एनवायर्नमेंटल इम्पेक्ट असेसमेंट और एनवायर्नमेंटल मैनेजमेंट प्लान <u>अधिशाशी सारांश</u>

भिलाई स्टील प्लांट का संशोधित कनिफगुरेशन 7.0 एमटीपीए आधुनिकीकरण-सह-विस्तारित परियोजना कैप्टिव पावर प्लांट के साथ भिलाई, जिला दुर्ग, छत्तीसगढ़

परियोजना प्रस्तावक

पर्यावरण सलाहकार

स्टील अथॉरिटी ऑफ़ इंडिया लिमिटेड भिलाई स्टील प्लांट भिलाई, जिला दुर्ग, छत्तीसगढ़ 490001

मेकॉन लिमिटेड भारत सरकार का संस्थान विवेकानंद पथ, डोरंडा रांची 834002

CERTIFICATE NO: NABET/EIA/1619/RA0068

मार्च, 2018

इआईए इमपी स्टडीज भिलाई स्टील प्लांट का संशोधित कानफिगुरेशन 7.0 एमटीपीए आधुनिकीकरण-सह-विस्तारित परियोजना कैप्टिव पावर प्लांट के साथ

भिलाई, जिला दुर्ग, छत्तीसगढ़

कार्यकारी सारांश

1.0 परिचय

भिलाई स्टील प्लांट (बीएसपी), देश में सबसे अधिक कुशल एकीकृत इस्पात संयंत्रों में से एक है और सेल सिरमौर है। भिलाई स्टील प्लांट, एक कम लागत वाला, विशिष्ट उत्पादों कि वृहद श्रृंखला के साथ उच्च गुणवता वाला स्टील उत्पादक/निर्माता है और अपनी इन विशिष्टताओं के कारण विश्व इस्पात उत्पादन के परिदृश्य में एक अग्रणी इकाई है । भिलाई स्टील प्लांट भारत का एकमात्र उत्पादक और सप्लायर है जिसने भारतीय रेल के लिए 260 मीटर लम्बी रेल का निर्माण किया है। भिलाई स्टील प्लांट वाइड एवं हेवी स्टील प्लेट्स और स्ट्रक्चरल स्टील और अन्य विशिष्ट उत्पादों जैसे वायर रॉड, मर्चेंट उत्पाद, हेवी स्ट्रक्चरल और भूकंप प्रतिरोधी टीएमटी उत्पादों (बार्स एंड रॉड) की एक विशाल विविध स्टील उत्पादों का प्रमुख उत्पादक है।

पर्यावरण (संरक्षण) अधिनियम, 1986 और ई आई ए अधिसूचना 2006 के संशोधनों के अनुसार , नए या विस्तार परियोजनाओं के एनविरोंमेंट क्लेअरंस के लिए एन्विरोंमेंटल इम्पैक्ट असेसमेंट अध्ययन की आवश्यकता होती है । प्रस्तावित परियोजना के लिए एन्विरोंमेंटल इम्पैक्ट असेसमेंट अध्ययन करने का कार्य बीएसपी ने मेकॉन लिमिटेड को सौपा है.

2.0 प्रोजेक्ट विवरण

2.1 स्थान

प्रस्तावित परियोजना को भिलाई स्टील प्लांट (बीएसपी) के मौजूदा संयंत्र परिसर के भीतर स्थापित किया जाएगा। भिलाई स्टील प्लांट भिलाई, जिला दुर्ग, छत्तीसगढ़ की राजधानी रायपुर से पश्चिम की ओर 40 किमी की दूरी पर स्थित है भिलाई स्टील प्लांट परियोजना की सीमा उत्तरी अक्षांश 21°11 'से 21°13' और पूर्वी देशांतर 81°22 से 81°24 'के बीच होती है और भारत सर्वेक्षण के शीर्ष क्रम पत्र F44P08 के तहत होती है। भिलाई स्टील प्लांट हावड़ा-मुंबई रेलवे लाइन पर स्थित है। निकटतम राष्ट्रीय राजमार्ग ग्रेट ईस्टर्न रोड (एनएच 6) है। निकटतम बड़ा शहर दुर्ग 12 किलोमीटर की दूरी पर है और निकटतम हवाई अड़डा रायपुर है जो ~ 45 किमी दूर है।

इआईए इमपी स्टडीज भिलाई स्टील प्लांट का संशोधित कानिफगुरेशन 7.0 एमटीपीए आधुनिकीकरण-सह-विस्तारित परियोजना कैप्टिव पावर प्लांट के साथ

भिलाई, जिला दुर्ग, छतीसगढ़

2.2 भिलाई इस्पात संयंत्र की वर्तमान कनिफगुरेशन

पर्यावरण मंजूरी प्रपत्र 2008 के अनुसार 7.0 एमटीपीए आधुनिकीकरण-सह-विस्तार परियोजना और उसके बाद लिए गए परियोजना संशोधन पूर्ण होने के कगार पर हैं। भिलाई स्टील प्लांट को प्रदत्त एनविरोंमेंट क्लेअरंस एवं उसके संशोधन के अनुरूप भिलाई स्टील प्लांट की वर्तमान क्षमता और कनिफगुरेशन का उल्लेख तालिका 1 में दिया गया हैं।

Table ES 1: Present Configuration of Bhilai Steel Plant as per accorded EC in 2008 and amendments

க	7.0 एम टी पी ए संयंत्र विन्यास	क्षमता	
Мvo	(ई सी 31.03.2008 के अनुसार और उसके बाद के संशोधन)	पानरा।	
1	सिंटर प्लांट कॉम्प्लेक्स	9.235 MTPA	
	सिंटर प्लांट-1 (4 x 50 m²) - हटाया गया		
	सिंटर प्लांट-2 (3x75 m²+1x 80 m²)		
	सिंटर प्लांट-3 : मशीन 1 (1x 320 m²)		
	सिंटर प्लांट-3 : मशीन 2 (1x 360 m²)		
2	कोक ओवन कॉम्प्लेक्स	3.94 MTPA	
	८ नंबर – ६५ ओवेन		
	8 Nos 65 Oven 4.3 m tall battery i.e. Battery No. 1, 2, 3, 4, 5, 6, 7 & 8 and 3		
	Nos 67 Oven 7 m tall batteries, i.e. Coven Battery No. 9, 10 & 11.		
	8 Battery Operation.		
	At any time 3 Coke Oven batteries will be shut-down for cold repair and		
	rebuilding cycle.		
3	ब्लास्ट फर्नेस कॉम्प्लेक्स	7.5 MTPA	
	ब्लास्ट फर्नेस 1 with CDI (1033 m³) - धीरे धीरे हटाया जायेगा		
	ब्लास्ट फर्नेस 2 with TIS (1033 m³) - धीरे धीरे हटाया जायेगा		
	ब्लास्ट फर्नेस 3 with TIS (1033 m³) - धीरे धीरे हटाया जायेगा		
	ब्लास्ट फर्नेस 4, 1719 m³		
	ब्लास्ट फर्नेस 5, 1719 m³		
	ब्लास्ट फर्नेस 6, 1719 m³		
	ब्लास्ट फर्नेस 7, 2363 m ³		
	ब्लास्ट फर्नेस 8, 4060 m³ with TRT		
4	स्टील बनाने और कास्टिंग इकाइयां		

