SUMMARY ON

ENVIRONMENTAL IMPACT ASSESSMENT REPORT

OF

SARDA ENERGY & MINERALS LIMITED

[Proposed Steel & Power Plant (Greenfield Project) – Establishment of 4 x 600 TPD DRI Kilns (Sponge Iron - 7,92,000 TPA), 12 x 20 T of Induction Furnaces with CCM, LRF, AOD,VD (MS Billets -9,24,000 TPA), Rolling Mill with Reheating Furnace & Coal Gasifier (Rolled Products – 7,00,000 TPA), 4 x 12 MVA of Submerged Electric Arc Furnaces (FeMn- 85,800 TPA/ SiMn – 72,600 TPA), 44 MW WHRB based Power Plant (4 x11 MW)and 136 MW AFBC based Power Plant (2 x 19 MW & 2 x 30 MW & 1x38 MW)-, Wire Drawing Mill (HB Wire - 2,00,000 TPA), Fly Ash Brick Manufacturing Unit (7,00,000 TPA)]

at

Nevnara Village, Berla Tehsil, Bemetara District, Chhattisgarh

Submitted to

CHHATTISGARH ENVIRONMENT CONSERVATION BOARD Chhattisgarh

1.0 PROJECT DESCRIPTION

Sarda Energy & Minerals Limited has proposed to establish a Mini Steel Plant, a Greenfield Project, comprising of establishment of DRI Kilns (Sponge Iron - 7,92,000 TPA), Induction Furnaces with CCM, LRF, AOD,VD (MS Billets -9,24,000 TPA), Rolling Mill with Reheating Furnace and Coal Gasifier(Rolled products -7,00,000 TPA), Submerged Eletric Arc Furnaces (FeMn- 85,800 TPA/ SiMn – 72,600 TPA), WHRB based Power Plant – 44 MW, AFBC based Power Plant - 136 MW, Wire Drawing Mill (HB Wire - 2,00,000 TPA), FlyAsh Brick manufacturing unit (7,00,000 TPA).

Total land envisaged for the proposed project is 79.239 ha. (195.8 Acres). Agreements have been entered for total land with landowners for the total land requirement of 79.239 ha. (195.8 Acres. The project cost envisaged for the proposed project is Rs 2370 Crores.

As per the Ministry of Environment, Forest& Climate Change, New Delhi notification, dated 14thSeptember, 2006 and its subsequent amendments, all Primary metallurgical processing industries are classified under Category 'A'. The Ministry of Environment, Forest& Climate Change (MOEF&CC), New Delhi has accorded Terms of Reference (TOR) for the proposed project vide letter No. J-11011 / 183 / 2021 – IA II (I), dated 14th June 2021.The EIA Report has been prepared by incorporating the TOR stipulated by MOEF&CC.

Pioneer Enviro Laboratories & Consultants Private Limited, Hyderabad, which is accredited by NABET, Quality Council of India, vide certificate No. NABET/ EIA/ 1922/ RA 0149, for preparing EIA report for Metallurgical Units, have prepared Environmental Impact Assessment (EIA) report for the proposed projectby incorporating the TOR approved by Ministry of Environment, Forest & Climate Change, New Delhi. The report contains detailed description of the following:

- Characterization of status of environment with in an area of 10 km radius from the plant for major environmental components including air, water, noise, soil, flora, fauna and socioeconomic environment.
- Assessment of air emissions, liquid waste and solid waste from the proposed project along with the noise level assessment.
- Environmental Management Plan comprising of emission control measures proposed to be adopted in the proposed project, solid waste management, Greenbelt development, etc.
- Post Project Environmental Monitoring & Budget for Environmental Protection Measures.

