not listed |  |
| Ctenopharyngodonidella     | GrassCarp               | Not listed |  |
| Gagatacenia                | IndianGagata            | Not listed |  |
| Gagatagagata               | Gangeticgagata          | Not listed |  |
| Glossogobiusgiuris         | TankGobi                | Not listed |  |
| Heteropneustesfossilis     | StingingCatfish         | Not listed |  |
| Hypophthalmichthysmolitrix | SilverCarp              | NT         |  |
| Hypophthalmichthysnobilis  | BigheadCarp             | DD         |  |
| Labeoangra                 | AngraLabeo              | Not listed |  |
| Labeobata                  | Bata                    | Not listed |  |
| Labeoboga                  | Boga labeo              | Not listed |  |
| Labeoboggut                | BoggutLabeo             | Not listed |  |
| Labeocalbasu               | Calbasu                 | LC         |  |
| Labeorohita                | Rohu                    | LC         |  |
| Laubucalaubuca             | IndianGlass Barb        | Not listed |  |
| Lepidocephalichthysguntea  | GunteaLoach             | Not listed |  |
| Mastacembelusarmatus       | Zig-zageel              | Not listed |  |
| Mystusbleekeri             | Day'sMystus             | Not listed |  |
| Mystuscavasius             | GangeticMystus          | Not listed |  |
| Mystustengara              | TengaraCatfish          | Not listed |  |
| Mystusvittatus             | StripedDwarfCatfish     | LC         |  |
| Ompokbimaculatus           | ButterCatfish           | LC         |  |
| Oreochromismossambicus     | MozambiqueTilapia       | VU         |  |
| Oreochromisniloticus       | Nile Tilapia            | LC         |  |
| Pangasiuspangasius         | PangasCatfish           | LC         |  |
| Rita rita                  | Rita Catfish            | LC         |  |
| Systomussarana             | Olive Barb              | LC         |  |
| Wallago attu               | River Catfish / Wallago | VU         |  |

Source: Field survey

Note: Categories as per IUCN Red List refers Data Deficient (DD), Least Concern (LC), Near Threatened (NT), Vulnerable(VU), Endangered (EN), Critically Endangered (CR), Extinct in the Wild (EW) & Extinct (EX)

#### Status of Fauna

No Schedule- I fauna as per (IWPA) Indian Wildlife Protection Act, 1972 was recorded in the study area during field survey.