इआईए इमपी स्टडीज भिलाई स्टील प्लांट का संशोधित कानिफगुरेशन 7.0 एमटीपीए आधुनिकीकरण-सह-विस्तारित परियोजना कैप्टिव पावर प्लांट के साथ

भिलाई, जिला दुर्ग, छत्तीसगढ़

_	7.0 एम टी पी ए संयंत्र विन्यास	
क्र॰	(ई सी 31.03.2008 के अनुसार और उसके बाद के संशोधन)	क्षमता
	एस एम एस-1 (SMS-I)	
	4x 500t Twin Hearth Furnace - धीरे धीरे हटाया जायेगा	
	एस एम एस-2 (SMS-II)	
	3x120t BOF	
	2X120t LF	
	3x120t RH	
	1x120t VD	
	Hot metal De-sulphurisation	
	3x1 strand Slab Casters (MC#1, 2, 3)	
	Combi-Caster: Bloom (3 strand) cum Slab (1 strand) Caster (mc#4)	
	1x4 strand Bloom Caster (MC#5)	
	1x1 slab caster (mc#6)	
	एस एम एस-3 (SMS III)	
	3x160 t BOF	
	3x160 t LFs	
	1x 160 t RH-OB	
	Hot metal De-sulphurisation	
	1 x vacuum tank degassing unit (Space provision)	
	2x6 strand Billet Casters	
	1x6 strand Bloom cum Billet Casters	
	1x3 strand Beam Blank Caster	
5	रोलिंग मिल्स (Rolling Mills)	
	Rail & Structural with Universal Rail Mill - URM (2.2 MTPA)	
	Plate Mill (1.65 MTPA)	
	Bar & Rod Mill (0.90 MTPA)	
	Merchant Mill (0.85 MTPA)	
	Wire Rod Mill (0.7 MTPA)	
	Blooming and Billet Mill (2.149 MTPA) - धीरे धीरे हटाया जायेगा	
6	पावर और ब्लोइंग स्टेशन टर्बो जनरेटर	
	Power Blowing Station & Turbo-generators	
	6 x 150 tph boiler	
	1 x 150 tph boiler	
	3 x 12 MW	
	1 x 15 MW	
	2 x 150 tph BF gas fired boiler	
	1 x 25 MW	
	1350 tph steam, CPP Power Generation 76 MW	

इआईए इमपी स्टडीज भिलाई स्टील प्लांट का संशोधित कानिफगुरेशन 7.0 एमटीपीए आधुनिकीकरण-सह-विस्तारित परियोजना कैप्टिव पावर प्लांट के साथ

भिलाई, जिला दुर्ग, छतीसगढ़

_	7.0 एम टी पी ए संयंत्र विन्यास	07777
क्र॰	(ई सी 31.03.2008 के अनुसार और उसके बाद के संशोधन)	क्षमता
	TRT Power Generation 14 MW	
	CDCP Power Generation 4 MW	
7	रिफरेक्ट्री मटेरियल प्लांट (RMP) : Lime & Dolo plant	
	रिफरेक्ट्री मटेरियल प्लांट-1 (RMP-I) - धीरे धीरे हटाया जायेगा	
	रिफरेक्ट्री मटेरियल प्लांट-2 (RMP-II)	
	• 2x 330 tpd + 1 x 144 tpd Lime kiln	
	• 1x 330 tpd kiln	
	रिफरेक्ट्री मटेरियल प्लांट-3 (RMP-III)	
	5x450 tpd lime and dolo kiln for SMS-III	
8	आक्सीजन प्लांट (Oxygen Plant) :	
	• 3 x 550 tpd and	
	• 1 x 700 tpd	
9	अन्य सहायक सुविधाएं (Other Auxiliary facilities)	
	(Matching facilities for achieving production)	

2.3 प्रस्तावित परियोजना

भिलाई स्टील प्लांट का 7.0 एमटीपीए आधुनिकीकरण और विस्तार, भिलाई स्टील प्लांट को प्रदत्त पर्यावरण मंजूरी प्रपत्र 2008 और इसके बाद मे प्राप्त संशोधन के अनुसार किया गया है

आधुनिकीकरण-सह-विस्तार परियोजना के विस्तृत इंजीनियरिंग और निष्पादन के दौरान, तकनीकी-आर्थिक लाभ के लिए, कुछ बदलावों पर विचार किया गया था जैसे आयरन ओर फायंस की आवश्यकता में वृद्धि, सिंटर प्लांट की उत्पादन क्षमता में बदलाव, कुल कोक उत्पादन में परिवर्तन के बिना एक और कोक ओवन बैटरी कि स्थापना, लेकिन हॉट मेटल, कूड स्टील, फिनिश्ड स्टील एवं पांवर उत्पादन को पर्यावरण मंजूरी प्रपत्र 2008 एवं उसके संशोधन अनुमोदन के अनुसार रखा गया है. और इसके अलावा, कुछ नई इकाइयां की परिकल्पना की गयी, जैसे कि एसएमएस -3 में आर्गन रिन्सिंग यूनिट (एआरयू), प्लेट मिल में कुएंचिंग और टेम्परिंग यूनिट के अतिरिक्त एसएमएस-॥ में 1x3 स्ट्रैंड बीम ब्लेंक कैस्टर को 1x3 स्ट्रेंड्स ब्लूम-कम-बीम-ब्लेंक कैस्टर में परिवर्तित कर दिया जाएगा।

क्योंकि यह एक ब्राउन फील्ड परियोजना है , 7.0 एमटीपीए प्रोजेक्ट परियोजना निष्पादन के दौरान साइट-विशिष्ट तकनीकी अवरोधों के कारण निर्धारित पूर्ण उत्पादन / स्थिरीकरण का कार्य भिलाई इस्पात संयंत्र को प्रदत्त पर्यावरण मंजूरी 2008 एवं उसके संशोधन कि निर्धारित अविध के भीतर पूर्ण नहीं हो पाया ।

इआईए इमपी स्टडीज भिलाई स्टील प्लांट का संशोधित कानिफगुरेशन 7.0 एमटीपीए आधुनिकीकरण-सह-विस्तारित परियोजना कैप्टिव पावर प्लांट के साथ