1.1 ENVIRONMENTAL SETTING WITHIN 10 Km. RADIUS OF THE PLANT SITE

The following is the environmental setting within the 10 Km. radius of the Project site:

S.No.	Salient Features / Environmental features	Distance w.r.t. site / Remarks
1.	Type of Land	Agricultural Land
2.	Type of Land (Study Area)	As per LULC the land use within 10 Km. is as follows:
		Settlements – 4.3 %, Industrial Area – 2.7 %,
		Tank / River / Reservoir – 9.3%, Single Crop –
		63.3%, Double Crop – 6.9%, Plantation – 4.4%,
		Land with scrub – 4.3%, Land without scrub –
		2.6%, Sheet rock area – 2.2%
3.	National Park/ Wildlife sanctuary /	Nil
	Biosphere reserve / Liger Reserve /	
	Birds	
4.	Historical places / Places of Tourist	Nil
	importance / Archeological sites	
5.	Critically polluted area as per MoEF&CC	None
	Office Memorandum dated 13 th January	And also the Plant area does not fall in the
	2010	areas given in Hon'ble NGT order issued vide
		dated 10 st July 2019.
6. 7	Defence Installations	NII Kata (0 CKma in East Direction)
7. o	Ne of Villages in the Study Area	Kold (U.OKITIS.III Edst Direction)
<u>ð.</u>	No. of Villages in the Study Area	40 Mos.
9. 10	Polesis Water body	Water Rody:
10.		Iorrnadhi- Adiacent(Fast)
		Ghurinala –Adjacent (North)
		Kharoon River - 6.1 Kms (Fast)
11.	Nearest Highway	Nil within 10 Km. Radius.
12.	Nearest Railway Station	Nil within 10 Km. Radius.
13.	Nearest Port facility	Nil within 10 Km. Radius.
14.	Nearest Airport	Nil within 10 Km. Radius.
15.	Nearest Interstate Boundary	Nil within 10 Km. Radius.
16.	Seismic zoneas per IS-1893	Seismic zone – III
17.	R&R	There is no rehabilitation and resettlement
		issue, as there are no habitations present in the
		site area.
18.	Litigation / court case is pending against	NII
	the proposed project / proposed site and	
	or any direction passed by the court of law	
	against the project	

Table No. 1.1: Environment Setting within 10 Km. radius of the site

1.2 PLANT CONFIGURATION AND PRODUCTION CAPACITY

Following is the proposed plant configuration and proposed production capacities:

Table No.1.2: Proposed Plant Configuration & Production Capacities

S.	Unit and product	Unit Configuration	Production capacity	Unit Configuration	Production capacity	Total
No.	Details	PHASE -1		PHAS		
1	DRI Kiln (Sponge Iron)	2 x 600 TPD	3,96,000 TPA	2 x 600 TPD	3,96,000 TPA	7,92,000 TPA
2	Induction Furnace with CCM, LRF, AOD, VD (Steel Billet)	6 x 20 MT (7.5 nos. of crucibles) + 40 MT LRF + Argon Oxygen Decarburization (AOD) 40T + Vacuum Degasser (VD) - 40 T	4,62,000 TPA	6 X 20 MT (7.5 nos. of crucibles) + 40 MT LRF + Argon Oxygen Decarburization (AOD) 40T + Vacuum Degasser (VD) - 40 T	4,62,000 TPA	9,24,000 TPA
3	Rolling Mill with Reheating Furnace and Gasifier (Rolled products)	Mill – 3,50,000 TPA, RHF - 40 TPH	3,50,000 TPA	Mill – 3,50,000 TPA, RHF - 40 TPH	3,50,000 TPA	7,00,000 TPA
4	Coal Gasifier for Rolling Mill (Producer gas)	Hot Gasifier - 5 Modules of 3.2 meter Ø. Total 14000 nm3/h	111 MNm ³ /Annum	Hot Gasifier - 5 Modules of 3.2 meter Ø. Total 14000 nm3/h	111 MNm ³ /Annum	222 MNm ³ /Annum
5	Submerged Electric Furnaces - Ferro Alloys Plant	2 x 12 MVA	FeMn-42,900 TPA / SiMn-36,300 TPA	2 x 12 MVA	FeMn-42,900 TPA / SiMn-36,300 TPA	FeMn-85,800 TPA / SiMn-72,600 TPA
6	Power generation through WHRB	2 x11 MW WHRB	22 MW	2 x 11 MW WHRB	22 MW	44 MW
	Power generation through AFBC Boiler	2 x 19 MW + 1 x 30 MW	68 MW	1 x 30 MW + 1 x 38 MW	68 MW	136 MW
7	Wire Drawing Mill	1 x 1,00,000 TPA	1,00,000 TPA	1 x 1,00,000 TPA	1,00,000 TPA	2,00,000 TPA
8	FlyAsh Bricks	1 x 3,50,000	3,50,000 TPA	1 x 3,50,000	3,50,000 TPA	7,00,000 TPA