Annexure 6\_ Detailed demography of study area

| S. No. | Name                       | Total House holds | Total Pop. | Total Male | Total Female | Sex Ratio | Pop. below 6 | Male below 6 | Female below 6 | Child Sex Ratio | SC Pop. | ST Pop. | Lit. Pop. | Lit. Rate | Lit.<br>Male | Male Lit. Rate | Lit. Female | Female Lit. Rate | Total Workers | Main Workers | Marginal Workers | Non- Workers |
|--------|----------------------------|-------------------|------------|------------|--------------|-----------|--------------|--------------|----------------|-----------------|---------|---------|-----------|-----------|--------------|----------------|-------------|------------------|---------------|--------------|------------------|--------------|
|        |                            |                   |            |            |              |           |              |              |                | 0-3kr           | n       |         |           |           |              |                |             |                  |               |              |                  |              |
| 1      | Achholi                    | 441               | 2228       | 1102       | 1126         | 1022      | 300          | 157          | 143            | 911             | 150     | 30      | 1367      | 70.90     | 796          | 84.23          | 571         | 58.09            | 576           | 663          | 462              | 1103         |
| 2      | Beltukri                   | 399               | 1687       | 852        | 835          | 980       | 275          | 138          | 137            | 993             | 569     | 90      | 38        | 2.69      | 929          | 561            | 368         | 52.72            | 878           | 476          | 402              | 809          |
| 3      | Khattidih                  | 133               | 606        | 305        | 301          | 987       | 94           | 45           | 49             | 1089            | 0       | 296     | 409       | 79.88     | 232          | 89.23          | 177         | 70.24            | 336           | 147          | 147              | 189          |
| 4      | Bhoring                    | 1162              | 4798       | 2357       | 2441         | 1036      | 637          | 323          | 314            | 972             | 1424    | 11      | 3011      | 72.36     | 1707         | 83.92          | 1304        | 61.31            | 2295          | 1509         | 786              | 2503         |
| 5      | Achharidih                 | 485               | 2416       | 1194       | 1222         | 1023      | 405          | 193          | 212            | 1098            | 893     | 62      | 1405      | 69.87     | 821          | 82.02          | 584         | 57.82            | 1232          | 157          | 1075             | 1184         |
| 6      | Amawash                    | 184               | 727        | 393        | 334          | 850       | 121          | 74           | 47             | 635             | 584     | 17      | 346       | 57.10     | 223          | 69.91          | 123         | 42.86            | 391           | 389          | 2                | 336          |
|        | SUB TOTAL                  | 2804              | 12462      | 6203       | 6259         | 1009.028  | 1832         | 930          | 902            | 970             | 3620    | 506     | 6576      | 61.86     | 4708         | 89.29          | 3127        | 58.37            | 5708          | 3341         | 2874             | 6124         |
|        |                            |                   |            |            |              |           |              | 1            |                | 3-7 ki          |         |         | 1         |           |              |                |             |                  |               |              |                  |              |
| 1      | Muski                      | 92                | 401        | 213        | 188          | 883       | 66           | 34           | 32             | 941             | 47      | 96      | 196       | 58.51     | 124          | 69.27          | 72          | 46.15            | 218           | 150          | 68               | 183          |
| 2      | Kanpa                      | 480               | 2188       | 1095       | 1093         | 998       | 375          | 200          | 175            | 875             | 710     | 12      | 1289      | 71.10     | 741          | 82.79          | 548         | 59.69            | 921           | 864          | 57               | 1267         |
| 3      | Badgaon                    | 329               | 1827       | 911        | 916          | 1005      | 293          | 141          | 152            | 1078            | 16      | 45      | 1091      | 71.12     | 652          | 84.68          | 439         | 57.46            | 912           | 464          | 448              | 915          |
| 4      | Gopalpur                   | 136               | 664        | 337        | 327          | 970       | 103          | 55           | 48             | 873             | 14      | 15      | 352       | 62.75     | 210          | 74.47          | 142         | 50.90            | 361           | 151          | 210              | 303          |
| 5      | Nawapara                   | 59                | 277        | 138        | 139          | 1007      | 43           | 22           | 21             | 955             | 0       | 207     | 157       | 67.09     | 98           | 84.48          | 59          | 50.00            | 155           | 155          | 0                | 122          |
