DRAFT ENVIRONMENTAL IMPACT ASSESSMENT REPORT

&

ENVIRONMENT MANAGEMENT PLAN

of

Selud Cluster Limestone (Low grade) Quarry

at

Village: Selud, Tehsil: Patan, District- Durg, State: Chhattisgarh.

Area 2.61 ha. at Khasra No.

303/1, 304 and 307/1; 324/2, 325 and 326

Total Capacity in Cluster: 12,206 Tons per annum.

Executive Summary English

Project Name	Block/	Area	TOR Vide Letter No	TOR Granted	Proposed
	Khasra	(Acres)		Date	Capacity
		/(Ha)			(TPA)
M/s Selud Limestone Mine	303/1, 304	1.48 Ha	359/S.E.A.C.,	Dated	6,206 TPA
(Pro. Shri Shyam Sharma)	and 307/1.	/3.66	C.G./MINE/1866 Nava	13/06/2022	
		Acres	Raipur Atal Nagar,		
			Dated 13/06/2022		
M/s Selud Limestone Mine	324/2, 325	1.13 Ha	361/S.E.A.C.,	Dated	
(Pro. Shri Himanshu Baghel)	and 326	/2.79	C.G./MINE/1867 Nava	13/06/2022	6,000 TPA
		Acres	Raipur Atal Nagar,		
			Dated 13/06/2022		

<u>Applicant</u>

Shri Shyam Sharma and Shri Himanshu Baghel

EXECUTIVE SUMMARY

INTRODUCTION

Environmental Impact Assessment (EIA) is a process, used to identify the environmental, social and economic impacts of a project prior to decision-making. It is a decision making tool, which guides the decision makers in taking appropriate decisions for proposed projects. EIA systematically examines both beneficial and adverse consequences of the proposed project and ensure that these impacts are taken into account during the project designing.

The mining lease of Limestone at Khasra No. 303/1, 304, 307/1 & 324/2, 325, 326 at Village – Selud Tehsil - Patan, District- Durg State – Chhattisgarh. Area-2.61 Ha (Under Cluster) has been granted to Shri Shyam Sharma and Shri Himanshu Baghe.

Location of the project -

The mining lease is located in Village – Selud Tehsil - Patan, District- Durg, District- Raipur (C.G.)

Geographical Co-ordinates of the Mine lease area

(Shri Shyam Sharma)

S.N			S.		
0	Latitude	Longitude	No	Latitude	Longitude
1	21°05'29.64"N	81°26'1.05"E	12	21° 05'33.04"N	81°26'2.42"E
2	21° 05'29.67"N	81°26'3.72"E	13	21° 05'35.55"N	81°26'5.54"E
3	21°05'29.96"N	81°26'4.87"E	14	21° 05'34.83"N	81°26'5.75"E
4	21°05'32.01"N	81°26'4.28"E	15	21° 05'34.61"N	81°26'4.91"E
5	21°05'32.01"N	81°26'3.90"E	16	21°05'31.16"N	81°26'5.53"E
6	21°05'33.67"N	81°26'3.73"E	17	21°05'31.09"N	81°26'5.22"E
7	21° 05'33.57"N	81°26′2.55"E	18	21°05'30.05"N	81°26'5.39"E
8	21°05'34.42"N	81°26'2.52"E	19	21° 05'30.12"N	81°26'05.73"E
9	21° 05'34.45"N	81°26'1.86"E	20	21° 05'28.33"N	81°26'05.83"E
10	21° 05′35.27"N	81°26'1.94"E	21	21° 05′27.89"N	81°26'00.98"E
11	21°05'35.23"N	81°26'2.42"E			

Geographical Co-ordinates of the Mine lease area (Shri Himanshu Baghe)

S. No	Latitude	Longitude
1	21°05'25.90"N	81°25'57.63"E
2	21°05'26.10"N	81°26'0.21"E
3	21° 05′26.55"N	81°26'3.06"E
4	21° 05'24.77"N	81°26'3.37"E
5	21° 05′24.57″N	81°26'2.22"E
6	21° 05′24.34″N	81°26′1.21"E
7	21° 05′24.25″N	81°26'0.89"E
8	21° 05′23.84"N	81°26'0.81"E
9	21° 05′23.57″N	81°25'59.59"E
10	21° 05′22.75"N	81°25'59.63"E
11	21° 05′22.52″N	81°25'58.42"E
12	21° 05′23.83″N	81°25'57.94"E