PIONEER ENVIRO Laboratories & Consultants Pvt. Ltd

manufacturing	TPA	TPA	
unit			

1.3 RAW MATERIAL REQUIRMENT

The following will be the raw material requirement for the proposed project:

Table No.1.3: Raw Material Requirement, Source & Mode of Transport

S.No.	Raw Material	Quantity (TPA)	Sources	Distance from site (in Kms.)	Mode of Transport
1.	For DRI Kilns (Spo	onge Iron) –	7,92,000TPA		
2)	Iron ore	13 16 30/	NMDC Bacheli/	500	By rail & road
a)	nonore	13,10,304	OMC		(through covered trucks)
			SECL,	280	By rail & road
b)	Indian coal	9,63,864	GarePlama IV,		(through covered trucks)
			Sahapur West		
c)	Dolomite	39 600	Chandranur	550	By road
د)	Dolomice	33,000	Chanarapai	550	(through covered trucks)
2.	For Steel Melting	Shop (Steel	Billets) – 9,24,000	ТРА	
a)			Own generation	100	
	Sponge Iron	8,48,232	& external		Through covered conveyers
			purchase		
b)	MS Scrap	1.94.964	Own generation	200	By road
		1,5 1,5 0 1	/Chhattisgarh	200	(through covered trucks)
c)	Recovered iron	18,480	Own generation		By road
	from IF slag	10,100	e in generation		(through covered trucks)
3.	For Rolling Mill –	7,00,000 TP	Α		
a)	Steel Billets	7,14,000	Own generation		
b)	Coal (Gasifier)	1,08,500	SECL,	280	By rail & road
			GarePlama IV		(through covered trucks)
4.	For AFBC Boiler [Power Gene	ration : 44 MW]		
a)	Indian Coal	7,86,240	SECL,	280	By rail & road
			GarePlama IV		(through covered trucks)
b)	Dolochar	134,640	In plant		through covered conveyors
			generation		
5.	For Ferro Alloys (4 x 12 MVA)			
(i)	For Ferro Magnes	se – 85,800 T	PA		
a)	Magnese ore	2.05.920	Vizag Port	600	By Rail & Road
		_,			(through covered trucks)
b)	Coke/coal	55.770	SECL, Sahapur	320	By road
			West		(through covered trucks)
c)	Flux	17.160	Raipur	100	By road
					(through covered trucks)
			(or)		
(ii)	For Silico Mangar	nese – 72,600) TPA		
a)	Manganese Ore	1 63 335	Vizag Port	600	By Rail & Road

PIONEER ENVIRO

Executive Summary

					(through covered trucks)	
b)	Coke	9440	Vizag Port	600	By Rail & Road	
					(through covered trucks)	
c)	Coal	44,600	SECL, Sahapur West	280		
d)	FeMn. Slag	21,780	Own generation			
e)	Quartz	7,260	Mandla	250	By road	
					(through covered trucks)	
f)	Dolomite	3,630	Chandranur	550	By road	
			Chandrapur	550	(through covered trucks)	
6.	Wire Drawing Mill – 2,00,000 TPA					
a)	Coil	2,03,000	Own generation			
7.	Bricks Plant-7,00	,000 – Brick/	Year			
a)	Fly Ash(PP)	356031	Own generation			
b)	Fly Ash (DRI)	138600	Own generation			
c)	Slag (IF)	110880	Own generation			
d)	Ash + cinder	42400	Own generation			
	(Gasifier)	43400				
e)	Accretion (DRI)	9504	Own generation			
f)	Wet Scrapper (DRI)	19800	Own generation			
g)	Cement	21785	From cement plants	200 Kms.	By road (through covered trucks)	