| 6      | Birkoni                    | 1101              | 4903       | 2441       | 2462         | 1009      | 697          | 354          | 343            | 969             | 606     | 135     | 3070      | 72.99     | 1742         | 83.47          | 1328        | 62.67            | 2155          | 1841         | 314              | 2748         |
| 7      | Achhola                    | 676               | 3369       | 1666       | 1703         | 1022      | 449          | 207          | 242            | 1169            | 606     | 64      | 1992      | 68.22     | 1155         | 79.16          | 837         | 57.29            | 1791          | 929          | 862              | 1578         |
| 8      | Joba                       | 371               | 1734       | 872        | 862          | 989       | 279          | 146          | 133            | 911             | 609     | 297     | 1029      | 70.72     | 576          | 79.34          | 453         | 62.14            | 954           | 482          | 472              | 780          |
| 9      | Kukaradih                  | 187               | 876        | 428        | 448          | 1047      | 99           | 38           | 61             | 1605            | 212     | 211     | 351       | 45.17     | 318          | 81.54          | 233         | 60.21            | 500           | 66           | 434              | 376          |
| 10     | Garhasiwni                 | 579               | 2822       | 1419       | 1403         | 989       | 356          | 179          | 177            | 989             | 188     | 245     | 1703      | 69.06     | 1025         | 82.66          | 676         | 55.14            | 1446          | 1130         | 316              | 1376         |
| 11     | Tenduwahi Alias<br>Nawagao | 207               | 932        | 442        | 490          | 1109      | 138          | 65           | 73             | 1123            | 644     | 0       | 532       | 67.00     | 287          | 76.13          | 245         | 58.75            | 464           | 113          | 351              | 468          |
| 12     | Khaijhiti                  | 410               | 1896       | 894        | 1002         | 1121      | 303          | 133          | 170            | 1278            | 577     | 155     | 1018      | 63.90     | 583          | 76.61          | 435         | 52.28            | 851           | 704          | 147              | 1045         |
| 13     | Malidih                    | 243               | 1056       | 536        | 520          | 970       | 155          | 69           | 86             | 1246            | 206     | 232     | 620       | 68.81     | 368          | 78.80          | 252         | 58.06            | 512           | 495          | 17               | 544          |
| 14     | Pirda                      | 136               | 670        | 322        | 348          | 1081      | 86           | 48           | 38             | 792             | 20      | 325     | 405       | 69.35     | 219          | 79.93          | 186         | 60.00            | 385           | 575          | 10               | 285          |
| 15     | Barbaspur                  | 289               | 1427       | 686        | 741          | 1080      | 234          | 115          | 119            | 1035            | 485     | 0       | 771       | 64.63     | 431          | 75.48          | 340         | 54.66            | 652           | 297          | 355              | 775          |
| 16     | Paraswani                  | 149               | 746        | 373        | 373          | 1000      | 92           | 35           | 57             | 1629            | 8       | 24      | 481       | 73.55     | 284          | 84.02          | 197         | 62.34            | 407           | 175          | 232              | 339          |
| 17     | Benidih                    | 224               | 1207       | 599        | 608          | 1015      | 185          | 93           | 92             | 989             | 57      | 62      | 769       | 75.24     | 447          | 88.34          | 322         | 62.40            | 645           | 564          | 81               | 562          |
| 18     | Chaparid (Chaprid)         | 634               | 3113       | 1579       | 1534         | 972       | 467          | 227          | 240            | 1057            | 112     | 56      | 2067      | 78.12     | 1186         | 87.72          | 881         | 68.08            | 1716          | 1536         | 180              | 1397         |
| 19     | Samoda                     | 632               | 3003       | 1509       | 1494         | 990       | 484          | 256          | 228            | 891             | 107     | 82      | 1866      | 74.08     | 1059         | 84.52          | 807         | 63.74            | 1385          | 1253         | 132              | 1618         |
|        | SUB TOTAL                  | 6934              | 33111      | 16460      | 16651        | 1012      | 4904         | 2417         | 2487           | 1029            | 5224    | 2263    | 19759     | 70.05     | 11505        | 81.93          | 8452        | 59.67            | 16430         | 11944        | 4686             | 16681        |
|        |                            |                   |            |            |              |           |              |              |                | 7-10k           | m       |         |           |           |              |                |             |                  |               |              |                  |              |