Connectivity

The lease area is about 20 kms from Durg. The ML area can be approached from Naya Raipur Marg and National Highway 53 which is at a distance of 11 Km North Direction. The Nearest Railway Station Maroda Railway Station 11 Km. The Nearest Airport is Swami Vivekanand Airport at a distance of 34 Km NE Direction.

Mailing/Correspondence Address of Project Proponent:

M/s Selud Limestone Mine (Pro. Shri Shyam Sharma)

Address:

Village- Selud, Tehsil- Patan, District- Durg

State – Chhattisgarh

M/s Selud Limestone Mine (Pro. Shri Himanshu Baghel),

Village- Selud, Tehsil- Patan, District- Durg

State – Chhattisgarh

Size of the Project:

Table 1.1, Detail of the lease area in Cluster

Mine	Village	Khasra No.	Area (Ha)	Type of land
Shri Shyam Sharma	Selud	324/2, 325	1.48 Ha	Govt Land
		and 326		Non-Forest, Non
				Agriculture, Barren
				Land
Shri Himanshu Baghel	Selud	303/1, 304	1.13 Ha	Govt Land
		and 307/1		Non-Forest, Non
303/1, 304 and 307/1				Agriculture, Barren
				Land
To	tal	2.61 Ha		

The total Mine Lease areas considered is 2.61 Ha (under cluster approach). The proposed production is is **6,000 TPA for Shri Shyam Sharma** and the proposed production is 6,206 **MT for Shri Himanshu Baghel.** (6,206 MT+6,000 TPA) = **12206 TPA**.

Anticipated Life of Project and Cost of the Project

The anticipated life of mine for mine at village Selud, (1.48 ha) is average production of limestone proposed = 6206 MT/year and the minable reserve is 48,209 MT/year. So the anticipated life of mine calculated is 48,209 / 6206 = 7.77 year or say 8 years.

The anticipated life of mine for mine at village Selud, (1.13 ha) is average production of limestone proposed= 6000 MT/year and the minable reserve is 1,02,097.5 MT/year. So the anticipated life of mine calculated is 10,2,097.5 /6000 = 17.01 year or say 17 years.

MINING

Opencast semi mechanized method of mining will be adopted in the lease area. The excavation will be carried out usually by manual labour with the use of pick-axes, crowbars, chisels; sledge hammers etc. and loaded into tractor/truck/tipper. The limestone will be suitably blended to be supplied in market. Rest is inter burden.

Production Plans for First Five Years of (Shri Shyam Sharma)

Year Wise	Production (MT)
1 st X7	6,000
1 st Year	6,000
2 nd Year	6,000
3 rd Year	6,000
4 th Year	6,000
5 th Year	6,000
TOTAL	30,000

<u>Production Plans for First Five Years of (Shri Himanshu Baghel)</u>

Year Wise	Production (MT)
1 st Year	6,000
	6,000
2 nd Year	
	6,000
3 rd Year	
	6,000
4 th Year	
	6,000
5 th Year	
TOTAL	30,000

Summary of Land use at different stage will be as follows (in Ha): $\underline{Shri\ Shyam\ Sharma}$

Articles	Present Land use	Forest Land	Agricu lture Land	Stony waste Land	Land use at the end of 5 year of lease period in Hect.	Land use at the end of Conceptual year of lease period in Hect.
A. Lease area	1.48	Nil	Nill	Nil	1.48	1.48
B. Quarrying & allied						
1. Area under pit	Nil	Nil	Nil	Nil	0.4365	0.4365
2. Area of Safety Zone	Nil	Nil	Nil	Nil	0.6588	0.6588
3. Area for road	Nil	Nil	Nil	Nil	Nil	Nil
4. Area for Infrastructure	Nil	Nil	Nil	Nil	Nil	Nil
5. Plantation	Nil	Nil	Nil	Nil	***	***
6. Storage of Mineral	Nil	Nil	Nil	Nil	Nil	Nil
7. Storage of fines	Nil	Nil	Nil	Nil	Nil	Nil
8. Crushing unit / road	Nil	Nil	Nil	Nil	0.3847	0.3847
9. Unused area	Nil	Nil	Nil	Nil	Nil	Nil
Total	1.48	Nil	Nil	Nil	1.48	1.48