1.4 MANUFACTURING PROCESS

1.4.1 Sponge Iron (DRI)

The proposal consists of 4x600 TPD of DRI kilns to produce 7,92,000 TPA of Sponge Iron with 4 x 11 MW WHRB facility. Refractory lined rotary kilns will be used for reduction of iron ore in solid state. Refractory lined rotary kilns will be used for reduction of iron ore in solid state. A central Burner

located at the discharge end will be used for initial heating of the kiln. Iron ore will be continuously fed into the kiln along with coal which has dual role of fuel as well as

reductant. Dolomite will be added to scavenge the sulphur from the coal. A number of air tubes will be provided along the length of the kiln. The desired temperature profile will be maintained by controlling the volume of the combustion air through these tubes. The Carbon monoxide generated due to the combustion of coal, reduces the iron ore and converts it into sponge iron. The rotary kiln is primarily divided into two zones viz. the pre heating zone and the reduction zone. The preheating zone extends over 30 to 50 % of the length of the kiln and in this the moisture in the charge will be driven off and the volatile matter in the coal will be burnt with the combustion air supplied through the air tubes. Heat from the combustion raises the temperature of the lining and

the bed surface. As the kiln rotates, the lining transfers the heat to the charge. Charge material, pre-heated to about 1000⁰C enters the reduction zone. Temperature of the order of 1050⁰C will be maintained in the reduction zone, which is the appropriate temperature for solid state reduction of iron oxide to metallic iron.

This hot material will be transferred to Heat exchanger. In Heat exchanger the material will be cooled to 160°C. The cooler discharge material consists of sponge iron lumps, sponge iron fines and char. Magnetic and non-magnetic material will be separated through magnetic separators and stored in separate bins. The hot flue gases will be taken to a Waste Heat Recovery Boilers and after heat recovery they will be treated in high efficiency ESP and discharged into the atmosphere through stack whose height will be in accordance with CPCB norms.

1.4.2 Steel Melting Shop

In Steel Melting Shop (SMS), Sponge Iron will be melted along with melting scrap and fluxes to make pure liquid steel and then to mould it in required size billets. The SMS will consist of Induction furnace, Ladles, Cranes & Continuous Casting Machine (CCM). There will be12 x 20 T Induction furnaces to manufacture Billets of 9,24,000TPA. Billets will be sent to Re-heating Furnace to reheat the Billets and then sent to Rolling Mill to manufacture Rolled Products.

1.4.3 Rolling Mill

Billetswill be cooled and stored will be sent to reheating furnaces for the heating and will be sent to Rolling Mill. Furnace will be heated with producer gas. A Rolling mill will be installed in the plant to produce 7,00,000TPA of Rolled products.

1.4.5 Submerged Electric Arc Furnaces

4no.s of Submerged Electric Arc Furnaces each of 12 MVA will be setup in the proposed plant. Ferro manganese/Silicon-manganese will be produced using manganese ore as main raw materialin a sub-merged arc furnace using reducer (Coke) under high voltage.

1.4.6 Power Generation

Through WHRB Boiler

The hot flue gases from proposed 4x600 TPDDRI kilns will pass through waste heat recovery Boiler to recover the heat and to generate 44 MW (4 x 11 MW)electricity. The gases after heat recovery

will pass through ESP and then discharged through chimneys into the atmosphere for effective dispersion of emissions into the atmospherethrough stacks of adequate height.

Through CFBC Boiler

Indian Coal along withdolochar will be used as fuel in AFBC Boilers to generate 136 MW (2 x 19 MW & 2 x 30 MW& 1x38 MW) of electricity. The flue-gases will be treated in high efficiency ESP and then discharged through a stack of adequate height into the atmosphere.