Annexure 6\_ Detailed demography of study area

| 1  | Gurudih               | 184   | 804   | 401   | 403   | 1005 | 128   | 69   | 59   | 855  | 0     | 669  | 489   | 72.34  | 286   | 86.14 | 203   | 59.01  | 473   | 417   | 56    | 331   |
|----|-----------------------|-------|-------|-------|-------|------|-------|------|------|------|-------|------|-------|--------|-------|-------|-------|--------|-------|-------|-------|-------|
| 2  | Kauwajahr             | 369   | 1516  | 765   | 751   | 982  | 212   | 119  | 93   | 782  | 231   | 541  | 904   | 69.33  | 524   | 81.11 | 380   | 57.75  | 803   | 583   | 220   | 713   |
| _  | 5                     | 238   |       | 577   | 605   | 1049 |       |      |      |      |       |      |       |        | -     |       |       |        |       |       |       |       |
| 3  | Parsadih              |       | 1182  | -     |       |      | 175   | 84   | 91   | 1083 | 89    | 765  | 756   | 75.07  | 433   | 87.83 | 323   | 62.84  | 553   | 118   | 435   | 629   |
| 4  | Belsonda              | 790   | 3741  | 1838  | 1903  | 1035 | 506   | 248  | 258  | 1040 | 292   | 390  | 2498  | 77.22  | 1422  | 89.43 | 1076  | 65.41  | 1602  | 1151  | 451   | 2139  |
| 5  | Sorid                 | 252   | 1253  | 620   | 633   | 1021 | 177   | 79   | 98   | 1241 | 26    | 565  | 777   | 72.21  | 451   | 83.36 | 326   | 60.93  | 591   | 436   | 155   | 662   |
| 6  | Kaundkera             | 197   | 907   | 440   | 467   | 1061 | 116   | 60   | 56   | 933  | 51    | 120  | 565   | 71.43  | 321   | 84.47 | 244   | 59.37  | 429   | 410   | 19    | 478   |
| 7  | Nawapara Kalan        | 208   | 829   | 429   | 400   | 932  | 121   | 69   | 52   | 754  | 5     | 549  | 426   | 60.17  | 268   | 74.44 | 158   | 45.40  | 476   | 442   | 34    | 353   |
|    | (Nawapara)            |       |       |       |       |      |       |      |      |      |       |      |       |        |       |       |       |        |       |       |       |       |
| 8  | Parasada              | 785   | 376   | 409   | 94    | 230  | 46    | 48   | 51   | 1063 | 27    | 306  | 483   | 146.36 | 271   | 75.07 | 212   | 493.02 | 376   | 328   | 48    | 409   |
| 9  | Banseoni              | 241   | 1066  | 511   | 555   | 1086 | 166   | 76   | 90   | 1184 | 234   | 508  | 567   | 63.00  | 334   | 76.78 | 233   | 50.11  | 520   | 414   | 106   | 546   |
| 10 | Ghodari               | 574   | 2784  | 1425  | 1359  | 954  | 377   | 195  | 182  | 933  | 1181  | 45   | 1802  | 74.86  | 1084  | 88.13 | 718   | 61.00  | 1289  | 1139  | 150   | 1495  |
| 11 | Bemcha                | 1227  | 5596  | 2903  | 2693  | 928  | 713   | 354  | 359  | 1014 | 882   | 451  | 3359  | 68.79  | 1989  | 78.03 | 1370  | 58.70  | 2804  | 2157  | 647   | 2792  |
| 12 | Kagdehi               | 360   | 1741  | 869   | 872   | 1003 | 265   | 132  | 133  | 1008 | 518   | 9    | 1070  | 72.49  | 616   | 83.58 | 454   | 61.43  | 890   | 669   | 221   | 851   |
| 13 | Hardi                 | 42    | 220   | 116   | 104   | 897  | 35    | 19   | 16   | 842  | 0     | 0    | 143   | 77.30  | 86    | 88.66 | 57    | 64.77  | 99    | 64    | 35    | 121   |
| 14 | Paragaon-1 (Paragaon) | 551   | 2801  | 1360  | 1441  | 1060 | 495   | 257  | 238  | 926  | 447   | 83   | 1453  | 63.01  | 833   | 75.52 | 620   | 51.54  | 1295  | 1026  | 269   | 1506  |
| 15 | Ratakat               | 227   | 1200  | 609   | 591   | 970  | 200   | 103  | 97   | 942  | 0     | 19   | 634   | 63.40  | 374   | 73.91 | 260   | 52.63  | 537   | 303   | 234   | 663   |
| 16 | Amethi                | 281   | 1365  | 699   | 666   | 953  | 242   | 130  | 112  | 862  | 950   | 23   | 841   | 74.89  | 487   | 85.59 | 354   | 63.90  | 594   | 361   | 233   | 771   |
| 17 | Gullu                 | 1102  | 4922  | 2441  | 2481  | 1016 | 747   | 357  | 390  | 1092 | 922   | 199  | 2872  | 68.79  | 1630  | 78.21 | 1242  | 59.40  | 2357  | 1371  | 986   | 2565  |
| 18 | Deori-1 (Deori)       | 263   | 1276  | 646   | 630   | 975  | 153   | 79   | 74   | 937  | 0     | 0    | 857   | 76.31  | 487   | 85.89 | 370   | 66.55  | 766   | 676   | 90    | 510   |
| 19 | Ranisagar             | 353   | 1703  | 861   | 842   | 978  | 216   | 110  | 106  | 964  | 69    | 57   | 1122  | 75.45  | 646   | 86.02 | 476   | 64.67  | 728   | 686   | 42    | 975   |
| 20 | Gudguda               | 154   | 738   | 391   | 347   | 887  | 129   | 68   | 61   | 897  | 603   | 0    | 448   | 73.56  | 266   | 82.35 | 182   | 63.64  | 289   | 74    | 215   | 449   |
| 21 | Kusmund               | 282   | 1643  | 834   | 809   | 970  | 266   | 135  | 131  | 970  | 285   | 0    | 973   | 70.66  | 573   | 81.97 | 400   | 59.00  | 593   | 485   | 108   | 1050  |
|    | SUB TOTAL             | 8680  | 37663 | 19144 | 18646 | 974  | 5485  | 2791 | 2747 | 984  | 6812  | 5299 | 23039 | 71.60  | 13381 | 81.83 | 9658  | 60.75  | 18064 | 13310 | 4754  | 20008 |
|    | GRAND TOTAL           | 18418 | 83236 | 41807 | 41556 | 994  | 12221 | 6138 | 6136 | 1000 | 15656 | 8068 | 49374 | 69.53  | 29594 | 82.97 | 21237 | 59.96  | 40202 | 28595 | 12314 | 42813 |