Shri Himanshu Baghel

Articles	Present Land use	Forest Land	Agricu lture Land	Stony waste Land	Land use at the end of 5 year of lease period in Hect.	Land use at the conceptual period in Hect.
A. Lease area	1.13	Nil	Nill	Nil	1.13	1.13
B. Quarrying & allied						
 Area under pit 	Nil	Nil	Nil	Nil	0.6884	0.6884
2. Area of Safety Zone	Nil	Nil	Nil	Nil	0.3722	0.3722
3. Area for road	Nil	Nil	Nil	Nil	Nil	Nil
4. Area for Infrastructure	Nil	Nil	Nil	Nil	Nil	Nil
5. Plantation	Nil	Nil	Nil	Nil	0.0694	0.0694
6. Storage of Mineral	Nil	Nil	Nil	Nil	Nil	Nil
7. Storage of fines	Nil	Nil	Nil	Nil	Nil	Nil
8. Crushing unit with road	Nil	Nil	Nil	NiI	Nil	Nil
9. Unused area	Nil	Nil	Nil	Nil	Nil	Nil
Total	1.13	Nil	Nil	Nil	1.13	1.13

Systematic working will be done by formation of benches as per M.M.R. 1961. All applicable rules of MMR 1961, Mines Act-1952, MCR-2016 and MCDR-1988 will be followed for safe, scientific & systematic working to follow the principles of safety & conservation of human health & mineral.

Disposal of Waste

Nature of waste, its rate of yearly generation and proposals for disposal of waste:

The topsoil will be called as overburden/waste. The area is slightly covered with soil with average thickness of about 1.0m. below the soil cover the desired ore Limestone is exposed. Waste will be generated during the Quarrying period

Waste Generation of (Shri Shyam Sharma)

There is total approx 11359 m³ soil/OB generated from the pit area during in plan period. Details of soil management is given below:-

Soil/OB	$10326 \mathrm{m}^3$		
20 % Swell factor	2065 m ³		
Total soil with swell factor	12391 m ³		
Height of soil in 4.5 m out of 7.5 m	Dumping area is 2233 m2 and Height 1.0 m		
safety zone area			
Dumping	1. 2233 CUM soil will be dumped on 2233		
	m2 (4.5 m out of 7.5 m safety zone area)		
	safety zone area 1 m height.		
	2. 2070 CUM soil will be dumped on 694 m2		
	area in 3 m height.		
	3. Remaining 8088 CUM soil will be dumped		
	on near adjacent land.		

Waste Generation of (Shri Himanshu Baghel)

There is total approx 7857 m³ soil/OB (9428 m³ with 20% Swell factor) generated from the pit area during in plan period. Details of soil management is given below: -

Soil/OB	7857 m^3
20 % Swell factor	1571 m ³
Total soil with swell factor	9428 m ³
Height of soil in 4.5 m out of 7.5 m	Dumping area is 3953 m2 and Height 1.0 m
safety zone area	

Dumping	3953 CUM soil will be dumped on 3953 m2 (4.5
	m out of 7.5 m safety zone area) safety zone area
	1 m height and remaining 5475 CUM soil will be
	dumped on near adjacent land.

Selection of Dumping Site of (Shri Shyam Sharma)

Location of disposal of O.B. is shown in the Production and Development Plan. Overburden will be generated in the proposed years, dumped into statutory boundary (7.5m Barrier zone) at the height of 2.0 m of the lease area for plantation. No waste material will generated from mine area.

Selection of Dumping Site of (Shri Himanshu Baghel)

Location of disposal of O.B. is shown in the Production and Development Plan. Overburden will be generated in the proposed years, dumped into statutory boundary (7.5m Barrier zone) at the height of 1.0 m of the lease area for plantation. No waste material will generated from mine area.