भिलाई, जिला दुर्ग, छत्तीसगढ़

पर्यावरण मंजूरी 2008 एवं उसके क्रमिक संशोधन के अनुसार 7.0 एमटीपीए प्रोजेक्ट परियोजना के स्थापना एवं सफल निष्पादन के पश्चात कुछ इकाइयों जैसे ब्लास्ट फर्नेस -1, २, ३ , स्टील मेल्टिंग शॉप-१ (एसएमएस-१), रेफ्रेक्ट्री मटेरियल प्लांट-1 (आरएमपी -1) और ब्लूमिंग और बिलेट मिल (बीबीएम) को चरणबद्ध तरीके से बंद किया जाना था।

नए परियोजना को लागू करने ,स्थरीकरण एवं रेटेड कैपसिटी के तहत पूर्ण रूप से संचालित करने के परिपेक्ष में भिलाई इस्पात संयंत्र द्वारा उपरोक्त वर्णित इकाइयों को क्रम बद्ध तरीके से बंद करने की योजना तैयार की गयी है जिसमे तीन वर्ष का अतिरिक्त समय लगना अनुमानित है पुराणी इकाइयों को क्रम बद्ध तरीके से बंद करने का कार्य प्रारंभ हो चूका है एवं इन तीन वर्षों के अंतराल में भिलाई इस्पात संयंत्र द्वारा उत्पादन पर्यावरण मंजूरी प्रपत्र २००८ के अनुसार ही किया जायेगा जैसे - कुल हॉट मेटल का उत्पादन ७.५ एम टी पी ए, कुल क्रुड स्टील का उत्पादन ७.० एम टी पी ए एवंम कुल फिनिश्ड स्टील का उत्पादन ६.३ एम टी पी ए।

उपरोक्त वर्णित परियोजना को 7.0 एमटीपीए आधुनिकीकरण-विस्तार- परियोजना में संबद्ध परियोजना के रूप में से जोड़ा गया है और इसका नाम "भिलाई स्टील प्लांट का संशोधित कनिकगुरेशन -7.0 एमटीपीए आधुनिकीकरण-सह-विस्तारित परियोजना कैप्टिव पावर प्लांट के साथ " दिया गया गया है। प्रोजेक्ट ऑपरेशन के दौरान तकनीकी-आर्थिक लाभ के लिए प्रस्तावित परियोजनाओं पर विचार किया गया है। हालांकि, हॉट मेटल , क्रूड स्टील, फिनिश्ड स्टील एवं पाँवर उत्पादन में कोई परिवर्तन नहीं होगा तथा 2008 में दिए गए पर्यावरण मंजूरी के अनुसार ही रहेगा। प्रस्तावित परियोजना को वन एवं पर्यावरण एवं जलवायु परिवर्तन मंत्रालय से पर्यावरण मंजूरी के बाद लागू किया जाएगा।

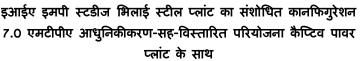

वर्तमान प्रस्ताव के तहत प्रस्तावित इकाइयों / संशोधनों की क्षमता / विन्यास नीचे तालिका ईएस 2 में है।

Table ES 2: Present proposal – New units / Modernisation

क्र॰	इकाई	वर्तमान प्रस्ताव - नई इकाइयां / आधुनिकीकरण
1.	इस्पात गलन शाला-3 (SMS-III)	Addition of new 3x160 t Argon Rinsing Unit (ARU) Modification of 1x3 strand Beam Blank caster in to 1x3 strand Bloom-cum-Bean Blank caster of same capacity
2.	प्लेट मिल (Plate Mill)	Addition of new Quenching and tempering facility
3.	कोक ओवन कॉम्प्लेक्स Coke Oven Complex	Bringing in of one more Coke Oven Battery in operation to achieve the desired coke production (3.94 MTPA) for 7.0 MTPA crude steel production.
4.	सिंटर प्लांट-3 Sinter Plant-III (Machine-2)	Increase of total sinter production from sinter plant complex (from 9.235 MTPA to 9.772 MTPA) by operational optimization

अधिशाशी सारांश 2018 मेकॉन लिमिटेड © सर्वाधिकार सुरक्षित

ई एस 6

भिलाई, जिला दुर्ग, छतीसगढ़

क्र॰	इकाई	वर्तमान प्रस्ताव - नई इकाइयां / आधुनिकीकरण
5.	ब्लास्ट फर्नेस-1 Blast Furnace-1 (BF-1)	In operation during the sequential capital repair of BF-4, BF-5 & BF-6 & BF8 Stabilisation / coming in to full production. Expected time required is 3 years
6.	इस्पात गलन शाला-1 Steel Melting Shop-I (SMS-I)	☐n operation till SMS-III Stabilisation / coming in to full production &
7.	रिफरेक्ट्री मटेरियल प्लांट-1 (RMP-I)	BF8 Stabilisation / coming in to full production. Expected time required 3 years
8.	ब्लूमिंग एंड बिलेट मिल (BBM)	

2.4 संसाधन की आवश्यकताएं

7.0 एमटीपीए आधुनिकीकरण और विस्तार परियोजना के संशोधित कनिकगुरेशन के अंतर्गत प्रस्तावित संबद्ध / अतिरिक्त परियोजनाओं के कारण हॉट मेटल , क्रूड स्टील , फिनिश्ड स्टील , पॉवर , लायम और डोलो के उत्पादन में कोई वृद्धि नहीं होगी। लेकिन उत्पादन प्रक्रिया मे तकनीकी बदलाव के जिरये अतिरिक्त सिंटर उत्पादन कि परिकल्पना की गयी है। किसी अतिरिक्त भूमि, बिजली, ईंधन, पानी की आवश्यकता नहीं होगी और न ही किसी अतिरिक्त ठोस अपशिष्ट और प्रदूषित जल के उत्पन्न होने कि संभावना है ।

2.5 परियोजना लागत

प्रस्तावित संबद्ध / अतिरिक्त परियोजनाओं की परिकल्पना 7.0 एमटीपीए आधुनिकीकरण-सह-विस्तार परियोजना के संशोधित कनिक पुरेशन के तहत की गयी है। प्रस्तावित परियोजना की पूंजीगत लागत का अनुमान 273 करोड़ रुपये है।

3.0 पर्यावरण का विवरण

स्टडी क्षेत्र को परियोजना सीमा के चारो ओर 10 किमी त्रिज्या के अंतर्गत लिया गया है। पर्यावरणीय गुणों का अध्ययन करने के लिए अक्टूबर से दिसंबर 2017 (मानसून के बाद) के दौरान बेसलाइन पर्यावरण के आंकड़े एकत्र किये गए ।

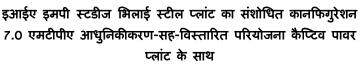
अंतरिक्ष-विज्ञान (Meteorology)

एक मौसम विज्ञान स्टेशन की स्थापना भिलाई इस्पात संयंत्र के इस्पात भवन मे की गयी थी (अक्षांश 21° 11'49.23 "एन, देशांतर 81° 22'49.6 9" ई)। प्रमुख वायु प्रवाह कि दिशा उ पू (20.02%), उ पू पू (12.5 9%), पू (12.14%), उ