| S.<br>No. | Name of the Industries                        | Type of industries                       | Direction<br>from<br>Project site | Distance from<br>project site (Km) |
|-----------|-----------------------------------------------|------------------------------------------|-----------------------------------|------------------------------------|
| 1.        | Shivnath Industries                           | Construction                             | SW                                | 6.01                               |
| 2.        | Jatashankar Food Industry                     | Food                                     | SW                                | 5.87                               |
| 3.        | Bhagwati Petrochem                            | Manufacturing                            | S/SW                              | 5.94                               |
| 4.        | Parijat Company Aran                          | Trading                                  | S/SW                              | 5.78                               |
| 5.        | Zenith Agrizone PVT Ltd                       | Agricultural                             | SW                                | 5.45                               |
| 6.        | Ori-Plast Ltd.                                | Pipe Manufacturer                        | SW                                | 5.42                               |
| 7.        | Nutrikraft India PVT Ltd                      | Animal Feed Store                        | SW                                | 5.34                               |
| 8.        | Vedansh Food Industries                       | Food Manufacturer                        | SW                                | 5.31                               |
| 9.        | Manorama Industries Ltd                       | Manufacturing                            | SW                                | 5.36                               |
| 10.       | Shri RG Industries                            | Aluminum Supplier                        | SW                                | 5.54                               |
| 11.       | Ratusaria Udyog Private Limited               | Food                                     | SW                                | 5.38                               |
| 12.       | Veer Thermopfoaming Pvt LTd                   | Manufacturing                            | SW                                | 4.61                               |
| 13.       | Shivalik Power & Steel Pvt. Ltd               | Steelwork design                         | S/SW                              | 9.25                               |
| 14.       | Anushka Stone Industry                        | Wholesaler                               | SW                                | 8.31                               |
| 15.       | Anil Stone Industrty                          | Stone Supplier                           | SW                                | 7.32                               |
| 16.       | Shri Bajrang Chemical distillery LLP<br>Arang | Organisation                             | W                                 | 8.49                               |
| 17.       | Shree Renuk Dev Agrotech                      | Rice Mill                                | NW                                | 9.72                               |
| 18.       | Kisan Mouldings Ltd                           | Manufacturer                             | SW                                | 5.51                               |
| 19.       | Birkonee ind Factory                          | Organisation                             | SW                                | 5.22                               |
| 20.       | RG Organics                                   | Manufacturing &<br>Industrial Consultant | SW                                | 5.16                               |
| 21.       | Fortune Tiles Belsonda                        | Manufacturing                            | S/SW                              | 8.42                               |
| 22.       | Goyal Steels                                  | Wholesaler                               | S/SW                              | 8.35                               |
| 23.       | SS Stone industry                             | Manufacturing                            | N                                 | 0.28                               |
| 24.       | RK Stone Industry                             | Contracter                               | N                                 | 0.84                               |
| 25.       | Krishna Black Stone                           | Wholesaler                               | N                                 | 0.76                               |
| 26.       | Maa Gauri Stone Industry                      |                                          | N                                 | 1.17                               |
| 27.       | Chandrakar Stone                              |                                          | N                                 | 1.38                               |