Use of Mineral

The Limestone will be used as BF grade in steel plants and in lime kilns for manufacture of industrial lime. The low grade limestone above threshold value and fines generated during mining will be used in cement plants.

General Features

i) Land-use pattern

There is no forest land or agriculture land in the mine lease area. The entire mining lease is covered with alluvial soil.

ii). Surface drainage pattern

Tandula Canal lies at a distance of 1.54 Km in the South Direction.

iii). Transportation Route:

Traffic analysis is carried out by understanding the existing carrying capacity of the roads near to the project site and the connecting main roads in the area. Then depending on the capacity of the mine, the number of trucks that will be added to the present scenario will be compared to the carrying capacity.

.

Existing Traffic Scenario & LOS

Road	V	C	Existing V/C Ratio	LOS
SH 22	1300	15000	0.089	A

Source: Capacity as per IRC: 64-1990

V= Volume of Vehicles in PCU's/day & C= Capacity of Road in PCU's/day

The existing Level of Service (LOS) is "A" & "B" i.e. excellent & very good.

During Mine operation (For Cluster Area)

Proposed Capacity of mine/annum : 12206 MT/Annum

No. of working days : 225 days

Proposed Capacity of mine/day : 54.3 or say 55 TPD

Truck Capacity : 10 tonnes

No. of trucks deployed/day : 5.5 or say 6 Trucks

No. of trucks deployed/day to and fro : 6*2 = 12

PCU/day (12*3) : 36 PCU

Modified Traffic Scenario & LOS

Road	V	C	Modified V/C Ratio	LOS
State Highway 22	1300 + 36 = 1336	15000	0.09	A

2.7 MANPOWER REQUIREMENT

Manpower requirement (Shri Shyam Sharma)

The manpower requirement for the proposed project will be given below who will be utilized for excavation & loading of minerals into trucks or tractor-trolleys. Break-up of Man-power requirement is given in below:

Highly Skilled						
S No	Designation	No of Person				
1	Mining Manager	1				
2	Mining Mate/Blaster	1				
	Skilled					
1	Compressor Operator	1				
2	Excavator Operator	1				
3	Jack hammer Operator	1				
4	Supervisor	1				
	Semi-Skilled					
1	Driver for water sprinkler	1				
2	Blasting helper	1				
3	Security guard for mine and office	2				
4	Pump Operator	1				
5	Office Staff	1				
	Un-Skilled					
1	Labor	8				
	Total 20					

Manpower requirement (Shri Himanshu Baghel)

The manpower requirement for the proposed project will be given below who will be utilized for excavation & loading of minerals into trucks or tractor-trolleys. Break-up of Man-power requirement is given in below:

Manpower requirement

	Highly Skilled					
S No	Designation	No of Person				
1	Mining Manager	1				
2	Mining Mate/Blaster	1				
	Skilled					
1	Compressor Operator	1				
2	Excavator Operator	1				

3	Jack hammer Operator	1			
4	Supervisor	1			
	Semi-Skilled				
1	Driver for water sprinkler	1			
2	Blasting helper	1			
3	Security guard for mine and office	2			
4	Pump Operator	1			
5	Office Staff	1			
	Un-Skilled				
1	Labor	8			
	Total 20				

DESCRIPTION OF BASELINE-ENVIRONMENT

This section contains the description of baseline studies of the 10 km radius of the area. The data collected has been used to understand the existing environment scenario around the proposed mining project against which the potential impacts of the project can be assessed. Environmental data has been collected in relation to propose mining for:-

- (a) Land
- (b) Water
- (c) Air
- (d) Noise
- (e) Biological
- (f) Socio-economic
- (a) Land Use: Land use involves the management and modification of natural environment or wilderness in to built environment such as settlements and semi-natural habitats such as arable fields, pastures, and managed woods. It also has been defined as "the total of arrangements, activities and inputs that people undertake in a certain land cover type.