1.5 Water Requirement

- Water required for the proposed project will be 7646 KLD.
- Water required for proposed project will be sourced from Kharoon River (which is at a distance of 6.1 Kms. from the project site).
- Water drawl permission from Water Resource Department, Chhattisgarh will be obtained. As MOU has been signed by the company with Govt. of Chhattisgarh, State Investment Promotion Board (SIPB) will facilitate the required approvals for the plant.
- Air cooled condensers will be provided to AFBC Power plant.
- The following is the breakup of water requirement

S. No	Plant Name	Water Requirement in KLD
1	Sponge Iron Plant	2170
2	Induction Furnace	2170
4	Rolling Mill	920
5	Power Plant	1800
5	Ferro Alloy	400
6	Brick Plant	50
7	Domestic	136
	Total	7646

Table No.1.4: Water Requirement Breakup

1.6 Wastewater Generation

- Total wastewater generation will be 1121 KLD.
- The wastewater generated from DRI, SMS, Rolling mill, Ferro Alloys, Power plant will be treated ETP and after ensuring compliance with SPCB norms, it will be utilized for dust suppression, ash conditioning and for greenbelt development.
- Air Cooled condensers will be provided in the power plant, which will reduce the water consumption significantly. Hence wastewater generation will also be minimized.

- During monsoon period, the treated wastewater will be utilized as makeup water for Rolling Mill
- Sanitary wastewater will be treated in STP.
- Garland drains will be provided around all the raw material stacking areas.
- The following is the breakup of the wastewater generation from proposed project.

SI. No	Plant Name	Waste water Generation in KLD
1	Sponge Iron Plant	217
2	Induction Furnace	217
4	Rolling Mill	120
5	Power Plant	360
5	Ferro Alloy	80
6	Brick Plant	5
7	Domestic	122
Total		1121

Table No.1.5: BreakupOfWastewater Generation

2.0 DESCRIPTION OF ENVIRONMENT

Base line data has been collected on ambient air quality, water quality, noise levels, flora and fauna and socio-economic details of people within 10 km radius of the project site.

2.1 Ambient air quality

Ambient air quality was monitored for $PM_{2.5}$, PM_{10} , SO_2 , NOx& CO at 8 stations including project site during **1st March 2021 to 31st May 2021**. The following are the concentrations of various parameters at the monitoring stations:

S.No.	Parameter		Concentration
1.	PM _{2.5}	:	3 16.2 to 34.7μg/m
2.	PM ₁₀	:	³ 26.9 to 57.9μg/m
3.	SO ₂	:	6.1 to 9.4µg/m ³
4.	NO _X	:	6.5 to 12.6μg/m ³
5.	СО	:	311 to 847µg/m

TableNo.2.1 : Ambient	Air Quality	Summary
-----------------------	-------------	---------

2.2 Water Quality

2.2.1 Surface Water Quality

Lorr nadhi- Adjacent (East), Ghurinala –Adjacent (North)&Kharoon River - 6.1 Kms (East)are present within 10 Km. radius of the project site. 2 no. of samples i.e. 60m Upstream & 60 m Downstream from Kharoon River and 6 other samples have been collected and analyzed for various parameters. The analysis of samples shows that all the parameters are in accordance with BIS-2296 specifications.

2.2.2 Ground Water Quality

8 No. of ground water samples from open wells / bore wells were collected from the nearby villages to assess ground water quality impacts and analyzed for various Physico-Chemical parameters. The analysis of samples shows that all the parameters are in accordance with BIS: 10500 specifications.

2.3 Noise Levels

Noise levels were measured at 8 locations during daytime &Nighttime. The noise levels at the monitoring stations are ranging from 46.19dBA to 52.18dBA.

3.0 ANTICIPATED ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

3.1 Prediction of impacts on air quality

The likely emissions from the proposed project are PM_{10} , SO_2 , NOx& CO. The predictions of Ground level concentrations have been carried out using Industrial Source Complex (ISC-3) model. Meteorological data such as wind direction, wind speed, max. and min. temperatures collected at the site have been used as input data to run the model.

The predicted max. Incremental PM_{10} concentrations (24 hourly) due to the proposed project will be 0.87µg/M³ at a distance of 1400m from the stack in the down wind direction over the baseline concentrations.