#### List of Industries







# National Accreditation Board for Education and Training

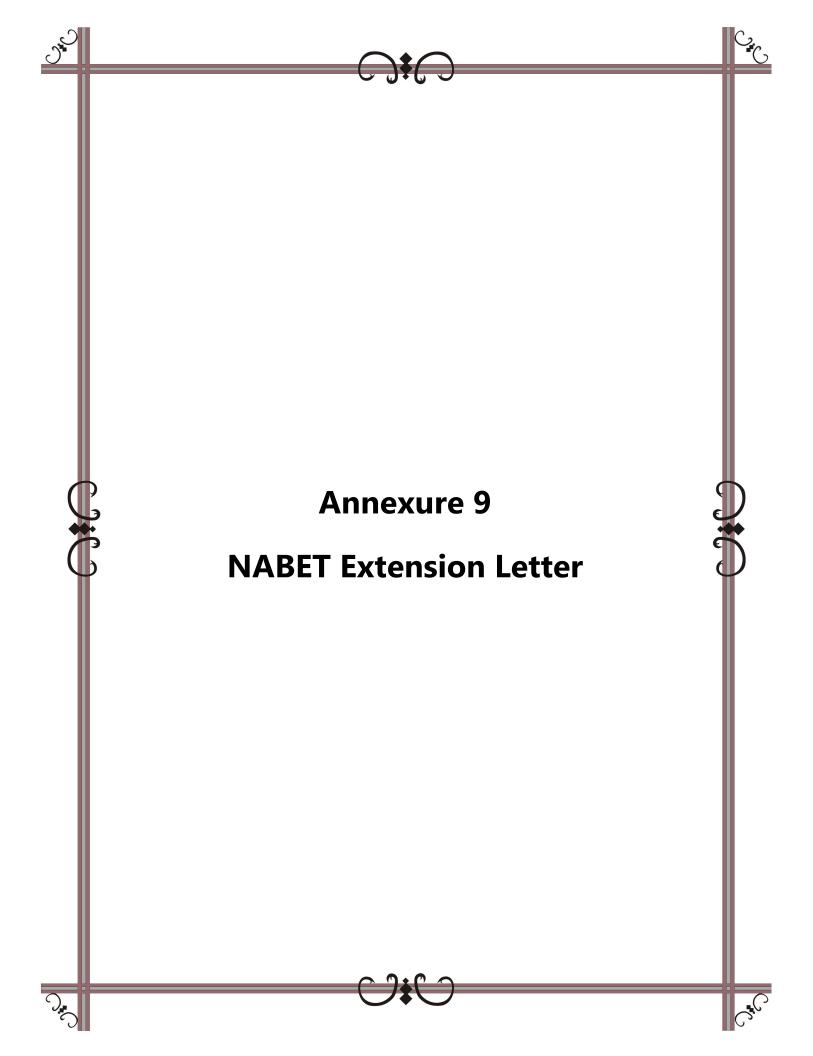


# **Certificate of Accreditation**

### JM EnviroNet Pvt. Ltd.

Unit No. 1517, Tower – B, Emmar Digital Greens, Golf Course Ext. Road, Sector – 61, Gurugram-122011