(b) Land Use Pattern of the Study Area (within 10 km Buffer)

Land Use Type	Area (Ha.)		
Scrub Land	520.51		
Agriculture Land	29,893.19		
River/Water Bodies	315.88		
Settlement	960.10		
Stone Quarry	65.77		
Total	31755.45		

To assess the land use pattern surrounding the 10 km radius of the site, a detailed study was carried out. The land use pattern study reveals that the 10 km environs are predominantly agricultural land.

Analysis Results of Baseline Environment (a) Results of Analysis of the Soil.

- The pH limit fixed for drinking water samples as per IS-10500 Standards is 6.5 to 8.5 beyond this range the water will affect the mucus membrane or water supply system. During the study period, the pH was varying for ground waters from 7.02 to 7.36. The pH values for all the samples collected in the study area during study period were found to be within the limits.
- The desirable limit for total dissolved solids as per IS-10500 Standards is 500 mg/L whereas the permissible limit in absence of alternate source is 2000 mg/L. In ground water samples collected from the study area, the total dissolved solids are varying from 310 mg/L to 412 mg/L. The TDS of the samples were within the desirable limit & the permissible limit of 500 mg/L & 2000 mg/L respectively.

(b) WATER ENVIRONMENT

Water quality assessment is one of the essential components of EIA study. Such assessment helps in evaluating the existing health of water body and suggesting appropriate mitigation measures to minimize the potential impact from development projects. Water quality of ground water has been studied in order to assess proposed water-uses in construction, drinking, cooling and horticulture purpose.

The water quality at the site and other locations within the 10 km impact zone was monitored during March to May 2022.

(c) AMBIENT AIR QUALITY

The Ambient Air Quality Monitoring reveals that of eight monitoring stations the minimum concentrations of PM_{2.5} are 26.20 $\mu g/m^3$ at AQ1 and maximum 44.11 $\mu g/m^3$ at AQ8 (Core Zone).The results of PM₁₀ reveals that the minimum concentration of 47.12 $\mu g/m^3$ at AQ3 while maximum concentration of 66.38 $\mu g/m^3$ is found at AQ8. These values for PM10 and PM2.5 are within prescribed CPCB limit of 100 $\mu g/m^3$ and 60 $\mu g/m^3$ respectively for residential and rural areas at all stations.

The gaseous pollutants SO_2 and NO_2 are within the prescribed CPCB limit of $80 \mu g/m^3$ for residential and rural areas at all stations. The minimum & maximum concentrations of SO_2

were found to be 9.24 $\mu g/m^3$ at & 14.17 $\mu g/m^3$ at AAQ5 respectively. The minimum &maximum concentrations of NO₂ are found to be 12.12 $\mu g/m^3$ at AAQ3 & 20.13 $\mu g/m^3$ at AAQ8 respectively.

(d) NOISE ENVIRONMENT

Noise monitoring reveals that the minimum & maximum noise levels at day time were recorded as 47.16 dB (A) at NQ5 & 60.12 dB (A) at NQ2 respectively. The minimum & maximum noise levels at night time were found to be 37.34 dB (A) at NQ5 & 47.22 dB (A) at NQ2 respectively. There are several sources in the 10 km radius of study area, which contributes to the local noise level of the area. On the commencement of the project, the sound from traffic activities will add to the ambient noise level of the area. This will be kept under check by taking proper suggestive measures.

(e) BIOLOGICAL ENVIRONMENT

1. Introduction

The biodiversity we see today is the fruit of billions of years of evolution, shaped by natural processes. The vast array of interactions among the various components of biodiversity makes the planet habitable for all species, including humans. There is a growing recognition that, biological diversity is a global asset of tremendous value to present and future generations. At the same time, the threat to species and ecosystems has never been as great as it is today. Species extinction caused by human activities continues at an alarming rate. Protecting biodiversity is in our self-interest.

The biological study was under taken by Ecology & Biodiversity Expert, as a part of the EIA study report to understand the present status of ecosystem prevailing in the study area, to compare it with past condition with the help of available data, to predict changes in the biological environment as a result of present activities and to suggested measures for maintaining its health.

Durg District is located in the center region of the state of Chhattisgarh, India within the longitudes 81.4279° E and latitudes 21.1623° N. The total area of the district is 2,238 square kilometers. The population is 33.4 lakhs.