इआईए इमपी स्टडीज भिलाई स्टील प्लांट का संशोधित कानिफगुरेशन 7.0 एमटीपीए आधुनिकीकरण-सह-विस्तारित परियोजना कैप्टिव पावर प्लांट के साथ

भिलाई, जिला दुर्ग, छतीसगढ़

उ पू (11.37%) था और शांत समय कुल समय का 14.95% था । पवन वेग ज्यादातर 1.6 से 18.0 किमी / घंटा के बीच था।


<u>वायु पर्यावरण (Air Environment)</u>

परिवेशी वायु गुणवत्ता कि जाँच करने हेतु संयंत्र के चारों ओर ८ स्थानों पर योजनागत तरीके से क्षेत्रीय निगरानी कि गयी जिसमे पीएम2.5 और पीएम 10, सल्फर-डी-ऑक्साइड (एसओ 2), नाइट्रोजन के ऑक्साइड (एनओएक्स), अमोनिया (एनएच 3), लीड (पीबी), निकेल (एनई) आर्सेनिक (जैसे), कार्बन मोनोऑक्साइड (सीओ), बेंजीन (सी 6 एच 6), बेंजो (ए) पैरेन (बीएपी) और जमीनी स्तर ओजोन (ओ 3) की मोनिटरिंग की गई थी। । सभी प्रदूषकों के अधिकतम मूल्य राष्ट्रीय परिवेशी गुणवता मानक के नीचे थे।(तालिका ईएस 4)

Table ES 4a: Summarised Ambient Air Quality Data

Parameter	मानदंड	सांख्यिकीय डेटा	पाउवारा (A1)	ड्रमरडीह (A2)	बटंग (A3)	चरोदा (A4)	शांतिनगर (A5)	पहंडोर (A6)	सेक्टर-9 (A7)	धनौरा (A8)
		Max	80	77	76	83	83	76	77	80
PM ₁₀		Min	42	47	39	50	50	46	49	38
PM ₁₀ (μg/m³)	100	Average	69	68	68	74	72	70	67	64
, 5.		C ₉₈	79	77	76	83	83	76	77	80
		Max	39	38	37	40	42	38	38	43
PM _{2.5}	60	Min	20	22	19	27	26	24	24	18
$(\mu g/m^3)$	60	Average	33	33	33	35	35	34	34	32
,		C ₉₈	38	38	37	40	42	38	38	43
		Max	19.5	17.8	18.4	18.6	23.1	19.5	18.6	21.8
SO_2	80	Min	9.7	7.6	6.4	5.2	12.0	(A6) (A7) 76 77 80 46 49 70 67 76 77 38 38 24 24 34 34 38 38 19.5 18.6 4.8 7.7 13.3 13.4 19.2 18.4 29.8 28.8 17.9 17.7 24.6 22.0 29.6 27.0 2.521 2.501 2.0 2.521 2.501 2.2 2.439 2.498 2.2 2.439 2.498 2.2 2.498 2.2 2.7.0 31.6 10.3 10.1 19.0 21.3	5.1	
$(\mu g/m^3)$	80	Average	13.6	12.7	12.4	12.9	17.0	13.3	13.4	14.3
		C ₉₈	18.8	17.7	18.3	18.2	22.5	19.2	18.4	21.8
	80	Max	26.7	28.3	24.0	29.6	31.9	29.8	28.8	29.9
NOx		Min	16.7	15.5	14.5	17.1	19.1	17.9	17.7	15.6
NOx (μg/m³)		Average	20.8	21.2	20.4	24.3	25.7	24.6	22.0	25.0
		C ₉₈	25.2	26.0	23.8	29.6	31.8	29.6	27.0	29.9
· · · · · · · · · · · · · · · · · · ·		Max	2.729	1.565	2.487	2.393	1.509	2.521	2.501	2.764
CO	4	Min	0.262	0.345	0.542	0.529	0.402	0.371	0.400	0.580
(mg/m^3)	4	Average	1.050	0.891	1.501	1.340	0.953	1.220	1.282	1.342
		C ₉₈	2.572	1.556	2.361	2.291	1.505	2.439	2.498	2.749
		Max	27.1	28.8	29.3	29.0	39.8	27.0	31.6	31.8
NH_3	400	Min	10.9	13.2	14.3	14.4	19.3	10.3	10.1	14.7
$(\mu g/m^3)$	400	Average	19.5	19.3	21.8	21.8	28.3	19.0	21.3	20.9
		C ₉₈	27.0	28.8	28.7	28.7	39.2	26.6	31.4	30.9
		Max	51	43	44	54	54	42	41	43
Ozone	100	Min	33	34	30	39	33	31	30	30
$(\mu g/m^3)$	100	Average	43	38	38	45	41	37	36	35
		C ₉₈	50	42	44	53	54	42	41	42

भिलाई, जिला दुर्ग, छत्तीसगढ़

Table ES 4a: Summarised Ambient Air Quality Data

Parameter	मानदंड	दिनाँक	पाउवारा	डूमरडीह	बटंग	चरोदा	शांतिनगर	पहंडोर	सेक्टर-9	धनौरा
Parameter	नागपुउ	IQUII47	(A1)	(A2)	(A3)	(A4)	(A5)	(A6)	(A7)	(A8)
Dh		08.10.2017	0.0227	0.0245	0.0260	0.0928	0.0346	0.0831	0.0306	0.0160
Pb	1	10.11.2017	0.0188	0.0238	0.0603	0.0412	0.0417	0.0316	0.0301	0.0376
(μg/m3)		15.12.2017	0.1182	0.2101	0.0488	0.0673	0.0235	0.0583	0.1089	0.0155
Ni		08.10.2017	<0.6000	<0.6000	<0.6000	<0.6000	<0.6000	<0.6000	<0.6000	3.1497
(ng/m3)	20	10.11.2017	<0.6000	<0.6000	<0.6000	<0.6000	<0.6000	<0.6000	<0.6000	<0.6000
(Hg/HI3)		15.12.2017	<0.6000	<0.6000	<0.6000	<0.6000	<0.6000	<0.6000	<0.6000	<0.6000
As		08.10.2017	<1.8000	<1.8000	<1.8000	<1.8000	<1.8000	<1.8000	<1.8000	<1.8000
(ng/m3)	6	10.11.2017	<1.8000	<1.8000	<1.8000	<1.8000	<1.8000	<1.8000	<1.8000	<1.8000
(Hg/HI3)		15.12.2017	<1.8000	<1.8000	<1.8000	<1.8000	<1.8000	<1.8000	<1.8000	<1.8000
B(a)P		11.10.2017	<0.2100	<0.2100	<0.2100	<0.2100	<0.2100	<0.2100	<0.2100	<0.2100
1.1	1	13.11.2017	<0.2100	<0.2100	<0.2100	<0.2100	<0.2100	<0.2100	<0.2100	<0.2100
(ng/m3)		20.12.2017	<0.2100	<0.2100	<0.2100	<0.2100	<0.2100	<0.2100	<0.2100	<0.2100
Benzene		06-11.10.17	<2.08	<2.08	<2.08	<2.08	<2.08	<2.08	<2.08	<2.08
	5	04-09.10.17	<2.08	<2.08	<2.08	<2.08	<2.08	<2.08	<2.08	3.54
(µg/m3)		03-08.10.17	<2.08	<2.08	<2.08	<2.08	2.75	<2.08	2.20	3.35