The organization is accredited as **Category-A** under the QCI-NABET Scheme for Accreditation of EIA Consultant Organization, Version 3: for preparing EIA-EMP reports in the following Sectors –


| S. | Sector Description                                                                                                                           |    | Sector (as per) |   |
|----|----------------------------------------------------------------------------------------------------------------------------------------------|----|-----------------|---|
| No |                                                                                                                                              |    | MoEFCC Cat.     |   |
| 1  | Mining of minerals including opencast/ underground mining                                                                                    | 1  | 1 (a) (i)       | А |
| 2  | Thermal power plants                                                                                                                         |    | 1 (d)           | Α |
| 3  | Mineral beneficiation                                                                                                                        |    | 2 (b)           | Α |
| 4  | Metallurgical industries (ferrous & nonferrous)- both primary & secondary                                                                    |    | 3 (a)           | Α |
| 5  | Cement Plants                                                                                                                                |    | 3(b)            | Α |
| 6  | Coke oven plants                                                                                                                             |    | 4 (b)           | Α |
| 7  | Chlor- Alkali Industry                                                                                                                       | 13 | 4 (d)           | Α |
| 8  | Chemical fertilizers                                                                                                                         |    | 5 (a)           | Α |
| 9  | Petro-chemical complexes                                                                                                                     |    | 5 (c)           | Α |
| 10 | Manmade fibers manufacturing                                                                                                                 |    | 5 (d)           | Α |
| 11 | Petrochemical based processing                                                                                                               |    | 5 (e)           | А |
| 12 | Synthetic organic chemicals industry                                                                                                         | 21 | 5 (f)           | Α |
| 13 | Distilleries                                                                                                                                 | 22 | 5 (g)           | Α |
| 14 | Pulp & paper industry excluding manufacturing of paper from wastepaper and manufacture of paper from ready pulp without bleaching            |    | 5(i)            | А |
| 15 | Sugar Industry                                                                                                                               | 25 | 5 (j)           | В |
| 16 | Industrial estates/ parks/ complexes/areas, export processing Zones(EPZs),<br>Special Economic Zones(SEZs), Biotech Parks, Leather Complexes |    | 7(c)            | А |
| 17 | Building and construction projects                                                                                                           | 38 | 8 (a)           | В |
| 18 | Townships and Area development projects                                                                                                      | 39 | 8 (b)           | В |

Note: Names of approved EIA Coordinators and Functional Area Experts are mentioned in SAAC minutes dated May 13, 2022 posted on QCI-NABET website.

The Accreditation shall remain in force subject to continued compliance to the terms and conditions mentioned in QCI-NABET's letter of accreditation bearing no. QCI/NABET/ENV/ACO/22/2483 dated August.16, 2022. The accreditation needs to be renewed before the expiry date by JM EnviroNet Pvt. Ltd., Gurugram following due process of assessment.

Sr. Director, NABET Dated: August. 16, 2022 Certificate No. NABET/EIA/2023/SA 0172 Valid up to Aug. 07, 2023

For the updated List of Accredited EIA Consultant Organizations with approved Sectors please refer to QCI-NABET website