The district's headquarters, Durg town, is situated on the National Highway NH-06. Durg town lies between Chhattisgarh's two largest cities: Chhattisgarh's capital, Raipur, and Rajnandgaon, the district headquarters of the neighboring Raipur district.

Objectives and Purpose of Study:

The basic objectives of the study are to evaluate the status of the flora and fauna of the core area and the buffer areas with specific reference to the rare or endangered or endemic or threatened (REET) species. The study is also designed to evaluate the adverse impacts of the proposed activity, if any and to suggest remedial / mitigation measures in accordance with the objectives as desired by the IAIA and the Ministry of Environment, Forests & Climate Change (MoEF & CC), Government of India (GOI).

Methodology

Field study period: The ecological survey has been conducted for one season. The details are given below:

Pre Monsoon: (March to May 2022).

Core zone: At the project site.

Buffer zone: Around the project site in 10 km radius.

Mode of Data Collection

Detailed survey was conducted to evaluate floral and faunal composition of the study area. Primary data on floral and faunal composition was recorded during site visit and secondary data was collected from the Forest department and published relevant literature. Inventory of flora and fauna is prepared on the basis of collected data. The mode of data and parameters considered during field investigations is given below:

Terrestrial Ecology Status: Primary data are generated through site visit, and sampling of species based on the Dept. of Environment & Forest publication of flora and fauna of the area. Primarily the visual assessment of the flora and fauna along with the identified species are recorded for the study purposes. Subsequently a general checklist of all plants encountered was prepared for the study area. This is meant to indicate the biodiversity for wild and cultivated plants. The plants so encountered were classified into life form spectrum according to the classification of Raunkiaer's classification of life form spectrum.

Life Form Spectrum

Raunkiaer defined life forms as the sum of adaptations of plants to the climate. Braun-Blanquet (1951), whose system is adapted in this study, modified the Raunkiaer's system.

ANTICIPATED ENVIRONMENTAL IMPACTS & MITIGATION MEASURES Impact on Ambient Air Quality

The mining is proposed to be carried out by opencast other than fully mechanized method. The air borne particulate matter generated by ore and handling operations as well as transportation is the main air pollutant. The emissions of Sulphur dioxide (SO_2), Oxides of Nitrogen (NO_x) contributed by vehicles plying on haul roads are marginal. Prediction of impacts on air environment has been carried out taking into consideration proposed production and net increase in emissions.

Mitigation Measures

- Water sprinkling will be done on the haul roads twice in a day.
- The dust generated during the process will be minimized by water spray at the working faces before and after the activity.
- Cyclic route will be followed for the transport of materials i. e. loaded & unloaded vehicles will have different route of transportation. Width of the internal road can be maintained more than 10 m.
- Plantation will be carried out on approach roads and in Lease boundary.
- Planning transportation routes of mined material so as to reach the nearest paved roads by shortest route. (minimize transportation over unpaved road);
- Personal Protection Equipment's (PPE) like dust masks, ear plugs etc. will be provided to mine workers.
- Rock breaker will be used for breaking over size boulders in order to reduce dust and noise generation, which otherwise would be generated due to secondary blasting.
- Speed limit will be enforced to reduce airborne fugitive dust from vehicular traffic.
- Deploying PUC certified vehicles to reduce their noise emission.
- Haul road shall be covered with gravels
- Spillage from the trucks will be prevented by covering tarpaulin over the trucks.

Ambient Air Quality Monitoring will be conducted on regularly basis to assess the quality
of ambient air.

Prevention and control of Gaseous Pollution

Proper maintenance of machines improves combustion process & makes reduction in the pollution. Good maintenance and monitoring of fuel and oil will not allow significant addition in the gaseous emission.

Noise Environment

Noise generated at the mine is due to semi mechanized mining operations and truck transportation activities. The noise generated by the mining activity dissipates within the mine. There is no major impact of the mining activity on the nearby villages. However, pronounced effect of above noise levels is felt only near the active working area.

The impact of noise on the villages is negligible as the villages are far located from the mine workings. Since there is no involvement of major machinery, the impact of noise levels will be minimal.