जल पर्यावरण (Water Environment)

संयंत्र के आसपास से सत्रह स्थानों से पानी के नमूने , नौ स्थानों से सतही पानी के नमूने और आठ भूजल नमूनों को पानी की मोनिटिरिंग हेतु एकत्र किया गया था। विभिन्न स्थानों से एकत्र किये गए पानी के नमूनों में सभी पैरामीटर केटेगरी ए, बी और सी के लिए सीपीसीबी द्वारा निर्धारित मानदंडों के भीतर थे। भूजल गुणवत्ता के लिए किसी भी विशिष्ट मानदंडों की अनुपस्थित में, परिणामों की तुलना आईएस: 10500 (2012) में विनिर्दिष्ट पेयजल गुणवत्ता मानकों से की गई है। विभिन्न स्थानों से एकत्र किये गए भूजल के नमूनों में से एल्यूमीनियम, कैल्शियम, टोटल हार्डनेस और कुल क्षारीयता को छोडकर अधिकांश मापदंड आईएस: 10500 के संबंधित स्वीकार्य सीमा के भीतर थे। एल्यूमिनियम, कैल्शियम, टोटल हार्डनेस और कुल क्षारीय स्तर स्वीकार्य सीमा से अधिक हैं लेकिन वांछनीय सीमा के भीतर हैं।

मिट्टी (Soil)

प्रोजेक्ट साइट के आसपास के पांच स्थानों से मिटटी के नमूने विश्लेषण के किये एकत्र किये गए थे। प्राप्त परिणामों के अनुसार इस क्षेत्र की मिट्टी पौधों की वृद्धि में सहायक है।

परिवेश शोर पर्यावरण (Ambient Noise Environment)

प्रोजेक्ट साइट के आठ स्थानों पर शोर के स्तरों का निरीक्षण किया गया था। सभी स्टेशनों से प्राप्त होने वाले परिणाम संबंधित वैधानिक मानदंडों के नीचे थे।

इआईए इमपी स्टडीज भिलाई स्टील प्लांट का संशोधित कानिफगुरेशन 7.0 एमटीपीए आधुनिकीकरण-सह-विस्तारित परियोजना कैप्टिव पावर प्लांट के साथ

भिलाई, जिला दुर्ग, छतीसगढ़

पारिस्थितिक विशेषताएं (Ecological Features)

अध्ययन क्षेत्र में शहरी क्षेत्रों, औद्योगिक क्षेत्रों और ग्रामीण क्षेत्रों को शामिल किया गया हैं। अध्ययन क्षेत्र में कोई वन भूमि, राष्ट्रीय उद्यान, अभयारण्य नहीं है। इस क्षेत्र में केवल सामान्य जानवर पाए जाते हैं।

स्टैक मॉनिटरिंग (Stack Monitoring)

चिमनियों से निकलने वाले उत्सर्जन की मोनिटरिंग सभी प्रमुख चिमनियों पर की गई थी और यह पाया गया कि उत्सर्जन के परिणाम एम ओ ई एफ सी सी (2012) के निर्दिष्ट मानकों के भीतर है।

कार्य जोन मॉनिटरिंग (Work Zone Monitoring)

कार्य क्षेत्र वायु की मोनिटरिंग सभी प्रमुख इकाइयों पर की गई थी और यह पाया गया कि भिलाई इस्पात संयंत्र के अधिकांश क्षेत्र MoEFCC (2012) के निर्दिष्ट मानकों के भीतर है।

एफ्लूअन्ट और सीवेज के लक्षण (Effluents and Sewage Characteristics)

बीओडी प्लांट, सिनटर प्लांट (एसपी), ब्लास्ट फर्नेस (बीएफ), स्टील मेल्टिंग शॉप (एस एम एस) और प्लेट मिल के एफ्लुएंट ट्रीटमेंट प्लांट (ईटीपी) के आउटलेट से निकलने वाले जल का विश्लेषण किया गया और यह देखा गया कि उपचार के बाद सभी पैरामीटर क्षेत्र MoEFCC (2012) के निर्दिष्ट मानकों के भीतर हैं।

बीओडी प्लांट और संयंत्रके अन्य इकाइयों के आउटलेट के पानी को पुनः चक्रण द्वारा संयंत्र में पुन: उपयोग किया जाता है।

30 एमएलडी एसटीपी, रिसाली ऑक्सीडेशन तालाब और भिलाई हाउस ऑक्सीडेशन तालाब के आउटलेट से निकलने वाले उपचारित जल की विशेषताओं का विश्लेषण किया गया और यह पाया गया कि उपचारित सीवज जल के सभी पैरामीटर निर्दिष्ट MoEFCC (2012) के निर्दिष्ट मानकों के भीतर थीं। वर्तमान में 30 एमएलडी प्लांट से औद्योगिक उपयोग के लिए 100% पानी रीसायकल किया जाता है एवं रिसाली और भिलाई हाउस ऑक्सीडेशन पॉन्ड प्लांट से निकलने वाले उपचारित जल को आंशिक रूप से रीसायकल किया जाता है और आंशिक रूप से शिवनाथ / खारून निर्देश में छोड़ा जाता है . हालांकि, 2021 तक भिलाई स्टील प्लांट, औद्योगिक उपयोग के उपरांत प्लांट से निकलने वाले निष्काषित पानी को रीसायकल करने के लिए विभिन्न योजनाओं को लागू करने के लिए प्रतिबद्ध है।

<u> उपचारित अपशिष्ट जल आउटलेट गुणवत्ता (Treated Waste Water Outlet Quality)</u>

भिलाई स्टील प्लांट के आउटलेट पॉइंट (ए, बी और सी) से निकलने वाले अपशिष्ट जल का विश्लेषण किया गया और यह पाया गया कि सभी पैरामीटर MoEFCC के निर्दिष्ट मानकों के भीतर हैं। वर्तमान में आउटलेट - ए से निकलने

इआईए इमपी स्टडीज भिलाई स्टील प्लांट का संशोधित कानफिगुरेशन 7.0 एमटीपीए आधुनिकीकरण-सह-विस्तारित परियोजना कैप्टिव पावर प्लांट के साथ