QCI/NABET/ENV/ACO/23/2809

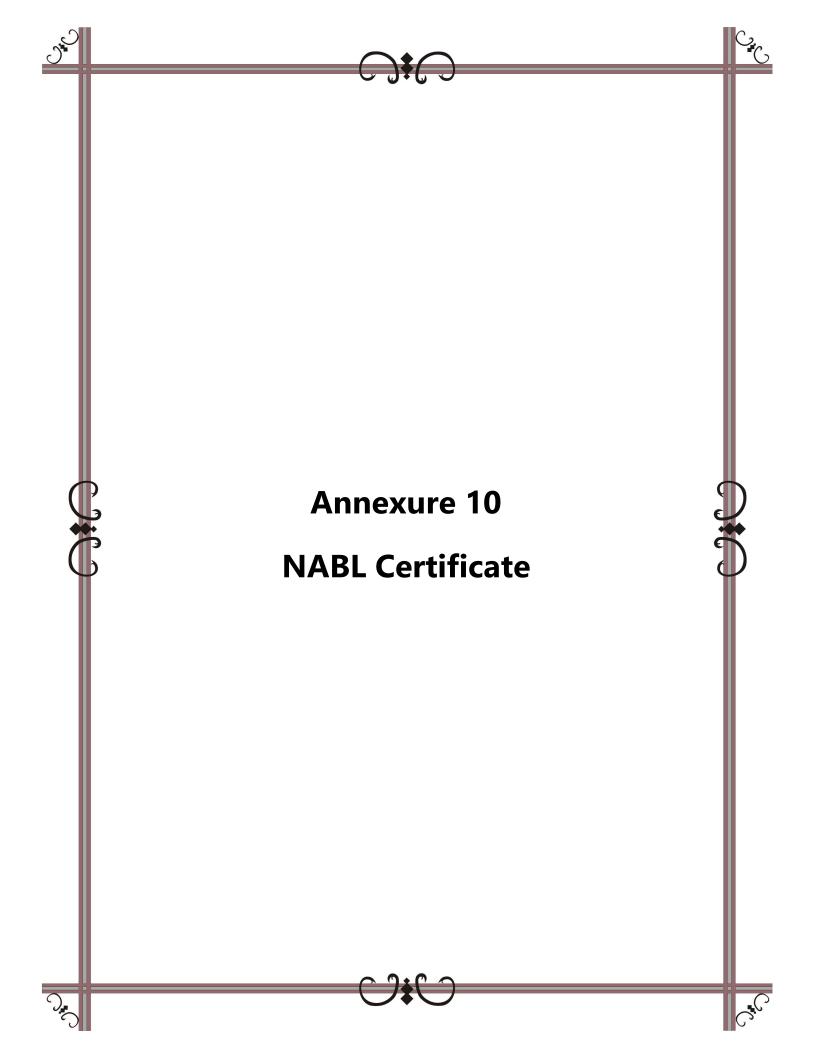
Aug 01, 2023

То

JM EnviroNet Pvt. Ltd. Unit No. 1517, Tower – B, Emmar Digital Greens, Golf Course Ext. Road, Sector – 61, Gurugram (Haryana)

Sub.: Extension of Validity of Accreditation till Oct 31, 2023 – regarding
Ref.. 1. Certificate no NABET/EIA/2023/SA 0172
2. Request e-mail dated July 28 2023

Dear Sir/Madam


This has reference to the accreditation of your organization under QCI-NABET EIA Scheme, the validity **JM EnviroNet Pvt. Ltd** is hereby extended till Oct 31, 2023 or completion of assessment process, whichever is earlier.

The above extension is subject to the submitted documents/required information with respect to your application and timely submission and closure of NC/Obs during the process of assessment.

You are requested not to use this letter the after expiry of the above-stated date.

With best regards.

(A K Jha) Sr. Director, NABET





National Accreditation Board for Testing and Calibration Laboratories

### **CERTIFICATE OF ACCREDITATION**

## J.M. ENVIRO LAB PRIVATE LIMITED

has been assessed and accredited in accordance with the standard

## **ISO/IEC 17025:2017**

### "General Requirements for the Competence of Testing & Calibration Laboratories"

for its facilities at

424, GROUND FLOOR, UDYOG VIHAR, PHASE-IV, GURGAON, HARYANA, INDIA

in the field of

### TESTING

Certificate Number:

Issue Date:

24/05/2021

**TC-6821** 

Valid Until:

23/05/2023

This certificate remains valid for the Scope of Accreditation as specified in the annexure subject to continued satisfactory compliance to the above standard & the relevant requirements of NABL. (To see the scope of accreditation of this laboratory, you may also visit NABL website www.nabl-india.org)

Name of Legal Identity: J.M. ENVIRO LAB PRIVATE LIMITED

Signed for and on behalf of NABL



N. Venkateswaran Chief Executive Officer