S. No	Impact Prediction	Mitigation Measures		
1	Noise Impact due to mining activities.	The noise levels from all the sources are		
		periodical and restricted to particular		
		operation.		
2	Noise impact due to vehicular	Proper maintenance, oiling and greasing of		
	movement.	machines at regular intervals will be done to		
		reduce the generation of noise.		
		Plantation along the sides of approach roads,		
		around office building and mine area will be		
		done to minimize the propagation of noise.		
		Personal Protective Equipments (PPE) like		
		earmuffs/earplugs will be provided to all		

	operators and employees working near mining
	machineries or at higher noise zone.
	Periodical noise level monitoring will be done

Biological Environment

S. No	Impact Predicted	Suggestive measure			
1	Disturbance of	Care will be taken that noise produced during vehicles movement			
	free	for carrying OB and ore materials are within the permissible noise			
	movement/living	level.			
	of wild fauna	Care will be taken that no hunting of animals (birds) carried out by			
		labours.			
		If wild animals are noticed crossing the core zone, it will not be			
		disturbed at all.			
		Laborers will not be allowed to discards food, plastic etc., which can			
		attract animals near the core site.			
		Only low polluting vehicle will be allowed for carrying ore			
		materials. All vehicles allowed in the project site area will have to			
		provide pollution under control certificate at the end of three			
		months.			
		Noise level will be within permissible limit (silent zone-50dB			
		during day time) as per noise pollution (regulation and control),			
		rules, 2000, CPCB norms.			
2	Harvesting of	No tree cutting, chopping, lumbering, uprooting of shrubs and herbs			
	flora	should be allowed.			
		Collections of economically important plants will be fully restricted.			

Land Environment

S. No.	Impact Prediction	Mitigation Measures
1	Change in the	As an abatement measure restoration of quarry pit is proposed by
	Topography of the	converting it in a water reservoir and put to an economical use like
	Land / Land	fish breeding or irrigation.
	Degradation	
2	Solid waste	About 5% mineral wastes will be generated. Top Soil will
	generation	backfilled in the mined out areas on which plantation will be raised.
3	Change in Drainage	Water flow / course will not be obstructed and natural drains or
	Pattern	nallahs will not be disturbed. Run-off from mine and mineral stack
		will be prevented to avoid being discharged to surroundings,
		particularly to agricultural land. Garland drains and, catch pits has
		been constructed to prevent run off affecting the surrounding
		agricultural land. Green belt has been developed in boundary.
4	Impact on the	Agriculture activities are practiced nearby areas may impacted
	Agricultural	because of dust generation but mitigative measures such as regular
	Practice at nearby	water sprinkling on active areas for example haul roads, excavation
	area due to dust	sites will be strictly followed so that impact is minimized.
	generation	

Water Environment

S.No	Impact Prediction	Mitigation Measures			
1	Effect on the Ground	Max Elevation of the ML area is 305m AMSL Ultimate			
	Water Table	depth of mine is up to 330m AMSL. Ground Water table is			
		25m to 30m AMSL. The mining activity will not intersect			
		with the ground water table.			
2	Wash off from the	No dumping has been proposed.			
	dumps				
3	Soil Erosion	Reclamation of the mined out area will be done with			
		plantation to avoid the soil erosion			

4	Waste	Water	Portable Bio-toilets will be used; hence no sewage / liquid	
	generation/		effluent will be generated and contamination is also not	
	Discharge		expected due to percolation.	
5	Siltation in	nearby	Garland drains have been constructed on the sloping side	
	agriculture fi	eld	barrier of the ML area. The garland drain has been routed	
			through settling tank to remove suspended solids from	
			flowing into storm water.	

10.5 ADDITIONAL STUDIES

DISASTER MANAGEMENT PLAN

This includes high risk accidents like Earthquakes, fire, seismic activities etc. and emergency plan proposed for quick evacuation, ameliorative measures to be taken etc. The lessee will coordinate to meet such eventualities along with the assistance from the local authorities.