भिलाई, जिला दुर्ग, छत्तीसगढ़

वाले पानी को औद्योगिक उपयोग हेतु १०० % रीसायकल किया जा रहा है. आउटलेट बी और सी से निकलने वाले जल को आंशिक रूप से रीसायकल किया जा रहा है और आंशिक रूप से शिव नाथ / खारुन नदियों को छोड़ा जाता है। हालांकि, 2021 तक बीएसपी शून्य निस्त्राव को हासिल करने के लिए प्रतिबद्ध है इस दिशा मे कई योजनाओं को लागू करने का लक्ष्य है।

4.0 अनुमानित पर्यावरणीय प्रभाव और मिटिगैशन उपाय

वर्तमान मे प्रस्तावित परियोजना भिलाई स्टील प्लांट के 7.0 एमटीपीए आधुनिकीकरण-सह-विस्तार परियोजना से सम्बद्ध केवल कुछ इकाइयों को स्थापित करने के लिए है इस प्रक्रिया मे हॉट मेटल , क्रूड स्टील , फिनिश्ड के उत्पादन में कोई वृद्धि नहीं होगी। इसलिए प्रस्तावित संशोधनों कारण पर्यवारण पर होने वाले प्रभाव कम हैं।

4.1 निर्माण के दौरान प्रभाव

प्रस्तावित परियोजना किसी भी नई भूमि का अधिग्रहण नहीं करेगी और सभी निर्माण कार्य विद्यमान भिलाई स्टील प्लांट, परिसर के भीतर और पहले से निर्मित क्षेत्र में सीमित होगा, जिसमें सभी बुनियादी सुविधाएं होंगी। बड़े पैमाने पर निर्माण गतिविधिया संचालित होंगी जिससे प्रदूषण में इजाफे की उम्मीद है। परन्तु, ऐसी गतिविधियों का प्रभाव अस्थायी होगा और केवल निर्माण चरण तक ही सीमित होगा।

4.2 ऑपरेशन के दौरान प्रभाव

वायु पर्यावरण पर प्रभाव

प्रस्तावित परियोजना के आधार पर दो परिदृश्यों का विश्लेषण किया गया। परियोजना के तीन वर्षों के बाद प्रारंभिक तीन वर्षों के लिए परिदृश्य 1 और परिदृश्य 21

दोनों स्थितियों में पीएम 10, एसओ 2 और एनओएक्स की भविष्य मे होने वाले, जमीनी स्तर पर होने वाले अधिकतम उत्सर्जन एवं सांद्रता का पुनर्वानुमन किया गया और इसके परिणामस्वरूप परिवेशीय वायु गुणवत्ता में होने वाले परिवर्तन को टेबल एस में दिखाया गया है 5 ए और 5 बी दो परिदृश्यों से यह देखा जा सकता है कि हालांकि प्रारंभिक तीन वर्षों के लिए परिवेशीय वायु के प्रदूषण स्तर में मामूली वृद्धि होगी, लेकिन तीन वर्षों के बाद (परिदृश्य 2) पुरानी इकाइयों के बंद होने के कारण वायु की गुणवत्ता में सुधार होगा। हालांकि, दोनों परिदृश्यों में संयंत्र में वायु गुणवत्ता पूर्वानुमानित राष्ट्रीय परिवेशीय वायु गुणवत्ता मानदंडों के भीतर होगा।

इआईए इमपी स्टडीज भिलाई स्टील प्लांट का संशोधित कानिफगुरेशन 7.0 एमटीपीए आधुनिकीकरण-सह-विस्तारित परियोजना कैप्टिव पावर प्लांट के साथ

भिलाई, जिला दुर्ग, छत्तीसगढ़

Table ES.5a: Scenario 1 - For Initial 3 years Due to the Proposed Project

			Р	cenario 1	enario 1					
		PM ₁₀ (μg/m³)				SO₂ (μg/m³	3)	$NO_x (\mu g/m^3)$		
SN	स्थान	Predicted level	Monitored Max. Conc.	Max. conc. after Project	level	Monitored Max. Conc.	Max. conc. after Project	Predicted level	Monitored Max. Conc.	Max. conc. after Project
1	पाउवारा (A1)	2.75	80	82.75	2.0	80	21.50	2.00	26.7	28.70
2	ड्रमरडीह (A2)	1.49	77	78.49	1.63	77	19.43	1.27	28.3	29.57
3	बटंग (A3)	0.80	76	76.80	0.86	76	19.26	0.76	24.0	24.76
4	चरोदा (A4)	0.36	83	83.36	0.39	83	18.99	0.33	29.6	29.93
5	शांतिनगर (A5)	1.44	83	84.44	1.60	83	24.70	1.44	31.9	33.34
6	पहंडोर (A6)	1.96	76	77.96	1.23	76	20.73	1.34	29.8	31.14
7	सेक्टर- 9 (A7)	1.85	77	78.85	1.90	77	20.50	1.44	28.8	30.24
8	धनौरा (A8)	1.92	80	81.92	1.58	80	23.38	1.51	29.9	31.41

Table ES. 5b : Scenario 2 - After 3 years Due to the Proposed Project

S			Predicted Pollutant Concentration under Scenario 1									
N		P	PM ₁₀ (μg/m ³)			SO ₂ (μg/m ³)			NO _x (μg/m³)			
	स्थान	Scenario 1 Predicted level	Scenario 2 Predicted level	Max. conc. after Project	Scenario 1 Predicted level	Scenario 2 Predicted level	Max. conc. after Project	Scenario 1 Predicted level	Scenario 2 Predicted level	Max. conc. after Project		
1	पाउवारा (A1)	82.75	(-) 3.64	79.11	21.50	(-) 3.95	17.55	28.70	(-) 4.31	24.39		
2	ड्र्मरडीह (A2)	78.49	(-) 2.38	76.11	19.43	(-) 2.64	16.79	29.57	(-) 2.79	26.78		
3	बटंग (A3)	76.80	(-) 2.97	73.83	19.26	(-) 2.98	16.28	24.76	(-) 3.13	21.63		
4	चरोदा (A4)	83.36	(-) 0.87	82.49	18.99	(-) 0.94	18.05	29.93	(-) 0.99	28.94		
5	शांतिनगर (A5)	84.44	(-) 2.22	82.22	24.70	(-) 2.52	22.18	33.34	(-) 2.74	30.60		
6	पहंडोर (A6)	77.96	(-) 1.97	75.99	20.73	(-) 2.20	18.53	31.14	(-) 2.31	28.83		
7	सेक्टर- 9 (A7)	78.85	(-) 4.73	74.12	20.50	(-) 5.27	15.23	30.24	(-) 5.54	24.70		
8	धनौरा (A8)	81.92	(-) 3.41	78.51	23.38	(-) 3.78	19.60	31.41	(-) 3.98	27.43		