The predicted incremental rise in Particulate Matter concentration due to the Vehicular emission will be $1.19 \mu g/m^3$.

Hence the total predicted incremental rise inParticulate Matter concentrationdue to the emission from proposed project and due the vehicular emissions will be $0.87 \mu g/m^3 + 1.19 \mu g/m^3 = 2.06 \mu g/m^3$.

The predicted max incremental SO₂ concentrations (24 hourly) due to the emissions from operation of proposed project will be $7.49 \mu g/m^3$ at a distance of 1400 m from the stack in the down wind direction over the baseline concentrations.

The predicted max incremental NO₂ concentrations (24 hourly) due to the proposed project will be $5.27 \mu g/m^3$ at a distance of 1400 m from the stack in the down wind direction over the baseline concentrations.

The predicted incremental rise in NO₂concentration due to the Vehicular emission will be $5.65 \mu g/m^3$.

Hence the total predicted incremental rise in NO₂ concentration due to the emission from project and due the vehicular emission will be $5.27 \mu g/m^3 + 5.65 \mu g/m^3 = 10.92 \mu g/m^3$

The predicted incremental rise in CO concentration due to the Vehicular emissions will be $2.86\mu g/m^3$.

Table No.3.1: NET RESULTANT MAXIMUM CONCENTRATIONS DURING THE OPERATION OF THE PROPOSEDPROJECT

ltem	PM ₁₀	SO ₂	NO ₂	СО
	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)
Maximum baseline conc. in the study area	57.9	9.4	12.6	847
Maximum predicted incremental rise in	0.64	7.49	5.27	Nil
concentration due to proposed project (Point				
Sources)				
Maximum predicted incremental rise in	1.19	Nil	5.65	2.86
concentration due to proposed project (Vehicular				
emissions)				
Net resultant concentrations during operation of	59.73	16.89	23.52	849.86
the proposed project				
National Ambient Air Quality Standards	100	80	80	2000

The net resultant Ground level concentrations during operation of the proposed project are within the NAAQS. Hence, there will not be any adverse impact on air environment due to the proposed project.

3.2 Prediction of impacts on Noise quality

The major sources of noise generation in the proposed project will be STG, boilers, compressors, DG set, etc. Acoustic enclosures will be provided to the STG. The ambient noise levels will be within the standards prescribed by MoEF vide notification dated 14-02-2000 under the Noise Pollution (Regulation & Control), Rules 2000 i.e. the noise levels will be less than 75 dBA during day time and less than 70 dBA during night time. 26.64 Ha (65.82 Acres)of extensive greenbelt will be developed to further attenuate the noise levels. Hence there will not be any adverse impact due to noise on population in surrounding areas due to the proposed project.

3.3 Prediction of impacts on Water Environment

The wastewater generated from DRI, SMS, Rolling Mill, Ferro alloys and power plant will be treated in Effluent Treatment plant and after ensuring compliance with SPCB norms, it will be utilized for dust suppression, ash conditioning and for greenbelt development. Sanitary wastewater will be treated in STP. Treated sewage will be used for Greenbelt development. There will not be any effluent discharge outside the premises. ZLD will be followed. Hence there will not be any adverse impact on environment due to the proposed project.

3.4 Prediction of Impacts on Land Environment

The effluent will be treated to achieve SPCB standards. Zero effluent discharge will be adopted. All the required air pollution control systems will be provided to comply with CPCB / SPCB norms. All solid wastes will be disposed/utilized as per CPCB/SPCB norms. 26.64 Ha (65.82 Acres)of extensive greenbelt will be developed as per guidelines. Hence, there will not be any adverse impact on land environment due to the proposed project.

3.5 Socio - Economic Environment

There will be certain upliftment in Socio Economic status of the people in the area & development of the area due to the proposed project. Due to this the economic conditions, the educational and medical standards of the people living in the study area will certainly move upwards which will result in overall economic development, improvement in general aesthetic environment and increase in business opportunities.