- The shallow depth of activities will not involve any high risk accident due to side falls/collapse.
- The complete mining operation will be carried out under the Management and control of experienced and qualified Mines Manager having Certificate of Competency to manage the mines granted by DGMS.
- All the provisions of Mines Act 1952, MMR 1961 and Mines Rules 1955 and other laws applicable to mine will strictly be complied with.
- During heavy rainfall the mining activities will be closed.
- All persons in supervisory capacity will be provided with proper communication facilities.
- Disaster Warning System" as developed will be strictly implemented.

The disaster management plan is aimed to ensure safety of human life and property and protection of environment Following are the objective of the disaster management plan.

- (i) First Aid to injure.
- (ii) Rescue operation and provision of adequate medical facilities to the injured.
- (iii) Safety of the human life in the buffer zone if needed.
- (iv) Protecting and minimizing damage to property and the environment.
- (v) Initially restrict and ultimately bring the incident under control.
- (vi) Identify any dead.

- (vii) Inform to the administration, DGMS and statutory persons as per Rules.
- (viii) Setting up an Emergency response organization under mines manager with assigned duties and responsibilities for incident response and emergency response.
- (ix) Setting up a permanent organization for completion of emergency and restoration of normalcy by complying with health, safety, and environmental laws and regulations.

10.6 PROJECT BENEFITS AND COSTS EVALUATION

The project will improve the physical infrastructure, social infrastructure like improvement of road conditions water supply during dry season, drainage, educational institutions and improved environmental conditions, etc. The project also provides direct employment and indirect employment to persons. It increases economic activities, better living standard, educational facility, health facility and infrastructural development. The project will contribute to district mineral fund which will directly provide aid to the local authority to fund the development projects. The management will provide free saplings of fruit bearing and other trees, etc. to local during monsoon season plantation. This will increase the consciousness in workers and near-by villagers for greenery. Fruit trees can contribute towards their financial gains.

The CSR activities are increasingly being taken up by the project proponent not only as fulfilling of mandatory provisions but also for the formation or enhancement of brand image. Besides the above, CSR is seen more as a responsibility towards society rather than a business promotion activity.

All the activities listed are for community development as a whole and not for individual person or a family. Each development initiative will be implemented in close collaboration with the village Panchayat. The Project proponent may avail the services of a NGO for the implementation of the above programme, if felt needed.

Budget for Environmental Management Plan

Sl.	Description	Capital	Recurring	Recurring	Recurring	Recurring
No		Cost 1st	Cost (Rs) 2 nd	Cost (Rs) 3 rd	Cost (Rs) 4 th	Cost (Rs) 5 th
		year (Rs)	year	year	Year	Year
1	Pollution Control & Dust	1,30,000	1,30,000	1,30,000	1,30,000	1,30,000
	Suppression					
2	Pollution Monitoring	-	30,000	30,000	30,000	30,000
	Plantation and salary for	2,50,000	96,000	96,000	96,000	96,000
3	one gardener (full time					
	basis) (8*12 = 96,000)					
4	Haul road Maintenance	1,00,000	1,00,000	1,00,000	1,00,000	1,00,000
	Cost (50 m)					
5	Occupational health and	50,000	50,000	50,000	50,000	50,000
	safety cost	30,000	30,000	50,000	50,000	30,000
	TOTAL (Rs)	5,30,000	5,60,000	5,60,000	5,60,000	5,60,000

Budget for Occupational Health

Particulars	Recurring Cost per year (Rs.)
For occupational health checkup	75,000
Total	75,000

Budget for Water, Shelter and Sanitation for Mine Worker

Scheme	Capital Cost (In Rs)	Recurring Cost (In Rs)
Drinking water facility (Water Cooler)	25,000	5,000
Rest shelter	1,00,000	10,000
Sanitation	40,000	5,000

(Urinal and Toilet)		
Total	1,65,000	20,000

CONCLUSION

As discussed, it is safe to say that the proposed facilities are not likely to cause any significant impact to the ecology of the area, as adequate preventive measures will be adopted to keep the various pollutants within the permissible limits. Green belt development around the area will also be taken up as an effective pollution mitigative technique, as well as to serve as biological indicators for the pollutants released from the premises of "Selud Cluster Limestone Mine".