<u>जल पर्यावरण पर प्रभाव</u>

प्रस्तावित परियोजना -7.0 एमटीपीए आधुनिकीकरण और विस्तार के लिए किसी भी अतिरिक्त पानी की आवश्यकता नहीं होगी। 7.0 एमटीपीए परियोजना के लिए वाटर रिसोर्स डिपार्टमेंट से कुल जल की आवश्यकता 5.0 टीएमसी / वर्ष है। राज्य सरकार की वर्तमान अनुमित 4.0 टीएमसी / वर्ष है। अतिरिक्त पानी हेतु आवेदन किया गया और आवेदन के स्वीकृत होने की उम्मीद है। इसके अलावा औद्योगिक उपयोग हेतु उपचारित सीवेज जल एवं निस्त्रवित पानी के पुनर्चक्रण की योजनाएं लागू की जा रही हैं।

इआईए इमपी स्टडीज भिलाई स्टील प्लांट का संशोधित कानिफगुरेशन 7.0 एमटीपीए आधुनिकीकरण-सह-विस्तारित परियोजना कैप्टिव पावर प्लांट के साथ

भिलाई, जिला दुर्ग, छतीसगढ़

भूमि पर्यावरण पर प्रभाव

प्रस्तावित परियोजना मौजूदा 7.0 एमटीपीए परियोजना का एक छोटा सा हिस्सा है और वर्तमान परियोजना से पर्यावरण पर कोई भी अतिरिक्त प्रभाव नहीं है।

शोर स्तर पर प्रभाव

प्रस्तावित परियोजना मौजूदा 7.0 एमटीपीए परियोजना का एक छोटा सा हिस्सा है। संयंत्र सीमा पर मौजूदा परियोजना के कारण शोर का स्तर मानदंडों के भीतर है और वर्तमान परियोजना से कोई भी अतिरिक्त बदलाव अनुमानित नहीं है।

<u>आवागमन घनत्व पर प्रभाव</u>

प्रस्तावित परियोजना में लौह अयस्क चूरे की आवश्यकता में वृद्धि होगी, जो की वर्तमान में दल्ली, राजहारा / रावघाट से रेल के माध्यम से पहुंचाइ जा रही है। अतिरिक्त आवश्यकता को एक ही स्रोत और परिवहन के एक ही तरीके से पूरा किया जाएगा और इस प्रकार सड़क यातायात पर कोई अतिरिक्त प्रभाव नहीं होगा ।

वनस्पति एवं पर्यावरण पर प्रभाव

प्रस्तावित सम्बद्ध /अतिरिक्त इकाइयों की स्थापना से वनस्पति को कोई हानि नहीं होगी। चूंकि परियोजना क्षेत्र पहले से विद्यमान इस्पात संयंत्र के भीतर है और संयंत्र के भीतरी क्षेत्र का केवल एक छोटा सा भाग आवश्यक है, इसलिए प्रस्तावित परियोजना से क्षेत्र के वनस्पति एवं पर्यावरण पर कोई प्रतिकूल प्रभाव नहीं होगा।

व्यावसायिक सुरक्षा और स्वास्थ्य योजना

भिलाई स्टील प्लांट में प्लांट परिसर के अंदर एक पूर्ण व्यावसायिक स्वास्थ्य केंद्र है, जिसमें निरंतर चिकित्सक सुविधा होती है। सभी कर्मचारियों की नियमित अंतराल पर चिकित्सा जांच की जाती है। फेफड़े का फ़ंक्शन परीक्षण, थकावट परीक्षण, एक्स-रे इत्यादि के लिए सुविधाएं उपलब्ध हैं। प्रथम सहायता बॉक्स शॉप फ्लोर पर स्ट्रटीजिक स्थानों पर उपलब्ध कराए जाते हैं।

5.0 वैकल्पिक तकनीक के विश्लेषण

प्रस्तावित परियोजना की स्थापना मौजूदा संयंत्र सीमा के भीतर की गई है। वर्तमान में प्रस्तावित परियोजना भिलाई स्टील प्लांट के 7.0 एमटीपीए आधुनिकीकरण-सह-विस्तार परियोजना से सम्बद्ध केवल कुछ इकाइयों को स्थापित करने के लिए है और वर्तमान 7.0 एमटीपीए परियोजना से जुड़ा है, इसलिए कोई वैकल्पिक स्थल या तकनीक पर विचार नहीं किया गया था।

इआईए इमपी स्टडीज भिलाई स्टील प्लांट का संशोधित कानिफगुरेशन 7.0 एमटीपीए आधुनिकीकरण-सह-विस्तारित परियोजना कैप्टिव पावर प्लांट के साथ

भिलाई, जिला दुर्ग, छतीसगढ़

6.0 पर्यावरणीय निगरानी कार्यक्रम

वर्तमान परियोजना प्रस्ताव केवल बीएसपी 7.0 एमटीपीए परियोजना के "अतिरिक्त/संबद्ध परियोजनाओं" के एनविरोंमेंट क्लिअरंस के लिए है जो बहुत बड़ी परियोजना का एक छोटा सा घटक है। जिसके लिए प्रदूषण नियंत्रण उपकरणों की प्रभावशीलता पर निगरानी रखने और वैधानिक रिपोर्टिंग आवश्यकताओं को पूरा करने के लिए एक विस्तृत मोनिटरिंग ट्यवस्था पहले से मौजूद है। यही मोनिटरिंग ट्यवस्था प्रस्तावित परियोजना कि आवश्यकता को पूरा करेगी।

7.0 अतिरिक्त अध्ययन

7.1 सामाजिक प्रभाव आकलन

प्रस्तावित परियोजना का कुल मूल्य लगभग 273 करोड़ है एवं यह 7.0 एमटीपीए परियोजना की सम्बद्ध / अतिरिक्त परियोजनाएं हैं। शुरुआती अर्धशतक के दौर में इस क्षेत्र में भिलाई स्टील प्लांट स्थापित किया गया और भिलाई इस्पात संयंत्र ने भिलाई और आसपास के इलाकों के सामाजिक-आर्थिक विकास में काफी योगदान दिया है, जिसके कारण भिलाई एवं आसपास का क्षेत्र सभी बुनियादी सुविधाओं के साथ एक विकसित शहर के रूप में विकसित हुआ है। इस प्रकार भिलाई स्टील प्लांट का सामाजिक-आर्थिक प्रभाव पूर्ण रूप से सकारात्मक है। इस अध्ययन से निम्नलिखित निष्कर्ष तैयार किए गए हैं:

- 1) मौजूदा कृषि स्थिति को कोई नुकसान नहीं होने वाला है।
- 2) खाद्य वस्तुओं के अतिरिक्त गैर-खाद्य वस्तुओं की मांग बढ़ने के कारण अध्ययन क्षेत्र के लोगों के बीच मांग के पैटर्न में बदलाव।
- अध्ययन क्षेत्र में औसत खपत पर मजबूत सकारात्मक प्रभाव है जिसके बहु आयामी प्रभावों के चलते
 औसत आय में वृद्धि होने की संभावना है
- 4) सहायक उद्योगों और सेवा क्षेत्रों में बढ़ती गतिविधि के कारण रोजगार और आय पर बहुत मजबूत सकारात्मक प्रभाव होगा ।
- 5) भिलाई स्टील प्लांट के आसपास के क्षेत्र में औद्योगीकरण में वृद्धि होगी । इससे स्थानीय लोगों मे तकनिकी कौशल विविधीकरण आने की संभावना है।
- 6) अध्ययन क्षेत्र के लोगों की शैक्षिक स्थिति पर सकारात्मक प्रभाव होगा ।
- 7) भिलाई स्टील प्लांट का सामुदायिक विकास गतिविधियों पर सकारात्मक प्रभाव है जिससे आस पास के लोगों को लाभ होगा हैं।
- 8) परियोजना पर समस्त लोगों की धारणा अच्छी है।

इआईए इमपी स्टडीज भिलाई स्टील प्लांट का संशोधित कानिफगुरेशन 7.0 एमटीपीए आधुनिकीकरण-सह-विस्तारित परियोजना कैप्टिव पावर प्लांट के साथ

भिलाई, जिला दुर्ग, छतीसगढ़

7.2 आपदा प्रबंधन योजना

प्रस्तावित परियोजना एक बहुत बड़ी मौजूदा 7.0 एमटीपीए परियोजना का एक छोटा सा घटक है, जिसके लिए पहले से ही विभिन्न इकाइयों ने अपने लिए आपदा प्रबंधन योजना बनाई गई है। प्रस्तावित परियोजना के लिए इसका भी पालन किया जाएगा। भिलाई स्टील प्लांट आसपास के इलाकों में होने वाली घटनाओं के मामले में भी जिला सरकार के अधिकारियों को अग्नि निविदाएं, अस्पताल सुविधाएं आदि की पेशकश के जरिए सहायता प्रदान करती है।

8.0 परियोजना से लाभ

सामाजिक बुनियादी ढांचे में सुधार

प्रमुख क्षेत्रों भिलाई स्टील प्लांट द्वारा चालू सीएसआर गतिविधियों के माध्यम से सामाजिक जिम्मेदारियां ले ली गई हैं उन स्थानो पर निम्नलिखित सुविधाएँ मुहैया कराई जाती है :

- मेडिकल और स्वास्थ्य सेवाएं;
- शिक्षा,
- आवास और टाउनशिप सुविधाएं;
- सामाजिक सुरक्षा उपायों;
- खेल और सांस्कृतिक गतिविधियों को बढ़ावा देना;
- समाज और पर्यावरण संरक्षण के लिए चिंता
- गांवों में सामुदायिक विकास और सांस्कृतिक कार्यक्रम
- आसपास के क्षेत्रों में स्वास्थ्य शिविर

अन्य वास्तविक लाभ

अन्य वास्तविक लाभ अस्पताल और स्कूली शिक्षा की सुविधा के रूप में हैं। सीएसआर कॉरपोरेट सामाजिक उत्तरदायित्व (सीएसआर) की गतिविधियों ने स्थानीय जनसंख्या को पास के इलाके में बेहतर बुनियादी ढांचे और सामाजिक सुविधाओं के विकास का आनंद लेने में मदद की है।

9.0 पर्यावरणीय प्रबंधन योजना

प्रस्तावित परियोजना एक बहुत बड़ी 7.0 एमटीपीए परियोजना का एक छोटा घटक है, जिसके लिए पर्यावरण प्रबंधन योजना पहले से ही काम कर रही है। प्रस्तावित परियोजना के लिए इसका भी पालन किया जाएगा।

बारिश के पानी का संग्रहण

इआईए इमपी स्टडीज भिलाई स्टील प्लांट का संशोधित कानिफगुरेशन 7.0 एमटीपीए आधुनिकीकरण-सह-विस्तारित परियोजना कैप्टिव पावर प्लांट के साथ

भिलाई, जिला दुर्ग, छतीसगढ़

भिलाई स्टील प्लांट ने प्लांट परिसरों के भीतर कई यूनिटों में और भिलाई टाउनिशप के कई इमारतों में वर्षा जल संचयन प्रणाली का निर्माण किया है, जिसमें रीचार्ज गड्ढे के माध्यम से भूजल जल रिसाव करने के लिए वर्षा जल संरक्षण प्रणाली की स्थापना की गई है। इसके अलावा, वर्षा जल संचयन प्रणाली के क्रियान्वयन के लिए प्लांट और टाउनिशप में कुछ और इमारतें प्रस्तावित की गई हैं।

ग्रीन बेल्ट विकास

भिलाई स्टील प्लांट ने प्लांट परिसरके अंदर एवं परिसर के आस पास 4227 एकड़ (1171.33 हेक्टयर) में लगभग 41,92,144 वृक्षों एवं पौधों का रोपण किया है। भिलाई इस्पात संयत्र द्वारा विकसित हरित क्षेत्र , संयंत्र परिसत्र के कुल क्षेत्रफल का 33% से अधिक हैं। भविष्य मे प्रस्तावित हरित क्षेत्र निन्मलिखित हैं।

- 1. लगभग संयंत्र सीमा
- 2. अपशिष्ट इंप के आसपास
- 3. एवेन्यू वृक्षारोपण
- 4. विभिन्न इकाइयों के आसपास
- 5. कार्यालय और अन्य भवनों के आसपास
- टाउनिशप के आस-पास

10.0 निष्कर्ष

वर्तमान प्रस्ताव में , हॉट मेटल , क्रुड स्टील और फिनिश्ड स्टील के उत्पादन में वृद्धि किये बिना , मौजूदा 7.0 एमटीपीए आधुनिकीकरण-सह-विस्तार परियोजना के में केवल अतिरिक्त इकाइयों का प्रस्ताव लाया गया है,

भिलाई स्टील प्लांट के प्रस्तावित इकाइयों के संभावित प्रभावों का आकलन करने के लिए पर्यावरण प्रभाव आकलन (ईआईए) अध्ययन किया गया । 7.0 एमटीपीए परियोजना के डिजाइन चरण में, नवीनतम अत्याधुनिक प्रौद्योगिकी का उपयोग किया गया ताकि उत्सर्जन के वांछित मानदंडों को प्राप्त किया जा सके और संयंत्र के संचालन से होने वाले शोर का स्तर निर्दिष्ट मानदंडों के भीतर रखा जा सके । इकाइयों से उत्पन्न दूषित जल का पुनः चक्रण और पुनः उपयोग किया जा रहा है। इसके अलावा, उत्पन्न ठोस कचरे के अधिकतम उपयोग और पुनः उपयोग का प्रयास किया जा रहा है। कुल मिलाकर, भिलाई स्टील प्लांट ने पर्यावरण पर न्यूनतम प्रभाव के साथ अपने औद्योगिक कार्यों के विस्तार के लिए सभी संभव कदम उठाए हैं।