4.0 ENVIRONMENTAL MONITORING PROGRAMME

Post project monitoring will be conducted as per the guidelines of SPCB and MoEF&CC are tabulated below:

S.No.	Particulars	Frequency of	Duration of	Parameters required			
		Monitoring	sampling	to be monitored			
1. Wat	1. Water & Wastewater quality						
A.	Water quality in the area	Once in a month except for heavy metals which will be monitored on quarterly basis.	Composite sampling (24 hourly)	As per IS: 10500			
В.	Effluent at the Inlet & Outlet of the ETP	Once in a month	Grab sampling (24 hourly)	As per EPA Rules, 1996			

TABLE NO.4.1: MONITORING SCHEDULE FOR ENVIRONMENTAL PARAMETERS

PIONEER ENVIRO Laboratories & Consultants Pvt. Ltd **Executive Summary**

S.No.	Particulars	Frequency of Monitoring	Duration of sampling	Parameters required to be monitored
C.	STP Inlet & Outlet	Once in a month	Grab sampling (24 hourly)	As per EPA Rules1996
2. Air (Quality			
А.	Stack Monitoring	Online monitors (all stacks)		PM
		QuarterlyOnce		PM,SO ₂ & NO ₂
B.	Ambient Air quality (CAAQMS)	Continuous	Continuous	PM ₁₀ , SO ₂ & NO ₂
		QuarterlyOnce	24 hours	PM _{2.5} , PM ₁₀ , SO ₂ , NO ₂ & CO
С.	Fugitive emissions	QuarterlyOnce	8 hours	PM
3. Met	eorological Data			
	Meteorological data to be monitored at the plant.	Daily	Continuous monitoring	Temperature, Relative Humidity, rainfall, wind direction & wind speed.
4. Nois	e level monitoring			
	Ambient Noise levels	Once in a month	Continuous for 24 hours with 1 hour interval	Noise levels

5.0 ADDITIONAL STUDIES

No Rehabilitation and Resettlement is involved in the proposed project as there are no habitations in the project site. Hence no R & R study has been carried out.

6.0 **PROJECT BENEFITS**

With the establishment of the proposed project employment potential will increase. Land prices in the area will increase. The economic status of the people in the area will improve due to the proposed project. Periodic medical checkups will be carried out. Top priority will be given to locals in employment.

7.0 ENVIRONMENT MANAGEMENT PLAN

7.1 Air Environment

The following are air emission control systems proposed in the proposed project:

Table No.7.1: Air Emission Control Systems Proposed

S.No.	Source	Control Equipment	Particulate emission
			at the outlet
1.	DRI kilns with WHRB's	Electro Static Precipitators (ESPs)	< 30 mg/Nm ³
2.	Induction Furnaces with CCM	Fume Extraction system with bag	< 30 mg/Nm ³

			at the outlet
		filters	
3.	Submerged Electric Arc Furnace	4 th Hole Fume Extraction system with bag filters	< 30 mg/Nm ³
4.	Re-heating furnaces attached to Rolling Mill	Heat Recuperator	< 30 mg/Nm ³
5.	FBC Boilers	Electro Static Precipitators	< 30 mg/Nm ³
		Lime dosing	³ SOx< 100 mg/Nm
		Low NOx burners with 3-stage combustion, flue gas recirculation and auto combustion control system will be provided	NOx< 100 mg/Nm

Note : Apart from the above Fume extraction system with bagfilters, dust suppression system, covered conveyers etc. will also be installed

Apart from the above the following air emission control systems/ measures are proposed in the Plant:

- > All conveyors will be completely covered with G.I. sheets to control fugitive dust.
- All bins will be totally packed and covered so that there will not be any chance for dust leakage.
- All the dust prone points material handling systems will be connected with de-dusting system with bag filters.
- All discharge points and feed points, wherever the possibility of dust generation is there a de-dusting suction point will be provided to collect the dust.

7.2 WasteWater

Total wastewater generation will be 1121 KLD.The wastewater generated from DRI, SMS, Rolling mill, Ferro Alloys, Power plant will be treated ETP and after ensuring compliance with SPCB norms, it will be utilized for dust suppression, ash conditioning and for greenbelt development. Air Cooled condensers will be provided in the power plant, which will reduce the water consumption significantly. Hence wastewater generation will also be minimized.Sanitary wastewater will be treated in STP.

TREATED EFFLUENT DISPOSAL

Effluent quantity to be used for ash and slag quenching	:	180 m³/day
Effluent to be used for dust suppression in CHP	:	119 m³/day

Effluent to be used for Greenbelt development : 700 m³/day

26.64 Ha. (65.8 Acres) of greenbelt will be developed within the plant premises by using the treated effluent. A dedicated pipe distribution network will be provided for using the treated effluent for greenbelt development.

7.3 Noise Environment

The major sources of noise generation in the proposed project will be STG, boilers, compressors, DG set, etc. Acoustic enclosure will be provided. All the machinery will be manufactured in accordance with MoEF&CC norms on Noise levels. The employees working near the noise generating sources will be provided with earplugs. The extensive greenbelt development proposed within the plant premises will help in attenuating the noise levels further. Noise barriers in the form of trees are recommended to be grown around administrative block and other utility units.

7.4 Land Environment

The wastewater generated from the proposed project will be treated in the Effluent Treatment Plant to comply with the SPCB standards and will be used for dust suppression, ash conditioning and for greenbelt development. All the required Air emission control systems will be installed and operated to comply with SPCB norms. Solid wastes will be disposed off as per norms. Extensive greenbelt will be developed in the plant premises. Desirable beautification and landscaping practices will be followed. Hence there will not be any impact due to the proposed project.

Waste / By product	Quantity (TPA)	Proposed method of disposal
Ash from DRI	1,58,400	Will be utilised in the proposed Brick Manufacturing
		Unit
Dolochar	1,34,640	Will be used in proposed AFBC power plant as fuel.
Char	71,280	will be given to brick kiln units.
Kiln Accretion Slag	9,504	Will be utilised in the proposed Brick Manufacturing
		Unit
Wet scrapper sludge	19,800	Will be utilised in the proposed Brick Manufacturing
		Unit
Bag Filter Dust	13,464	Will be utilised in the proposed Brick Manufacturing
		Unit
SMS Slag	1,29,360	Slag from SMS will be crushed and iron will be
		recovered & then remaining non -magnetic material
		being inert by nature will be utilised in the proposed
		Brick Manufacturing Unit.
	Waste / By product Ash from DRI Dolochar Char Kiln Accretion Slag Wet scrapper sludge Bag Filter Dust SMS Slag	Waste / By productQuantity (TPA)Ash from DRI1,58,400Dolochar1,34,640Char71,280Kiln Accretion Slag9,504Wet scrapper sludge19,800Bag Filter Dust13,464SMS Slag1,29,360

sal
)

S.No.	Waste / By product	Quantity (TPA)	Proposed method of disposal
8.	End Cuttings from Rolling Mill	7,000	Will be reused in the SMS
9.	Mill scales from Rolling Mill	7,000	Will be reused in Ferro Alloy units
10.	Ash+ cinder from coal gasifier	43,400	Will be utilised in the proposed Brick Manufacturing Unit
11.	Mill scales from Wire drawing mill	2,000	Will be reused in the SMS
12.	Ash from Power Plant	3,49,423	Will be utilized in the proposed brick manufacturing unit
13.	Slag from FeMn	77,220	Will be reused in manufacture of SiMn as it contains high SiO_2 and Silicon.
14.	Slag from SiMn	87,120	will be used for Road construction / will be given to slag cement manufacturing

7.5 Greenbelt Development

Greenbelt of 26.64 Ha (65.82 Acres) of extensive greenbelt will be developed in the plant premises. 20 to 167 mwide greenbelt will be developed all around the plant.

Capital Cost for Environment Protection for proposed plant	: Rs.135.23Crores
Recurring Cost per annum for Environmental protection	: Rs.20.15Crores

11.7.7 Implementation of CREP Recommendations

All the CREP recommendations will be strictly followed.